RADIUS OF STRONGLY STARLIKENESS FOR CERTAIN ANALYTIC FUNCTIONS

OH SANG, KWON AND SHIGEYOSHI OWA

ABSTRACT. We determine the radius of p-valent strongly starlike of order γ for certain polynomials of the form $F(z)=f(z)\cdot [Q(z)]^{\frac{\beta}{n}}$.

1. Introduction

Let A_p (p is fixed integer ≥ 1) denote the class of functions $f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k$ which are analytic in the unit disk $D = \{z \in D : |z| < 1\}$. Let Ω denote the class of bounded function w(z) analytic in D and satisfying the conditions w(0) = 0 and $|w(z)| \leq |z|, z \in D$. We use P to denote the class of functions $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ which are analytic in D and a positive real part there.

For $0 \le \alpha < p$ and $|\lambda| < \frac{\pi}{2}$, we denote by $S_p^{\lambda}(\alpha)$, the family of functions $g(z) \in A_p$ which satisfy

(1.1)
$$\frac{zg'(z)}{g(z)} \prec \frac{p + \{2(p-\alpha)\cos\lambda \cdot \exp(-i\lambda) - p\}z}{1-z}, \quad z \in D$$

where \prec means subordination. From the definition of subordination it follows that $g(z) \in A_p$ has a representation

$$\frac{zg'(z)}{g(z)} = \frac{p + \{2(p-\alpha)\cos\lambda \cdot \exp(-i\lambda) - p\}w(z)}{1 - w(z)}$$

where $w(z) \in \Omega$. Clearly, $S_p^{\lambda}(\alpha)$ is subclass of *p*-valent λ -spiral functions of order α . For $\lambda = 0$, we have the class $S_p^*(\alpha)$, $0 \le \alpha < p$, of *p*-valent starlike functions of order α , investigated by Goluzina [3].

¹⁹⁹¹ AMS Subject Classification: 30C45.

Key words and phrases. subordination, p-valent strongly starlike of order γ .

As noted in a function is p-valent strongly starlike of order γ , $0 < \gamma \le 1$ if

$$\left|\arg\left\{\frac{zf'(z)}{f(z)}\right\}\right| \leq \frac{\pi}{2}\gamma.$$

Basgőze(1969) has obtained sharp inequalities of univalence(starlikeness) for certain polynomials of the form $F(z) = f(z) \cdot [Q(z)]^{\frac{\beta}{n}}$, where β is real and Q(z) is a polynomial of degree n > 0 all of whose zeros are outside or on the unit circle $\{z \in D : |z| = 1\}$. Rajasekaran [5] extended Basgőze's results for certain classes of analytic functions of the form. Recently, J. Patel [4] generalized some of the work of Rajasekaran and Basgőze for functions belonging to the class $S_p^{\lambda}(\alpha)$. That is, determine the radius of starlikeness for some classes of p-valent analytic functions of the polynomial form F(z).

In the present paper, we will extend the results of J. patel. Thus, we determine the radius of p-valent strongly starlike of order γ for the polynomials of the form F(z) in the such problems.

2. Some Lemmas

Before proving our next results, we need the following Lemmas.

Lemma 1 (A. Gangadharan [2]). For $|z| \le r < 1$, $|z_k| = R > r$, we have

$$\left|\frac{z}{z-z_k} + \frac{r^2}{R^2 - r^2}\right| \le \frac{Rr}{R^2 - r^2}.$$

Lemma 2 (Ratti [6]). If $\phi(z)$ is analytic in D and $|\phi(z)| \leq 1$ for $z \in D$, then for |z| = r < 1,

$$\left| \frac{z\phi'(z) + \phi(z)}{1 + z\phi(z)} \right| \le \frac{1}{1 - r}.$$

Lemma 3 (Causey and Merke's [1]). If $p(z) = 1 + c_1 z + c_2 z + \cdots \in P$, then for |z| = r < 1,

$$\left|\frac{zp'(z)}{p(z)}\right| \le \frac{2r}{1-r^2}.$$

This estimate is sharp.

