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ABSTRACT: In this paper we introduce the concepts of k-p-infiix codes, n-k-ps-infix
languages, n-k-infiix-outfix codes, and n-k-prefix-suffix languages, which are natural
generalizations of our previous work on $k$-prefix codes, $k$-infix codes and so on. $We$

obtain several properties of k-p-infllx codes and semaphore codes. The relations and
hierarchies of k-p-infllx codes, n-k-ps-infix languages, n-k-infllx-outfix codes, and n-k-
prefix-suffix languages, and their operations of these classes of languages are also
investigated.
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1. Introduction

Codes and languages derived from or related to codes have an important role in the study
of the combinatorics of words [6]. Many classes of codes can be obtained as the classes
of antichains with respect to certain partial orders on free monoids [2-5, 9-13]. In
particular, various kinds of classes of codes defined by insertion properties and their
corresponding hierarchy properties were given [6]. There are much work related to the
topic such as $n$ -codes [2-3], n-preflx-sufflx languages [5], $n- \inf 1\mathrm{x}$ -outflx codes [9-10], and
$k$-shuffle codes [6-8, 15]. Especially, as pointed out in recent survey paper [6], these
variations on insertion properties are more than just generations for all kinds of different
names in earlier publications, but have concrete implications for the error detection
capabilities of such codes. Hence they are quite interesting also in a broader sense. The
ideal of studying $n$ -codes and n-k-languages is very natural, a main motivation of this
paper aims to extend the authors previous work on $k$-prefix codes, $k$-infix codes and so
on.

We first introduce the necessary concepts and notations. For additional details and
definitions, see the references, in particular [1], [5], [6], and [14].

Let $A$ be a finite alphabet and $L\subseteq A^{*}$ be a language. Denote $A^{+}=A^{*}-\{1\}$ where 1 is
the empty word over $A$ . For a language $L$ one associates with its syntactic monoid
$\mathrm{s}\mathrm{y}\mathrm{n}(L)=A/P_{L}$ where

$x\equiv y(P_{L})\Leftrightarrow(\forall u.v\in A^{\mathrm{s}})uxv\in Lrightarrow uyv\in L$

By $[w]$ we denote the $P_{L}$ -class of the word $w$ , i.e. $[w]=\{x\in A^{\mathrm{s}}|x\equiv w(P_{L})\}$ . For every

$w\in A$ , we denote by $|w|$ the length of $w$ .
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A language $L\subseteq A^{\mathrm{z}}$ is said to be a code over $A$ if the submonoid $L^{*}$ of $A$ generated by
$L$ is freely generated by $L$ . If $P$ is any property of languages, we call a code $C$ a P-code
if $C$ possesses the property $P$ . If $C$ is a $P$-code and, for every $u(\not\in C)\in A^{\mathrm{t}}$ , $C\cup\{u\}$ is
not a $P$-code, then $C$ is said to be a maximal P-code.

Defmition 1. [6-8] Let $A$ be an alphabet and $k$ be a given positive integer, A language
$C\subseteq A$ is said to be
(a) a $k$-prefix code if for all $x_{1},\ldots,x_{k},y_{1},\ldots,y_{k}\in A^{*},x_{1}\ldots x_{k}\in C$ and
$x_{1}y_{1}x_{2}\ldots x_{k}y_{k}\in C$ together imply $y_{1}\ldots y_{k}=1$ ;

(b) a $k$-suffix code if for all $x_{1},\ldots,x_{k},y_{1},\ldots,y_{k}\in A^{*},x_{1}\ldots x_{k}\in C$ and

$y_{1}x_{1}\ldots y_{k}x_{k}\in C$ together imply $y_{1}\ldots y_{k}=1$;

(c) a $k$-infix code if for all $x_{1},\ldots,x_{k},$
$y_{0},\ldots,y_{k}\in A^{\mathrm{s}},x_{1}\ldots x_{k}\in C$ and

$y_{0}x_{1}y_{1}\ldots x_{k}y_{k}\in C$ together imply $y_{0}y_{1}\ldots y_{k}=1$;

(d) a $k$-outfix code if for all $x_{0},\ldots,x_{k},y_{1},\ldots,y_{k}\in A^{*},x_{0}x_{1}\ldots x_{k}\in C$ and

$x_{0}y_{1}x_{1}\ldots y_{k}x_{k}\in C$ together imply $y_{1}\ldots y_{k}=1$ ;

