
Computing by networks of standard Watson-Crick
$D\mathrm{O}L$ systems

Erzs\’ebet Csuhaj-Varj\’u
Computer and Automation Research Institute

Hungarian Academy of Sciences
Kende utca 13-17, 1111 Budapest, Hungary

E-mail: csuhaj@sztaki.hu

Abstract

Standard Watson-Crick $D\mathrm{O}L$ systems (SWDOL systems) are variants of $D\mathrm{O}L$

systems with controlled derivations, motivated by the paradigm of Watson-Crick
complementarity in the operational sense. In these systems each letter has a com-
plementary letter and depending on a special condition (a trigger), a derivation
step is applied either to the string or to its complementary. A network of standard
Watson-Crick $D\mathrm{O}L$ systems (an NSWDOL system) is a finite set of $SWD\mathrm{O}L$ sys-
tems over a common DNA-like alphabet which act on their own strings in parallel
and after each derivation step communicate some of the obtained words to each
other. The condition for communication is determined by the trigger for turning
to the complementary. In this paper we show that NSWD$\mathrm{O}L$ systems form a class
of computationally complete devices, that is, any recursively enumerable language
can be identified by a network of standard W_{Y}atson-Crick $D\mathrm{O}L$ systems.

1 Introduction
Watson-Crick complementarity is a fundamental concept in DNA computing. A notion,
called Watson-Crick $D\mathrm{O}L$ system (WDOL system), where the paradigm of complemen-
tarity is considered in the operational sense, was introduced and proposed for further
investigations in [6] and [7]. In this paper we deal with networks of so-called standard
Watson-Crick DOL systems, important particular variants of Watson-Crick DOL systems.

A standard Watson-Crick DOL system is a DOL system having a so-called DNA-like
alphabet and functioning with controlled derivations. A DNA-like alphabet consists of
$2n$ letters, $n\geq 1$, where n symbols are called purines and the n other symbols are called
pyrimidines. Each purine has a complementary letter which is a pyrimidine and each
pyrimidine has a complementary symbol which is a purine, and this relation is symmetric.
The controlled derivation in a standard Watson-Crick $D\mathrm{O}L$ system is as follows: after
rewriting the string by applying rules of the DOL system in parallel, the number of
occurrences of purines and that of pyrimidines in the obtained string are checked. If in
the new string there are more occurrences of pyrimidines than that of purines, then each

数理解析研究所講究録
1166巻 2000年 43-51 43

letter in the string is replaced by its complementary letter and the derivation continues
from this string, otherwise the derivation continues in the usual manner.

The idea behind the concept is the following: in the course of the computation or
development things can go wrong to such extent that it is of worth to continue with
the complementary string, which is always available. Watson-Crick complementarity is
viewed as an operation: together with or instead of a word we consider its complementary
word.

Watson-Crick $D\mathrm{O}L$ systems raise a lot of interesting questions to study: stability
problems, characterization of length sequences, etc. The interested reader can find further
information on properties of these systems in [8], [9].

A step further was made in [1] where networks ofWatson-Crick DOL systems (NWDOL
systems) were introduced and their behaviour was studied. In the general case, the trig-
ger, the condition for turning to the complementary, is a logical valued mapping on the set
of words over the alphabet of the system with the property that whenever for a string the
value of this mapping is false (the string is not correct) then the value for the complemen-
tary of the string must be true (the complementary string must be correct). Moreover,
every axiom in the system is a correct string. A network of Watson-Crick DOL systems
(an NWDOL system) is a finite set of WDOL systems over a common DNA-like alphabet
which act on their own strings in parallel and after each derivation step communicate
some of the obtained words to each other. The condition for communication is deter-
mined by the trigger for turning to the complementary. In [1] NWDOL systems with two
main variants of protocols were studied: in the first case, after a parallel rewriting step
the nodes keep the correct strings and the corrected strings (complementaries of the not
correct strings) and communicate a copy of every correct string to each other node. In
the second case, the nodes, again, keep both the correct and the corrected strings but
communicate copies of the corrected strings. The two protocols realize diferent philoso-
phies: in the first case the nodes inform each other about their correct activities, in the
second case they give information on the correction of their failures.

Network architectures are in the focus of interest in present computer science. One
of the main areas of investigations is the study how powerful computational tools can be
obtained by using networks of simple computing devices functioning with simple commu-
nication protocols.

