SOME SUFFICIENT CONDITIONS FOR STRONGLY STARLIKENESS

Milutin Obradović and Shigeyoshi Owa

Abstract. We consider strongly starlikeness of order α of functions $f(z) = z + a_{n+1}z^{n+1} + \dots$ which are analytic in the unit disc and satisfy the condition of the form

$$\left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| < \lambda, 0 < \mu < 1, 0 < \lambda < 1.$$

1. INTRODUCTION AND PRELIMINARIES

Let H denote the class of functions analytic in the unit disc $U = \{z: |z| < 1\}$ and let $A \subset H$ be the class of normalized analytic functions f in U such that f(0) = f'(0) - 1 = 0. For $n \ge 1$ we put

$$A_n = \{f: f(z) = z + a_{n+1}z^{n+1} + \dots \text{ is analytic in } U\}$$

and $A_1 = A$.

A function $f \in A$ is said to be strongly starlike or order α , $0 < \alpha \le 1$, if and only if

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\alpha},$$

where \prec denotes the usual subordination. We denote this class by $S(\alpha)$. If $\alpha=1$, then $S(1) \equiv S^*$ is the well-known class of starlike functions in U (see, for example, [1]).

In this paper we find a condition so that $f \in A_n$ satisfying

(1)
$$f'(z)\left(\frac{z}{f(z)}\right)^{1+\mu} < 1+\lambda z, \quad 0 < \mu < 1, 0 < \lambda < 1,$$

is in $S(\alpha)$. Also, we consider an integral transformation.

We note that the author in [4] determined the values for λ in (1) which implies starlikeness in U. Recently, Ponnusamy and Singh [5] found the condition which implies the strongly starlikeness of order α , but for $\mu < 0$ in (1). By using the similar method as in [5] we consider strongly starlikeness in the case (1).

First, we cite the following

LEMMA A. Let $Q \in H$ satisfy the subordination condition

$$Q(z) \prec 1 + \lambda_1 z$$
, $Q(0) = 1$,

where $0 < \lambda_1 \le 1$. For $0 < \alpha \le 1$, let $p \in H$, p(0) = 1 and p satisfy the condition

$$Q(z)p^{\alpha}(z) \prec 1 + \lambda z, \quad 0 < \lambda \leq 1.$$

Then for

$$\sin^{-1}\lambda + \sin^{-1}\lambda_1 \le \frac{\alpha\pi}{2}$$

we have $\operatorname{Re}\{p(z)\}>0$ in U.

This is the special case of the more general lemma given in [5].

2. RESULTS AND CONSEQUENCES

For our results we also need the following two lemmas.

LEMMA 1. Let $p \in H$, $p(z) = 1 + p_n z^n + ..., n \ge 1$, satisfy the condition

$$p(z) - \frac{1}{\mu} z p'(z) \prec 1 + \lambda z, \quad 0 < \mu < 1, \quad 0 < \lambda \le 1.$$

Then

$$p(z) \prec 1 + \lambda_1 z$$

where

$$\lambda_1 = \frac{\lambda \mu}{n - \mu}.$$

The proof of this lemma for n=1 is given by the author in [4]. For any $n \in \mathbb{N}$ we also can apply Jack's lemma [3].

LEMMA 2. If $0 \le \mu \le 1$, $0 < \lambda \le 1$ and $Q \in H$ satisfying

$$Q(z) \prec 1 + \frac{\lambda \mu}{n - \mu} z$$
, $Q(0) = 1$, $n \in \mathbb{N}$,

and if $p \in H$, p(0)=1 and satisfies

$$Q(z)p^{\alpha}(z) \prec 1 + \lambda z$$

where

(3)
$$0 < \lambda \leq \frac{(n-\mu)\sin(\pi\alpha/2)}{\left|\mu + (n-\mu)e^{i\pi\alpha/2}\right|},$$

then $\operatorname{Re}\{p(z)\}>0$ in U.