Lemma 4 (J. Patel [4]). Suppose $g(z) \in S_p^{\lambda}(\alpha)$. Then for |z| = r < 1,

$$\left|\frac{zg'(z)}{g(z)} - \left\{p + \frac{2(p-\alpha)e^{i\lambda}r^2\cos\lambda}{1-r^2}\right\}\right| \le \frac{2(p-\alpha)r\cos\lambda}{1-r^2}.$$

The result is sharp.

Lemma 5 (A. Gangadharan [2]). If $R_a \leq (Re\ a)\sin\left(\frac{\pi}{2}\gamma\right) - (Im\ a)\cos\left(\frac{\pi}{2}\gamma\right)$, $Im\ a \geq 0$, the disk $|w-a| \leq Ra$ is contained in the sector $|\arg w| \leq \frac{\pi}{2}\gamma$, $0 < \gamma \leq 1$.

3. Main Theorem

Theorem 1. Suppose

(3.1)
$$F(z) = f(z)[Q(z)]^{\frac{\beta}{n}}$$

where β is real and Q(z) is a polynomial of degree n > 0 with no zeros in |z| < R, $R \ge 1$. If $f(z) \in A_p$ satisfies

$$(3.2) \qquad Re\left[\left(\frac{f(z)}{g(z)}\right)^{\frac{1}{\delta}}\right] > 0, \quad 0 < \delta \le 1, \quad z \in D$$

and

(3.3)
$$Re\left[\frac{g(z)}{h(z)}\right] > 0, \quad z \in D$$

for some $g(z) \in A_p$ and $h(z) \in S_p^{\lambda}(\alpha)$, then F(z) is p-valent strongly starlike of order γ in $|z| < R(\gamma)$, where $R(\gamma)$ is the smallest positive root of the equation

$$r^{4} \left[(p+\beta) \sin \frac{\pi}{2} \gamma + 2(p-\alpha) \cos \lambda \sin(\lambda - \frac{\pi}{2} \gamma) \right]$$

$$+ r^{3} [|\beta|R + 2(p-\alpha) \cos \lambda + 2(\delta + 1)]$$

$$- r^{2} \left[(p(1+R^{2}) + \beta) \sin \frac{\pi}{2} \gamma + 2(p-\alpha)R^{2} \cos \lambda \sin(\lambda - \frac{\pi}{2} \gamma) \right]$$

$$- r[|\beta|R + 2(p-\alpha)R^{2} \cos \lambda + 2(\delta + 1)R^{2}]$$

$$+ pR^{2} \sin \frac{\pi}{2} \gamma.$$

Proof. We choose a suitable branch of $(f(z)/g(z))^{\frac{1}{\delta}}$ so that $(f(z)/g(z))^{\frac{1}{\delta}}$ is analytic in D and takes the value 1 at z=0. Thus form (3.2) and (3.3), we have

(3.5)
$$F(z) = p_1^{\delta}(z)p_2h(z)[Q(z)]^{\frac{\beta}{n}}$$

where $p_{j}(z) \in P \ (j = 1, 2)$.

Then we have

(3.6)
$$\frac{zF'(z)}{F(z)} = \delta \frac{zp_1'(z)}{p_1(z)} + \frac{zp_2'(z)}{p_2(z)} + \frac{zh'(z)}{h(z)} + \frac{\beta}{n} \sum_{k=1}^n \frac{z}{z - z_k}.$$

Since $h(z) \in S_p^{\lambda}(\alpha)$, by Lemma 4, we have

(3.7)
$$\left| \frac{zh'(z)}{h(z)} - \left\{ p + \frac{2(p-\alpha)e^{i\lambda}r^2\cos\lambda}{1-r^2} \right\} \right| \le \frac{2(p-\alpha)r\cos\lambda}{1-r^2}.$$

Using (3.6) and (3.7) an Lemma 1, 3, we get

(3.8)
$$\left| \frac{zF'(z)}{F(z)} - \left\{ p + \frac{2(p-\alpha)e^{i\lambda}r^2\cos\lambda}{1-r^2} - \frac{\beta r^2}{R^2 - r^2} \right\} \right|$$

$$\leq \frac{2\{(p-\alpha)r\cos\lambda + r(\delta+1)\}}{1-r^2} + \frac{|\beta|Rr}{R^2 - r^2}.$$

