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A Kleinian group is, by definition, a group of orientation preserving isometries of
the 3-dimensional hyperbolic space $\mathbb{H}^{3}$ that acts freely and properly discontinuously.
We try to extend a criterion for handy finitely generated Kleinian groups, geometric
finiteness, to infinitely generated cases and come up with the following concept of
local geometric finiteness: A Kleinian group $\Gamma$ is defined to be locally geometrically
finite if every finitely generated subgroup of $\Gamma$ is geometrically finite.

In this note, we consider several conditions from which the local geometric finite-
ness follows. Especially we regard the following theorem due to Thurston (see [5,
Th.3.11]) as a motivation for considering such conditions geometrically and clariN
the relationship with analytic conditions given by the Hausdorff dimension of the
limit set.

Theorem 1. Let $G$ be a geometrically finite Kleinian group with the non-empty
$re$.qion of discontinuity ($i.e$ . of the second kind). Then every finitely generated sub-
group of $G$ is geometrically finite. Namely, $G$ is locally geometrically finite.

First of all, we review geometric finiteness of Kleinian groups. The convex hull
$\tilde{C}_{G}$ of the limit set $\Lambda(G)$ is the smallest, convex, closed subset in $\mathbb{H}^{3}$ that contains all
geodesic lines with the end points in $\Lambda(G)$ . The convex core $C_{G}$ is a convex, closed
subset of the hyperbolic 3-manifold $N_{G}=\mathbb{H}^{3}/G$ that is the image of $\tilde{C}_{G}$ under the
projection $\mathbb{H}^{3}arrow N_{G}$ . Let $x\in\Lambda(G)$ be a parabolic fixed point of $G$ . We say that
a horoball $B_{x}$ in IHI3 tangent at $x$ is a cusp horoball if $B_{x}$ is equivariant under the
stabilizer of $x$ in $G$ . The image of a cusp horoball under the projection IHI3 $arrow N_{G}$

is called a cusp neighborhood. Then one of mutually equivalent characterizations of
geometric finiteness for $G$ is that the convex core $C_{G}$ is compact except for cusp
neighborhoods (see [5, Th.3.7]). Another characterization is that $\Lambda(G)$ is coincident
with the conical limit set $\Lambda_{c}(G)$ up to parabolic fixed points.

In this note, we define a Kleinian group $G$ to be analytically finite if the relative
boundary $\partial C_{G}$ of the convex core in $N_{G}$ is compact except for cusp neighborhoods.
It is obvious that if $G$ is geometrically finite then it is analytically finite. Moreover,
the Ahlfors finiteness theorem (see [5, Th.4.1]) asserts that every finitely generated
Kleinian group is analytically finite.
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The assumption of Theorem 1 that $G$ has the non-empty region of discontinuity
is essential; this is necessary for the proof and there exists a counterexample for
the statement if we drop it. This is equivalent to saying that $\partial C_{G}$ is not empty.
However, assuming for $G$ to be geometrically finite is too restricted; in order to
prove Theorem 1, we only use a property of the convex core of a geometrically
finite Kleinian group, boundedness of the hyperbolic distance from its boundary.
We formulate this weaker condition precisely as follows: A Kleinian group $G$ is, by
definition, .qeometrically bounded if $\partial C_{G}\neq\emptyset$ and if

$\sup\{d(\partial C_{c}, q)|q\in Cc-P_{G}\}<\infty$

is satisfied for the union $P_{G}$ of some cusp neighborhoods, where $d(\cdot, \cdot)$ means the
hyperbolic distance.

By the definitions above, we can easily see the following fact:

Proposition 1. A Kleinian.qroup $G$ is both geometrically bounded and analyti-
cally finite if and only if $G$ is geometrically finite with the non-empty $re$.qion of
discontinuity.

Now we state the extension of Theorem 1 by using the geometric boundedness
and exhibit a proof for it.

Theorem 2. If a Kleinian group $G$ is.qeometrically bounded then $G$ is locally
.qeometrically finite.
Proof. We denote $C_{c-}PG$ by $(C_{G})_{0}$ and $\tilde{C}_{c-}\tilde{P}G$ by $(\tilde{C}_{G})_{0}$ where $\tilde{P}_{G}$ is the union
of cusp horoballs that is the inverse image of $P_{G}$ . By assumption, $(\tilde{C}_{G})_{0}$ is within
a bounded distance of $\partial\tilde{C}_{G}$ .

Let $\Gamma$ be a finitely generated subgroup of $G$ . We define $(C_{\Gamma})_{0}=C_{\Gamma}-P_{\Gamma’}$ and
$(\tilde{C}_{\Gamma})_{0}=\tilde{C}_{\Gamma}-\tilde{P}_{\Gamma}$ similarly for $\Gamma$ , where a cusp horoball $B_{x}\subset\tilde{P}_{\Gamma}$ for a parabolic
fixed point $x$ of $\Gamma$ is chosen so that it is coincident with the cusp horoball for $G$ .
Then $(\tilde{C}_{\Gamma’})_{0}\cap(\tilde{C}_{G})_{0}$ is within a bounded distance of $\partial\tilde{C}_{\Gamma}$ because $\tilde{C}_{\Gamma}\subset\tilde{C}_{G}$ .