Proof. If in Lemma A we put $\lambda_1 = \frac{\lambda \mu}{n - \mu}$, then the condition (2) is equivalent to

$$\sin^{-1}\lambda + \sin^{-1}\frac{\lambda\mu}{n-\mu} \le \frac{\alpha\pi}{2}.$$

This inequality is equivalent to

$$\sin^{-1}\left(\lambda\sqrt{1-\frac{\lambda^2\mu^2}{(n-\mu)^2}}+\frac{\lambda\mu}{n-\mu}\sqrt{1-\lambda^2}\right)\leq\frac{\alpha\pi}{2},$$

or to the inequality

$$\lambda \left[\sqrt{(n-\mu)^2 - \lambda^2 \mu^2} + \mu \sqrt{1-\lambda^2} \right] \leq (n-\mu) \sin(\alpha \pi/2).$$

From there, after some transformations, we get the following equivalent inequality

$$\left(\left[\mu^{2} + (n-\mu)^{2}\right]^{2} - 4\mu^{2}(n-\mu)^{2}\cos^{2}(\alpha\pi/2)\right)\lambda^{4} - 2(n-\mu)^{2}\left[(\mu^{2} + (n-\mu)^{2})\sin^{2}(\alpha\pi/2)\lambda^{2} + (1-\mu)^{4}\sin^{4}(\alpha\pi/2)\geq 0\right]$$

which is equivalent to the condition (3).

By Lemma A we have that $Re\{p(z)\} > 0$ in U.

THEOREM 1. Let $f \in A_n$, $0 < \mu < 1$ and f satisfy the subordination

$$f'(z)\left(\frac{z}{f(z)}\right)^{1+\mu} \prec 1+\lambda z$$
,

where

$$0<\lambda\leq\frac{n-\mu}{\sqrt{\mu^2+(n-\mu)^2}}.$$

Then $f \in S^*$.

Proof. If we put $Q(z) = \left(\frac{z}{f(z)}\right)^{\mu} (= 1 + q_n z^n + ...)$, then after some calculation, we get

$$Q(z) - \frac{1}{\mu} z Q'(z) = f'(z) \left(\frac{z}{f(z)}\right)^{1+\mu} \prec 1 + \lambda z.$$

From Lemma 1 we have

$$Q(z) \prec 1 + \lambda_1 z, \ \lambda_1 = \frac{\lambda \mu}{n - \mu}.$$

The rest part of the proof is the same as in the case n=1 (Theorem 1 in [4]) and we omit the details.

THEOREM 2. Let $0 < \mu < 1$ and $0 < \alpha \le 1$. If $f \in A_n$ satisfies

(4)
$$\left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| < \frac{(n-\mu)\sin(\pi\alpha/2)}{\left| \mu + (n-\mu)e^{i\pi\alpha/2} \right|}, z \in U,$$

then $f \in S(\alpha)$.

Proof. If we put
$$\lambda = \frac{(n-\mu)\sin(\pi\alpha/2)}{\left|\mu + (n-\mu)e^{i\pi\alpha/2}\right|}$$
, then, since $0 < \alpha \le 1$, we have

$$0 < \lambda \le \frac{n-\mu}{\sqrt{\mu^2 + (n-\mu)^2}}$$
, and by Theorem 1, $f \in S^*$. Later, the function

$$Q(z) = \left(\frac{z}{f(z)}\right)^{\mu} = 1 + q_n z^n + \dots \text{ is analytic in U and satisfies } Q(z) < 1 + \lambda_1 z, \ \lambda_1 = \frac{\lambda \mu}{n - \mu}.$$

Now, if we define

$$p(z) = \left(\frac{zf'(z)}{f(z)}\right)^{\frac{1}{\alpha}},$$

then p is analytic in U, p(0)=1 and the condition (4) is equivalent to $Q(z)p^{\alpha}(z) < 1 + \lambda z$.

