On close-to- & -concave functions.

Ву

Mamoru Nunokawa (Univ. of Gunma)

1. Introduction.

Let A be the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $U = \{z : |z| < 1\}$ and univalent in U.

A function $f(z) \in A$ is said to be an d-concave function, if for

arbitrary two points Z_1 and Z_2 (Z_1 and Z_2 \in U), there exists a

circular arc C which connects the points $\mathcal{G}(\mathcal{Z}_1)$ and $\mathcal{G}(\mathcal{Z}_2)$, contained

in $\mathcal{J}(\mathtt{U})$, and whose central angle is not large than $\alpha \pi$, or

there exists a point Z for which

$$\left| \arg \left(\frac{f(z) - f(z_1)}{f(z_2) - f(z)} \right) \right| \leq \frac{\pi}{2} \alpha$$

and the line segments $\overline{f(z_1) f(z)}$ and $\overline{f(z) f(z_2)}$ are contained in f(U).

Definition. A function $f(z) \in A$ is said to be close-to- α -concave, if there exists an α -concave function f(z) for which f(z) satisfies the condition

$$\left| \arg \frac{f'(z)}{g'(z)} \right| < \frac{\pi}{2} (1-\alpha) \quad \text{in } U$$

where $0 \le \alpha < 1$.

2. Main theorem.

Theorem. If f(z) is a close-to- α -concave function, then f(z) is univalent in U.

Proof. Let $\mathbf{Z_1}$ and $\mathbf{Z_2}$ are arbitrary two points in \mathbf{U} .

Then, from the assumption, either $g(\mathbf{Z}_1)$ and $g(\mathbf{Z}_2)$ can be connected by a circular arc C whose central angle is not larger than $\alpha \pi$ and C ($f(\mathbf{U})$ or there exists a point $\mathbf{Z} \in \mathbf{U}$ such that

$$\left| \arg \frac{f(z) - f(z_1)}{f(z_2) - f(z)} \right| < \frac{\pi}{2} \alpha,$$

(1) The first case, $g(Z_1)$ and $g(Z_2)$ can be connected by circular

arc C whose central angle is not larger than αT , then g(z)

is univalent in U and so, there exists the inverse function

$$Z = g^{-1}(\zeta).$$

Let Z_1 and Z_2 are arbitrary two points of U and

$$S_i = g(z_i), i = 1, 2.$$

Then we have

$$\begin{aligned}
f(\mathbf{z}_{2}) &- f(\mathbf{z}_{1}) &= f(\mathbf{y}^{-1}(\mathbf{z}_{2})) - f(\mathbf{y}^{-1}(\mathbf{z}_{1})) \\
&= \int_{C} \frac{df(\mathbf{y}^{-1}(\mathbf{z}))}{d\mathbf{z}} d\mathbf{z} \\
&= \int_{-\theta_{2}} \frac{df(\mathbf{z})}{d\mathbf{z}} i\mathbf{y} e^{i(\theta_{1} + \theta_{2})} d\theta
\end{aligned}$$

Where $\mathcal C$ is a circular arc with center β and radius β such that

$$\zeta = \beta + \beta e^{i(\theta_1 + \theta)},$$

$$-\frac{\pi}{2}\alpha \leq -\theta_2 \leq \theta \leq \theta_2 \leq \frac{\pi}{2}\alpha,$$

$$\zeta_1 = \beta + \beta e^{i(\theta_1 - \theta_2)},$$

$$\zeta_2 = \beta + \beta e^{i(\theta_1 + \theta_2)}$$

and

Then we have

$$\frac{f(g^{-1}(\zeta_2)) - f(g^{-1}(\zeta_1))}{i g e^{i \theta_1}} = \int_{-\theta_2}^{\theta_2} \frac{f(z)}{g'(z)} e^{i \theta} d\theta$$

Now then, we have

$$| arg \frac{f(z)}{g'(z)} e^{i\theta} |$$
 $\leq | arg \frac{f(z)}{g'(z)}| + |\theta|$
 $\leq \frac{\pi}{2} (1-\alpha) + \frac{\pi}{2} \alpha = \frac{\pi}{2}$

and therefore, we have

$$f(z_1) \neq f(z_2) .$$

(2) The second case, then there exists a point $\mathbb{Z}_3 \in \mathbb{U}$ such that

$$| \operatorname{arg} \frac{g(z_3) - g(z_1)}{g(z_2) - g(z_3)} | \leq \frac{\pi}{2} \alpha$$

and the line segments $\overline{g(Z_1)g(Z_3)}$ and $\overline{g(Z_3)g(Z_2)}$ are contained

in $\mathcal{G}(\mathbb{U})$ and then it follows that

$$f(z_{2}) - f(z_{1}) = (f(z_{2}) - f(z_{3})) + (f(z_{3}) - f(z_{1}))$$

$$= \int_{\mathbb{R}^{2}} \frac{df(g^{-1}(\zeta))}{d\zeta} d\zeta + \int_{\mathbb{R}^{2}} \frac{df(g^{-1}(\zeta))}{d\zeta} d\zeta = I \quad \text{say},$$

where \int_1^1 is the line segment from \int_1^1 to $\int_3^2 = \int_1^2 (Z_3)$ and \int_2^2 is also the

line segment from $\zeta_3 = \mathcal{L}(z_3)$ to ζ_2 .

Then we have

$$I = \int_{0}^{1} \frac{f'(z)}{g'(z)} (\zeta_{3} - \zeta_{1}) dt + \int_{0}^{1} \frac{f'(z)}{g'(z)} (\zeta_{2} - \zeta_{3}) dt$$

and so, it follows that

$$\frac{f(z_2) - f(z_1)}{\int_0^2 - \int_0^1} = \int_0^1 \frac{f'(z)}{g'(z)} dt + \int_0^1 \frac{f'(z)}{g'(z)} \left(\frac{\zeta_2 - \zeta_3}{\zeta_3 - \zeta_1}\right) dt.$$

Then, from the assumption, we have

$$\left| \arg \frac{f(z)}{g'(z)} \right| < \frac{\pi}{2} (1-\alpha),$$

$$\left| \arg \frac{f(z)}{g'(z)} \left(\frac{\zeta_z - \zeta_3}{\zeta_3 - \zeta_1} \right) \right|$$

$$\leq \left| \arg \frac{f'(z)}{g'(z)} \right| + \left| \arg \left(\frac{g(z_2) - g(z_3)}{g(z_3) - g(z_1)} \right) \right|$$

$$< \frac{\pi}{2} (1-\alpha) + \frac{\pi}{2} \alpha = \frac{\pi}{2}.$$

This shows that

$$\operatorname{Fe}\left(\frac{f(z_2)-f(z_1)}{\zeta_3-\zeta_1}\right)>0$$

and so

$$f(z_2) \neq f(z_1).$$

This completes the proof.

Remark. It is trivial that if f(≥) ∈ A satisfies

$$1 + \operatorname{Re} \frac{\operatorname{Z} \int_{(Z)}^{(Z)}}{\int_{(Z)}^{(Z)}} > -\frac{\alpha}{2} \quad \text{in } U$$

where $0 \le \alpha < 1$, then f(z) is an α -concave function.