(e) a hypercode if for any natural nnumber $n$ and all
$x_{1},\ldots,x_{k},y_{0},\sim..,y_{k}\in \mathrm{A},x_{1}\ldots x_{k}\in C$ and $y_{0}x_{1}\ldots x_{k}y_{k}\in C$ together imply $y_{0}\ldots y_{k}=1$ ;

(f) a full uniform code if there exists some integer $m\geq 0$ such that $C=A^{m}$

By $P_{k}(A),$ $S_{k}(A),$ $I_{k}(\mathrm{A}),$ $O_{k}(A),$ $H(A)$ and $FUF(A)$ we denote the classes of $k$-prefix codes,
$k$-suffix codes, $k$-infix codes, $k$-outfix codes, hypercodes and ffill uniform codes over $A$ ,
respectively [7-8]. In particular, $P(A)=P_{1}(\mathrm{A})$ , $S(\mathrm{A})=S_{1}(A),$ $I(\mathrm{A})=I_{1}(A),$ $O(A)=O_{1}(A)$

are the classes of prefix, suffix, infix, and outfix codes, respectively.

Note that $k$-prefix codes, $k$-suffix codes, $k$-infix codes, and $k$-outfix codes are also called
pxefix-shuffle, suffix-shuffle, infix-shuffle, and outfix-shuffle codes of index $k$,

respectively [6] [15]. And corresponding classes of codes are denoted by $\mathrm{L}_{Pk}(=P_{k}(A))$ ,
$\mathrm{L}_{Sk}(=S_{k}(A)),$ $\mathrm{L}_{Jk}(=I_{k}(A))$ , and $\mathrm{L}_{Ok}(=O_{k}(A))$ . In [6], by $\mathrm{L}_{h}$ and $\mathrm{L}_{u}$ denote hypercodes and
uniform codes over $A$ . Relations between these codes can be referred to Fig. 6.1 and 7.1
in Chapter 8 of [6].

Defmition 2. [6-8] Let $A$ be an alphabet. A language $C\subseteq \mathrm{A}^{*}$ is said to be
(a) a bifix (or biprefix) code if $C$ is both a prefix and a $suff_{l}.x$ code,$\cdot$

(b) reflective iffor all $u,v\in C$ imply $vu\in C,\cdot$

(c) a $p$ -infix code iffor all $x,u,y\in A^{5},xuy\in C$ and $u\in C$ together imply $y=l$ ;

(d) a $s$ -infix code iffor all $x,u,y\in A,xuy\in C$ and $u\in C$ together imply $x=l,\cdot$

(e) a right semaphore code if $C$ is a prefix code satisfying $A^{*}C\subseteq CA^{n},\cdot$

(f) a left semaphore code if $C$ is a suffix code satisfying $CA\subseteq A^{\mathrm{s}}C$ .
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By $B(A),$ $RE(A),$ $PI(A)=PI_{J}(A),$ $SI(A)=SI_{I}(A),$ $RSP(A)$ and $LSP(A)$ denote the classes of
bifix, reflective, $\mathrm{p}$-infix, $\mathrm{s}$-infix, right semaphore and left semaphore codes over $A$ ,
respectively.

Note that, in [6], by $\mathrm{L}_{b}(=B(A)),$ $\mathrm{L}_{refl}(=RE(A)),$ $\mathrm{L}_{pi}(=PI(A)),$ $\mathrm{L}_{si}(=SI(A)),$ $\mathrm{L}_{rsema}(=$

$RSP(A))$ and $\mathrm{L}_{lsema}(=LSP(A))$ denote the classes of bifix, reflective, $\mathrm{p}$ -infix, $\mathrm{s}$-infix, right
semaphore and left semaphore codes over $A$ , respectively, Relations between the above
codes can be referred to Fig. 7.2 in Chapter 8 of [6].

The paper is organized as follows: After introduction section, we introduce the classes of
$k- \mathrm{p}-\inf 1\mathrm{x}$ and $k- \mathrm{s}-\inf 1\mathrm{x}$ codes. The relations and hierarchies of $k- \mathrm{p}-\inf 1\mathrm{x},$ $k- \mathrm{s}-\inf 1\mathrm{x}$ , right
semaphore and left semaphore codes are given in Section 2. In Section 3, the hierarchy of
n-k-ps-infix codes is obtained, which is a natural generalization of $k- \mathrm{p}-\inf 1\mathrm{x}$ and k-s-infix
codes. In Section 4, we investigate $n- k- \inf 1\mathrm{x}$-outfix and n-k-preflx-suffix languages.
Meanwhile, their hierarchies and product properties of two classes of languages are also
discussed.