Finally, from Lemma 2 we obtain

$$\left(\frac{zf'(z)}{f(z)}\right)^{\frac{1}{a}} \prec \frac{1+z}{1-z} \left(\Leftrightarrow \frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{a}\right),\,$$

i.e. $f \in S(\alpha)$. \square

We note that for $\alpha=1$ we have the statement of Theorem 1.

For n=1, $\mu=1/2$, $\alpha=2/3$ we get the following

COROLLARY 1. Let $f \in A$ and let

$$\left|f'(z)\left(\frac{z}{f(z)}\right)^{\frac{3}{2}}-1\right|<\frac{1}{2}, \ z\in U.$$

Then

$$\left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{\pi}{3}, \ z \in U,$$

i.e. $f \in S(2/3)$.

THEOREM 3. Let $0 < \mu < 1$, $Re\{c\} > -\mu$, and $0 < \alpha \le 1$. If $f \in A_n$ satisfies

(5)
$$\left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| < \left| \frac{n+c-\mu}{c-\mu} \right| \frac{(n-\mu)\sin(\pi\alpha/2)}{\left| \mu + (n-\mu)e^{i\pi\alpha/2} \right|}, z \in U,$$

then the function

(6)
$$F(z) = z \left[\frac{c - \mu}{z^{c - \mu}} \int_{0}^{z} \left(\frac{t}{f(t)} \right)^{\mu} t^{c - \mu - 1} dt \right]^{-\frac{1}{\mu}}$$

belongs to $S(\alpha)$.

Proof. If we put that λ is equal to the right hand side of the inequality (5) and

$$Q(z) = F'(z) \left(\frac{z}{F(z)}\right)^{1+\mu} \left(= 1 + q_n z^n + ...\right)$$

then from (5) and (6) we obtain

$$Q(z) + \frac{1}{c-\mu} z Q'(z) = f'(z) \left(\frac{z}{f(z)}\right)^{1+\mu} \prec 1 + \lambda z.$$

Hence, by using the result of Hallenbeck and Ruscheweyh [2, Th.1] we have that

$$Q(z) \prec 1 + \lambda_1 z$$
, $\lambda_1 = \frac{|(c-\mu)|\lambda}{|n+c-\mu|} = \frac{(n-\mu)\sin(\pi\alpha/2)}{|\mu+(n-\mu)e^{i\pi\alpha/2}|}$,

and the desired result easily follows from Theorem 2.

REMARK 1. For $\alpha=1$ and n=1 we have the corresponding result given earlier in [4].

For $c=\mu+1$, we have

COROLLARY 2. Let $0 \le \mu \le 1$ and $0 \le \alpha \le 1$. If $f \in A_n$ satisfies the condition

$$\left|f'(z)\left(\frac{z}{f(z)}\right)^{1+\mu}-1\right|<\frac{n(n-\mu)\sin(\pi\alpha/2)}{\left|\mu+(n-\mu)e^{i\pi\alpha/2}\right|}, z\in U,$$

then the function

$$F(z) = z \left[\frac{1}{z} \int_{0}^{z} \left(\frac{t}{f(t)} \right)^{\mu} dt \right]^{-\frac{1}{\mu}}$$

belongs to $S(\alpha)$.

Acknowledgement. The work of the first author was supported by Grant No.04M03 of MNTRS through Math. Institute SANU.

REFERENCES

- [1] P. L. Duren, Univalent functions, Springer-Verlag, 1983.
- [2] R. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, *Proc. Amer. Math. Soc.* 52(1975), 191-195.
- [3] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. (2) 3(1971), 469-474.
- [4] M. Obradović, A class of univalent functions, Hokkaido Math.J. 27(2) (1998), 329-335.
- [5] S. Ponnusamy and V. Singh, Criteria for strongly starlike functions, *Complex Variables:* Theory and Appln., to appear.

Department of Mathematics Faculty of Technology and Metallurgy 4 Karnegijeva Street, 11000 Belgrade Yugoslavia e-mail: obrad@elab.tmf.bg.ac.yu Department of Mathematics Kinki University Higashi-Osaka, Osaka 577 Japan