Using Lemma 5, we get that the about disk is contained in the sector $|\arg w| < \frac{\pi}{2}\gamma$ provided the inequality

$$\begin{aligned} &\frac{2\{(p-\alpha)r\cos\lambda+r(\delta+1)\}}{1-r^2}+\frac{|\beta|Rr}{R^2-r^2}\\ &\leq \left\{p+\frac{2(p-\alpha)r^2\cos^2\lambda}{1-r^2}-\frac{\beta r^2}{R^2-r^2}\right\}\sin\frac{\pi}{2}\gamma-\frac{2(p-\alpha)r^2\sin\lambda\cos\lambda}{1-r^2}\cos\frac{\pi}{2}\gamma \end{aligned}$$

is satisfied. The above inequality simplifies to $T(r) \geq 0$, where

$$T(r) = r^4 \left[(p - 2(p - \alpha)\cos^2 \lambda + \beta)\sin\frac{\pi}{2}\gamma + (p - \alpha)\sin 2\lambda\cos\frac{\pi}{2}\gamma \right]$$

$$+ r^3 [|\beta|R + 2(p - \alpha)\cos\lambda + 2(\delta + 1)]$$

$$+ r^2 \left[(-pR^2 - p + 2(p - \alpha)R^2\cos^2\lambda - \beta)\sin\frac{\pi}{2}\gamma - (p - \alpha)R^2\sin 2\lambda\cos\frac{\pi}{2}\gamma \right]$$

$$- r[|\beta|R + 2(p - \alpha)R^2\cos\lambda + 2(\delta + 1)R^2] + pR^2\sin\frac{\pi}{2}\gamma$$

Since T(0) > 0 and T(1) < 1, there exists a real root of T(r) = 0 in (0,1). Let $R(\gamma)$ be the smallest positive root of T(r) = 0 in (0,1). Then F is p-valent strongly starlike of order γ in $|z| < R(\gamma)$.

Remark. For R = 1 and $\gamma = 1$, the about theorem reduces to a result of J. Patel.

Theorem 2. Suppose F(z) is given by (3.1). If $f(z) \in A_p$ satisfies (3.2) for some $g(z) \in S_p^{\lambda}(\alpha)$, then F(z) is p-valent strongly starlike of order γ in $|z| < R(\gamma)$, where $R(\gamma)$ is the samallest positive root of the equation

$$r^{4} \left[(p+\beta) \sin \frac{\pi}{2} \gamma + 2(p-\alpha) \cos \lambda \sin(\lambda - \frac{\pi}{2} \gamma) \right]$$

$$+ r^{3} [|\beta| R + 2(p-\alpha) \cos \lambda + 2\delta]$$

$$- r^{2} \left[(p(1+R^{2}) + \beta) \sin \frac{\pi}{2} \gamma + 2(p-\alpha) R^{2} \cos \lambda \sin(\lambda - \frac{\pi}{2} \gamma) \right]$$

$$- r[|\beta| R + 2(p-\alpha) R^{2} \cos \lambda + 2\delta R^{2}]$$

$$+ pR^{2} \sin \frac{\pi}{2} \gamma.$$

Proof. If $f(z) \in A_p$ satisfies (3.2) for some $g(z) \in S_p^{\lambda}(\alpha)$, then

(3.10)
$$\frac{zF'(z)}{F(z)} = \delta \cdot \frac{zp'(z)}{p(z)} + \frac{zg'(z)}{g(z)} + \frac{\beta}{n} \sum_{k=1}^{n} \frac{z}{z - z_k}.$$

Using Lemma 4, we get

$$\left| \frac{zg'(z)}{g(z)} - \left\{ p + \frac{2(p-\alpha)e^{i\lambda}r^2\cos\lambda}{1-r^2} \right\} \right| \le \frac{2(p-\alpha)r\cos\lambda}{1-r^2}.$$