2. k-p-Infix Codes

Defmition 3. A languages $L\subseteq A$ is said to be a k-p-infllx (k-s-infllx) code if for all
$x_{1},\ldots,x_{k},y_{1},\ldots,y_{k},y\in A^{\mathrm{e}},x_{1}\ldots x_{k}\in C$ and $y_{1}x_{1}y_{2}\ldots y_{k}x_{k}y\in C(yx_{1}y_{1}\ldots x_{k}y_{k}\in C)$together
imply $y=l$ .

From Definition 3 it easily follows that a $(k+1)- \mathrm{p}$-infix code must be a $k$-infix code. By
$PI_{k}(A)(SI_{k}(A))$ we denote the class of $k- \mathrm{p}-\inf 1\mathrm{x}$ (k-s-infix) codes over $A$ . Therefore, we
have

Theorem 1. $PI_{1}(A)\supset PI_{2}(A)\supset PI_{3}(A)\supset\ldots\supset PI_{k}(A)\supset PI_{k+1}(A)\supset\ldots$ .

Proof: Since $PI_{k}(A)\supseteq PI_{k+J}(A)$, it suffices to show that there exists $C\in PI_{k}(A)$ such

that $C\not\in PI_{k+\mathrm{l}}(A)$ . Let $A=\{a, b\},$ $C=\{a^{\mathrm{k}+\mathrm{l}}, (ab)^{\mathrm{k}+1}\}$ . We can easily verify that

$C\in PI_{k}(A)$ but $C\not\in PI_{k+1}(A)$ .

Theorem 2. The $PI_{k}(A)$ is closed under product, that is the $PI_{k}(A)$ forms a monoid.
Conversely ifXY is a k-p-infllx code then both $X$ and $\mathrm{Y}$ need not be k-p-infiix codes.

Proof: Let $X,$ $\mathrm{Y}\in PI_{k}(A)$ . If, for all $u_{1},\ldots,u_{k},v_{1},\ldots,v_{k}\in XY$ and $v_{1}u_{1}v_{2}\ldots v_{k}u_{k}v\in XY$ ,

then there exist $x_{1},x_{2}\in X$ and $y_{1},y_{2}\in Y$ such that $u_{1}\ldots u_{k}=x_{1}y_{1}$ and

$v_{1}u_{1}v_{2}\ldots v_{k}u_{k}v=x_{2}y_{2}$ . Let $u_{1}\ldots u_{i-1}u_{i}’=x_{1}$ and $u_{i’}’ u_{i+1}\ldots u_{k}=y_{1}$ with $u_{i}=u_{i}^{1}u_{i’}$

’

If

$|x_{2}|>|v_{1}u_{1}v_{2}u_{2}\ldots u_{i-1}v_{i}u_{j}’|$ , then $x_{2}=v_{1}u_{1}v_{2}u_{2}\ldots u_{i-1}v_{i}u_{i}w$ with $w\in A^{+}$ . Since $X\in PI_{k}(A)$

and $i\leq k$ , thus $w=1$ , a contradiction with $w\in A^{+}!$ Therefore $|x_{2}|\leq|v_{1}u_{1}v_{2}u_{2}\ldots u_{i-\mathrm{l}}v_{i}u_{i}’|$

and $y_{2}=wu_{j}’ v_{i+1}u_{j+1}\ldots u_{k}v$ for some $w\in A$ . But $y_{1}=u_{i}’ u_{i+1}\ldots u_{k}|$ and $Y\in PI_{k}(A)$ , we
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have $v=1$ . This shows that $XY\in PI_{k}(A)$ . That is, the $PI_{k}(A)$ is closed under product
and consequently forms a monoid.

Conversely, let $A=\{a,b\},$ $XY=\{a^{k+1},(ba)^{k+1}\}$ , then we can directly verify that $X\mathrm{Y}$ is a
$k- \mathrm{p}-\inf 1\mathrm{x}$ code. When we take $X=\{a^{k},(ba)^{k}b\}$ and $Y=\{a\}$ , it is easy to see that $X$ is not
a $k- \mathrm{p}-\inf 1\mathrm{x}$ code but $Y$ is a $k- \mathrm{p}-\inf 1\mathrm{x}$ code. Clearly, when we take $X=\{1\}$ and $Y=XY$, then
$X$ and $Y$ are $k- \mathrm{p}-\inf 1\mathrm{x}$ codes.