Since $\Gamma$ is analytically finite by the Ahlfors finiteness theorem, we see that

$(\partial\tilde{C}_{\Gamma}\cap(\tilde{C}_{\Gamma})_{0}\cap\tilde{P}_{G})/\Gamma$

is relatively compact. Thus, replacing $\tilde{P}_{G}$ with smaller cusp horoballs if necessary,
we may assume that $(\tilde{C}_{\mathrm{I}^{\urcorner}})_{0}\cap\tilde{P}_{G}=\emptyset$ and hence $(\tilde{C}_{\Gamma})_{0}\cap(\tilde{C}_{G})_{0}$ is coincident with
$(\tilde{C}_{\Gamma})_{0}$ . This implies that $(\tilde{C}_{\Gamma})_{0}$ is within a bounded distance of $\partial\tilde{C}_{\mathrm{I}^{\urcorner}}$ , namely, $\Gamma$ is
geometrically bounded. Hence, by Proposition 1, $\Gamma$ is geometrically finite. $\square$

Next we move on the Hausdorff dimension of the limit set. The geometric bound-
edness has a connection with an analytic condition via the following result [4].
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Proposition 2. If a Kleinian group $G$ is geometrically bounded then the Hausdorff
dimension $\dim\Lambda(G)$ of the limit set is strictly less than 2.

The conclusion of Proposition 2 is still a sufficient condition for local geometric
finiteness; it can be easily seen from a famous result due to Bishop and Jones [1].

Theorem 3. If a Kleinian group $G$ satisfies $\dim\Lambda(G)<2$ then $G$ is locally .qeo-
metrically finite.
Proof. Let $\Gamma$ be a finitely generated subgroup of $G$ . Then

$\dim\Lambda(\Gamma)\leq\dim\Lambda(G)<2$ .

By the theorem of Bishop and Jones, $\dim\Lambda(\Gamma)<2$ implies that $\Gamma$ is geometrically
finite. $\square$

Actually, we can prove a slightly stronger result than Theorem 3.

Theorem 3’. If an infinitely generated Kleinian group $G$ satisfies $\dim\Lambda(G)<2$

then every finitely generated sub.qroup $\Gamma$ of $G$ satisfies the strict inequality

$\dim\Lambda(\Gamma)<\dim\Lambda(G)$ .

Proof. By Theorem 3, $\Gamma$ is geometrically finite. Then the critical exponent of the
Poincar\’e series for $\Gamma$ is equal to $\dim\Lambda(\Gamma)$ and the Poincar\’e series diverges at this
critical exponent. As is shown in [3], if $\Lambda(\Gamma)$ is a proper subset of $\Lambda(G)$ , which is
always the case for finitely generated $\Gamma$ and infinitely generated $G$ , then the strict
inequality on the Hausdorff dimension follows. $\square$

Finally we weaken the assumption of Theorem 3 slightly and prove that local geo-
metric finiteness follows even from this weaker assumption. This is a consequence
of the theorem of Bishop and Jones again.

Theorem 4. If a Kleinian group $G$ satisfies both that the Hausdorff dimension
of the conical limit set $\Lambda_{c}(G)$ is strictly less than 2 and that the 2-dimensional
Hausdorff measure $\mu_{2}$ of $\Lambda(G)$ is zero, then $G$ is locally geometrically finite.

Proof. Any subgroup $\Gamma$ of $G$ satisfies $\dim\Lambda_{C}(\Gamma)<2$ and $\mu_{2}(\Lambda(\Gamma))=0$ , too. By
the theorem of Bishop and Jones, if $\Gamma$ is finitely generated but not geometrically
finite then either $\dim\Lambda_{C}(\Gamma)=2$ or $\mu_{2}(\Lambda(\Gamma))>0$ . Hence we can see that every
finitely generated subgroup $\Gamma$ is geometrically finite. $\square$

The assumption of Theorem 4 is by no means a sharp condition for local geo-
metric finiteness. In fact, we can construct the following examples:
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Examples. Let $G$ be a Kleinian group of the second kind that is exhausted by a
sequence of geometrically finite subgroups $\Gamma_{n}$ with $\dim\Lambda_{c}(\Gamma_{n})\uparrow 2$ . For instance,
we can take such $G$ as a certain subgroup of a Kleinian group for an infinite cyclic
cover of a closed hyperbolic manifold. Then $\dim\Lambda_{C}(G)=2$ , however $G$ is locally
geometrically finite. On the other hand, we can construct an infinitely generated
Schottky group $G$ of the second kind so that $\mu_{2}(\Lambda(G))>0$ (see [2, Chapter 8]).
However, this $G$ is also locally geometrically finite. Moreover, combining these two
examples, we can obtain a locally geometrically finite Kleinian group $G$ satisfying
both $\dim\Lambda_{c}(G)=2$ and $\mu_{2}(\Lambda(G))>0$ .

Our next problem is to find an interesting necessary condition for local geometric
finiteness.
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