By (3.10) and (3.11) and Lemma 1, 3, we have

$$\begin{split} &\left|\frac{zF'(z)}{F(z)} - \left\{p + \frac{2(p-\alpha)e^{i\lambda}r^2\cos\lambda}{1-r^2} - \frac{\beta r^2}{R^2-r^2}\right\}\right| \\ \leq & \frac{2\{(p-\alpha)r\cos\lambda + r\delta\}}{1-r^2} + \frac{|\beta|Rr}{R^2-r^2}. \end{split}$$

The remaining parts of the proof can be proved by similar method given in the Theorem 1.

With $\lambda=0,\,\beta=0,\,\delta=1,\,R=1$ and $\gamma=1,$ Theorem 2 gives

Corollary 1. Suppose f(z) is in A_p . If $Re\left(\frac{f(z)}{g(z)}\right) > 0$ for $z \in D$ and $g(z) \in S_p^*(\alpha)$, then f(z) is p-valent starlike for

$$|z| < \frac{p}{(p+1-\alpha) + \sqrt{\alpha^2 - 2\alpha + 2p + 1}}.$$

Theorem 3. Suppose F(z) is given by (3.1). If $f(z) \in A_p$ satisfies

(3.12)
$$\left| \left(\frac{f(z)}{g(z)} \right)^{\frac{1}{\delta}} - 1 \right| < 1, \quad 0 < \delta \le 1, \quad p \sin \frac{\pi}{2} \gamma > \delta$$

and

$$Re\left(\frac{g(z)}{h(z)}\right) > 0, \quad z \in D$$

for some $g(z) \in A_p$ and $h(z) \in S_p^{\lambda}(\alpha)$, then F(z) is p-valent strongly starlike of order γ in $|z| < R(\gamma)$, where $R(\gamma)$ is the smallest positive root of the equation

$$(3.13) \qquad r^{4} \left[(p+\beta) \sin \frac{\pi}{2} \gamma + 2(p-\alpha) \cos \lambda \sin(\lambda - \frac{\pi}{2} \gamma) \right]$$

$$+r^{3} [|\beta|R + 2(p-\alpha) \cos \lambda + 2 + \delta]$$

$$-r^{2} \left[(p(1+R^{2}) + \beta) \sin \frac{\pi}{2} \gamma + 2(p-\alpha)R^{2} \cos \lambda \sin(\lambda - \frac{\pi}{2} \gamma) + \delta \right]$$

$$-r[|\beta|R + 2(p-\alpha)R^{2} \cos \lambda + 2(\delta + 1)R^{2}] + pR^{2} \sin \frac{\pi}{2} \gamma - \delta R^{2}.$$

Proof. We choose a suitable branch of $\left(\frac{f(z)}{g(z)}\right)^{\frac{1}{\delta}}$ so that $\left(\frac{f(z)}{g(z)}\right)^{\frac{1}{\delta}}$ is analytic in D and takes the value 1 at z=0. From (3.12), we deduce that

$$f(z) = g(z) \cdot (1 + w(z))^{\delta}$$
, where $w(z) \in \Omega$.

So that

$$F(z) = p(z) \cdot h(z) \cdot (1 + z\phi(z))^{\delta} [Q(z)]^{\frac{\beta}{n}}$$

where $\phi(z)$ is analytic in D and satisfies $|\phi(z)| \leq 1$ and $p \in P$ for $z \in D$.

We have

(3.14)
$$\frac{zF'(z)}{F(z)} = \frac{zh'(z)}{h(z)} + \frac{zp'(z)}{p(z)} + \delta\left(\frac{z\phi'(z) + \phi(z)}{1 + z\phi(z)}\right) + \frac{\beta}{n}\sum_{k=1}^{n} \frac{z}{z - z_k}.$$

Using Lemma 4 and (3.14), we have

(3.15)
$$\left| \frac{zF'(z)}{F(z)} - \left\{ p + \frac{2(p-\alpha)e^{i\lambda}r^2\cos\lambda}{1-r^2} \right\} \right|$$

$$\leq \frac{2\{(p-\alpha)r\cos\lambda + r\} + \delta(1+r)}{1-r^2} + \frac{|\beta|Rr}{R^2 - r^2}$$

So, using Lemma 5 and (3.15), the result can be proved by similar method given in the Theorem 1.