From definitions and Theorem 3 in [7], it easily follows that

Theorem 3. Let $C\in PI_{k}(A)$ . Then
(1) $C$ is an infix code ifand only if $C$ is a suffix code.
(2) $C$ is a full unform code, that is $C=A^{m}$ for some $m$ , if and only if $C$ is a maximal suffix

code.

By Proposition 5.3 in Chapter 2 of [1] and Theorem 1, we immediately obtain the
following theorem.

Theorem 4. Let $C\in PI_{k}(A)$ . Then $C$ is a right semaphore code if and only if $C$ is a
maximal prefix code.

Theorem 5. Any k-p-infllx code is thin.

Proof: By Theorem 1, we see that the class of $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ codes contains the classes of k-p-
infix codes for $k\geq 2$ . Since a $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ code is thin, by definition, a $k- \mathrm{p}-\inf 1\mathrm{x}$ code is
thin.

Corollaryl. Let $C\in PI_{k}(A)$ . Then $C$ is a right semaphore code if and only if $C$ is a
maximal code.

By duality, we have

Theorem 6. (1) $SI_{1}(A)\supset SI_{2}(A)\supset SI_{3}(A)\supset\ldots\supset SI_{k}(A)\supset SI_{k+1}(A)\supset\ldots$

(2) The $SI_{k}(A)$ is closed underproduct.
(3) Let $C\in SI_{k}(A)$ . Then $C$ is an infix code ifand only if $C$ is a prefix code.
(4) Let $C\in SI_{k}(A)$ . Then $C$ is a full uniform code, that is $C=A^{m}$ for some $m$ , ifand only if

$C$ is a maximal prefix code.
(5) Let $C\in SI_{k}(A)$ . Then $C$ is a right semaphore code ifand only if $C$ is a maximal suffix

code.
(6) Any k-s-infllx code is thin.
(7) Let $C\in SI_{k}(A)$ . Then $C$ is a right semaphore code ifand only if $C$ is a maximal code.

On finite $k- \mathrm{p}-\inf 1\mathrm{x}$ codes, we have
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Theorem 7. Let $X$ be a fmite k-p-infllx code. Then $X’=X_{1}\cup X_{2}A^{-1}$ is a k-p-infiix $code_{J}$

where $X_{1}=X-X_{2},$ $X_{2}=\{x\in X|(\forall x\in X)|x’|\leq|x|\}$ .

Proof: Arguing by contradiction, we assume that there exist $u_{1},\ldots,u_{k},v_{1},\ldots,v_{k}\in A^{*}$

$v\in A^{+}$ , such that $v_{1}\ldots v_{k}\in X$

’

and $v_{1}u_{1}\ldots v_{k}u_{k}v\in X’$ . $(\mathrm{i})$ if $v_{1}\ldots v_{k},$ $v_{1}u_{1}\ldots v_{k}u_{k}v\in X_{1}$ , since

$X\in PI_{k}(A),$ $v=1$ which is impossible. (ii) if $v_{1}\ldots v_{k},$
$v_{1}u_{1}\ldots v_{k}u_{k}v\in X_{2}A^{-\downarrow}$ then there

exist $a,b\in A$ such that $v_{1}\ldots v_{k}$ a, $v_{1}u_{1}\ldots v_{k}u_{k}vb\in X_{2}$ , contradicting with the choice of $X_{2}$ .
(iii) if $v_{1}\ldots v_{k}\in X_{1}$ and $v_{1}u_{1}\ldots v_{k}u_{k}v\in X_{2}A^{-1}$ , then $v_{1}\ldots v_{k}\in X_{1}$ and $v_{1}u_{1}\ldots v_{k}u_{k}va\in X_{2}$ ,

for some $a\in A$ . This is a contradiction with $X$ being $k- \mathrm{p}-\inf 1\mathrm{x}$ code. Clearly, if
$v_{1}\ldots v_{k}\in X_{2}A^{-1}$ then $v_{1}u_{1}\ldots v_{k}u_{k}v\not\in X_{1}$ . Thus we show that $X$

’

is a $k- \mathrm{p}-\inf 1\mathrm{x}$ code.

By definitions, we can easily following Lemma 1

Lemma 1. Let $X\subseteq A^{*}$ . Then $X$ is a maximal l-p-infllx code ifand only if
$A^{\mathrm{s}}=X\cup A^{\mathrm{s}}XA^{+}\cup(A^{\mathrm{s}})^{-1}X(A^{+})^{-1}$

We will give anther characterization of right semaphore codes which is different from
that in [1].

Theorem 8. Let $X\subseteq A^{+}$ . Then $X$ is a right semaphore code if and only if$X$ is a maximal
l-p-infllx code.

Proof: We first show that if $X$ is a maximal $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ code then $X$ must be a right
semaphore code. Let $S=X-A^{+}X$ . Clearly $S$ is a nonempty subset of $X$. To prove that $X$

is a right semaphore code, let us show that $X=AS-A^{\mathrm{s}}SA^{+}$

By definition of $S,$ $X\subseteq A^{*}S$ . Since $S\subseteq X$ and $X$ is $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x},$
$X\cap A^{*}SA+=\emptyset$ . This

shows that $X\subseteq A^{t}S-A^{*}SA+$ . Assume that there exists a word $y$ in (A $S-A^{*}SA^{+}$ ) $-X$ .
By hypothesis, $\{y\}\cup X$ is not $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ . Either $y$

$=$ $uxv$ or $x$ $=$ $uyv$ with
$x\in X,u\in A^{\mathrm{r}},v\in A^{+}$ . In the first case, since $x\in A^{t}S$ , it follows that $y\in A$ $SA+$ which

is impossible. In the second case, $y\in A^{*}S$ means that $x\in A^{1}SA+$ , a contradiction with
$X\subseteq A^{\mathrm{r}}S-A$ $SA+$ . Hence $X=A^{*}S-A^{*}SA^{+}$ . This shows that $X$ is a right semaphore.
Conversely, assume $\check{\mathrm{t}}\mathrm{h}\mathrm{a}\mathrm{t}X$ is a right semaphore code, then it is $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ . Suppose that $X$

is not a maximal $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ code, there exists $y\in A^{*}-X$ such that $\{y\}\cup X$ is a $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ .
By the definition of a $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ code, $\{y\}\cup X$ is a prefix code. But $X$ is a right
semaphore code, and consequently $X$ is a maximal prefix, a contradiction with $\{y\}\cup X$

being a prefix code. That is, $X$ is a maximal $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ code.

Remark 1. By Theorem 8, clearly, a maximal $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ code must be a maximal prefix
code. Conversely, in general, a maximal prefix code need not be $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ code.
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Corollary 2. $LetX\subseteq A^{+}$ . Then $X$ is a left semaphore code ifand only $ifX$ is a maximal 1-
$s$-infix code.

$-$ .

Remark 2. Let $X,$ $Y\subseteq A^{*}$ be maximal $k- \mathrm{p}-\inf 1\mathrm{x}$ codes for $k\geq 2$ . Then $XY$ need not be a
maximal $k- \mathrm{p}-\inf 1\mathrm{x}$ code.

Remark 3. By definition, a right semaphore code must be a $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$ code. But a l-p-
infix code is not necessarily a right semaphore code.

From Remarks 2 to 3, it seems to see that there are many d\’ifferences between $1- \mathrm{p}-\inf \mathrm{l}\mathrm{x}$

codes and $k- \mathrm{p}-\inf 1\mathrm{x}$ codes for $k\geq 2$ , although we have Theorem 1. Therefore, the study
of relations between ’l-p-infix codes, $k- \mathrm{p}-\inf 1\mathrm{x}$ codes for $k\geq 2$ and semaphore codes will
be very interesting. $\cdot$ :

3. n-k-ps-Infix Languages

Similar to n-preflx-sufflx languages [5], we define

Defmition 4. A language $X\subseteq A^{2}$ is said to be a n-k-ps-infix code, if every subset $ofX$ at
most $n$ elements is a k-p-infllx code or a k-s-infiix code.

By $k- PSI_{n}(A)$ we denote the class of n-k.-ps-infix codes. We have

Theorem 9.
$k-PSI_{2}(A)\supset k-PSI_{3}(A.)\supset k-PSI_{4}(A)=k.-PSI_{5}(A)=\ldots=$. $PI_{k}(A)\cup SI_{k}(A)$ .