Theorem 4. Suppose F(z) is given by (3.1). If $f(z) \in A_p$ satisfies (3.12) for some $g(z) \in S_p^{\lambda}(\alpha)$, then F(z) is p-valent strongly starlike of order γ in $|z| < R(\gamma)$, where $R(\gamma)$ is smallest positive root of the equation

$$r^{4} \left[(p+\beta) \sin \frac{\pi}{2} \gamma + 2(p-\alpha) \cos \lambda \sin(\lambda - \frac{\pi}{2} \gamma) \right]$$

$$+ r^{3} [|\beta|R + 2(p-\alpha) \cos \lambda + \delta]$$

$$- r^{2} \left[(p(1+R^{2}) + \beta) \sin \frac{\pi}{2} \gamma + 2(p-\alpha)R^{2} \cos \lambda \sin(\lambda - \frac{\pi}{2} \gamma) + \delta \right]$$

$$- r [|\beta|R + 2(p-\alpha)R^{2} \cos \lambda + \delta R^{2}]$$

$$+ pR^{2} \sin \frac{\pi}{2} \gamma - \delta R^{2}.$$

Proof. We choose a suitable of $(f(z)/g(z))^{\frac{1}{\delta}}$ so that $(f(z)/g(z))^{\frac{1}{\delta}}$ is analytic in D and takes the value 1 at z=0. Since $f(z)\in A_p$ (3.12) for some $g(z)\in S_p^{\lambda}(\alpha)$, we have

$$F(z) = g(z)(1 + z\phi(z))[Q(z)]^{\frac{\beta}{n}}$$

where $\phi(z)$ is analytic in D and satisfies the condition $|\phi(z)| \leq 1$ for $z \in D$. Thus, we have

(3.17)
$$\frac{zF'(z)}{F(z)} = \frac{zg'(z)}{g(z)} + \delta\left(\frac{z\phi'(z) + \phi(z)}{1 + z\phi(z)}\right) + \frac{\beta}{n} \sum_{k=1}^{n} \frac{z}{z - z_k}.$$

Using Lemma 4 and (3.17), we get

$$(3.18) \qquad \left| \frac{zF'(z)}{F(z)} - \left\{ p + \frac{2(p-\alpha)e^{i\lambda}r^2\cos\lambda}{1-r^2} \right\} \right|$$

$$\leq \frac{2(p-\alpha)r\cos\lambda + \delta(1+r)}{1-r^2} + \frac{|\beta|Rr}{R^2-r^2}$$

Using Lemma 5 and (3.18) and similar method in the Theorem 1, we get the Theorem 4.

Remark. Some of the results of J. Patel can be obtained form the Theorem 4 by taking R = 1, $\gamma = 1$.

REFERENCES

- [1] W. M. Causey and E. P. Merkes, Radii of starlikeness of certain classes of analytic functions, J. Math. Anal. Appl., 31 (1990), 579.
- [2] A. Gangadharan and V. Ravichandran, Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl., 211 (1997), 301-313.
- [3] E. C. Goluzina, On the coefficients of a class of functions, regular in a disc and having an integral representation in it, J. of Soviet Math., 6 (1974), 606.
- [4] J. Patel, Radii of p-valently starlikeness for certain classes of analytic functions, Bull. Cal. Math. Soc., 85 (1993), 427-436.
- [5] S. Rajasekaran, A study on extremal problems for certain classes of univalent analytic functions, ph. D. Thesis, I. I. T., Kanpur (India).
- [6] J. S. Ratti, The radious of univalence of certain analytic functions, Math. Z. 107 (1968), 241.

Oh Sang Kwon
Department of Mathematics
Kyungsung University
Pusan 608-736, Korea
E-mail: oskwon@star.kyungsung.ac.kr
Shigeyoshi Owa
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577, Japan