Theorem $\mathit{1}\theta$.
(1) $k- PSI_{\mathit{2}}(A),$ $k- PSI_{\mathit{3}}(A)$ , and $k- P\dot{S}I_{\mathit{4}}(A)=k- PSI_{\mathit{5}}(A)$ are not closedr under product.
(2) Both $k- PSI_{\mathit{2}}(A)$ and $k- PSf_{\mathit{3}}(A)$ need not be codes.

By Theorems 3 and 5, we can directly follow that

Corollary 3. Let $X\in k- PSI_{\mathit{4}}(A)=PI_{k}(A)\cup SI_{k}(A)$ . Then $X$ is an infix code ifand only $ifX$

is a biprefix code.

Corollary 4. Any 4-k-ps-infix code is thin.

Corollary 5. Let $X\in k- PSI_{\mathit{4}}(A)=PI_{k}(A)\cup SI_{k}\langle A$ ). Then $X$ is a full uniform code, that is $X$

$=A^{m}$ for some $m$ , ifand only $ifX$ is a maximal bipreflx(or bifix) code.

Remark 4. Fig. 1 illustrates the relations between n-k-ps-infix codes
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$\mathrm{r}\mathrm{u}\mathrm{r}_{1^{\mathrm{A}\prime}}$

Fig. 1 Relations between n-k-ps-infix codes

4. n-k-Infix-Outfix and n-k-Prefix-Suffix Languages

Defmition 5. (1) A language $X\subseteq A$ is said to be a n-k-infllx-outfix code if every subset
$ofX$ at most $n$ elements is a $k$-infix code or a $k$-outfix code.
(2) A language $X\subseteq A$ is said to be a n-k-prefix-suffix code ifevery subset $ofX$ at most $n$

elements is a $k$-prefix code or a $k$-suffix code.

By $k- IO_{n}(A)(k- PS_{n}(A))$ we denote the class of the $n- k- \inf 1\mathrm{x}$-outfix (n-k-preflx-suffix)
codes over $A$ . In particular, $1- IO_{n}(A)(1- PS_{n}(A))$ is the class of $n- \inf 1\mathrm{x}$ -outflx (n-prefix-

suffix) codes $[5, 9]$ .
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From the definitions we easily follows

Theorem 11. (1) $k-IO_{2}(A)\supset k-IO_{3}(A)\supset k-IO_{4}(A)=k-IO_{5}(A)=I_{k}(A)\cup O_{k}(A)$ .
(2) $k-PS_{2}(A)\supset k-PS_{3}(A)\supset k-PS_{4}(A)=k-PS_{5}(A)=P_{k}(A)\cup S_{k}(A)$ .
(3) $k- IO_{\mathit{2}}(A),$ $k- IO_{\mathit{3}}(A)$ , and $k- IO_{\mathit{4}}(A)$ are closed under product. Conversely, if $X\mathrm{Y}\in k-$

$IO_{\mathit{2}}(A)$ ( $k- IO_{\mathit{3}}(A)$ and $k- IO_{\mathit{4}}(A)$) then $X$ and $\mathrm{Y}$ need not be in $k- IO_{\mathit{2}}(A)(k- IO_{\mathit{3}}(A)$ and k-
$IO_{\mathit{4}}(A))$ .
(4) In $general_{J}k- PS_{\mathit{3}}(A)$ and $k- PS_{\mathit{4}}(A)=k- PS_{\mathit{5}}(A)=P_{k}(A)\cup S_{k}(A)$ are not closed under
product.

FUF(A)

Fig. 2 Relations between $n- k- \inf 1\mathrm{x}$-outfix codes and n-k-preflx-suffix codes
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Remark 5. On $k- PS_{\mathit{2}}(A)$ , there is a complex situation. We can easily show that the class of
$1- PS_{\mathit{2}}(A)$ is not closed under product. However, on $k- PS_{\mathit{2}}(A)$ for $k\geq 2$ , we have neither
obtained an example which shows that $k- PS_{\mathit{2}}(A)$ for $k\geq 2$ is not closed under product,
and nor proved that $k- PS_{\mathit{2}}(A)$ for $k\geq 2$ is closed under product.

Remark 6. Fig.2 illustrates the relations between $n- k- \inf 1\mathrm{x}$-outfix codes and n-k-preflx-
suffix codes. Especially, relations among Fig.1, Fig.2, and some classes of languages
derived from codes can be referred to Fig. 7.2 and Table 8.1 in Chapter 8 of [6].
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