In this paper we deal with this question. We prove that networks of standard Watson-
ι

Crick $D\mathrm{O}L$ systems, working with the first type of communication protocol mentioned
above, form a class of computationally complete devices, that is, any recursively enumer-
able language can be obtained as the language of an extended NSWDOL system. The
language of an extended NSWDOL system is the set of words which are over a special
subalphabet of the system (the terminal alphabet) and which appear at a dedicated node,
the master, at a derivation step during the computation.

2 Preliminaries and basic notions
Throughout the paper we assume that the reader is familiar with the basic notions of
formal language theory. For further details and unexplained notions consult [3], [4], and
[5].

44

The set of nonempty words over an alphabet Σ is denoted by $\Sigma^{+};$ if the empty string,
λ , is included, then we use notation Σ^{*} . A set of strings $L\subseteq\Sigma^{*}$ is said to be a language
over alphabet Σ . For a string $w\in L$ and for a set $U\subseteq\Sigma$, we denote by $|w|_{U}$ the number
of occurrences of letters of U in w .

Now we recall the basic notions concerning standard Watson-Crick DOL systems,
introduced in [6] and [7]. The interested reader can find further information on the topic
in [8] and [9].

By a DNA-like alphabet we mean an alphabet Σ with $2n$ letters, $n\geq 1$, where Σ

is of the form $\Sigma=\{a_{1}, \ldots, a_{n},\overline{a}_{1}, \ldots,\overline{a}_{n}\}$. Letters a_{i} and $\overline{a}_{i},$ $1\leq i\leq n$, are said to be
complementary letters. $\Sigma_{1}=\{a_{1}, \ldots, a_{n}\}$ is said to be the subalphabet of purines of Σ

and $\Sigma_{2}=\{\overline{a}_{1}, \ldots,\overline{a}_{n}\}$ is called the subalphabet of pyrimidines.
A string $w\in\Sigma^{*}$ is said to be correct if $|w|\Sigma_{1}\geq|w|_{\Sigma_{2}}$ holds, otherwise the string is

called not correct.
We denote by h_{w} the letter to letter endomorphism of a DNA-like alphabet Σ mapping

each letter to its complementary.
A standard Watson-Crick DOL system (an SWDOL system, for short) is a triple

$H=(\Sigma, P, w_{0})$, where Σ is a DNA-like alphabet, the alphabet of the system, P is a
set of pure context-free rules over Σ , the set of rewriting rules of the system, and w_{0}

is a nonempty correct word over Σ , the axiom of H. Furthermore, P is complete and
deterministic, that is, P has for each letter b in Σ exactly one rule of the form $barrow u$,
$u\in\Sigma^{*}$

The direct derivation step in H is defined as follows: for two strings $x,$ $y\in\Sigma^{*}$ we say
that x directly derives y in H, denoted by $x\supset_{H}y$, if $x=x_{1}\ldots x_{m},$ $y=z_{1}\ldots z_{m},$ $m\geq 1$,
and $z_{i}=y_{i}$ if $y_{1}\ldots y_{m}$ is a correct word and $z_{i}=h_{w}(y_{i})$ otherwise, where $x_{i}arrow y_{i}\in P$,
$1\leq i\leq m$. The empty word directly derives itself. The parallel rewriting of each x_{i} to y_{i} ,
$1\leq i\leq m$, is denoted by $x_{1}\ldots x_{m}\Rightarrow_{P}y_{1}\ldots y_{m}$.

Thus, if after applying a parallel rewriting to the string the obtained new string has
less occurrences of purines than that of pyrimidines, then the new string must turn to the
complementary and the derivation continues from this complementary word, otherwise
the derivation continues in the usual manner.

Now we define the basic notions concerning networks of standard Watson-Crick DOL

systems, introduced in [1]. A network of standard Watson-Crick DOL systems is a finite
set of standard Watson-Crick DOL systems over a common DNA-like alphabet which
are located at nodes of a virtual graph (a network). These SWDOL systems generate
strings in parallel and communicate them to the other SWDOL systems in the network.
Communication is defined via $\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s}/\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{n}\mathrm{e}\mathrm{s}\mathrm{s}$ of the rewritten string: whenever
the obtained new string is correct, the node sends a copy of the string to each other node
and if it 1) $\mathrm{r}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{s}$ to be not correct, then the string turns to its complementary and this
complementary string is not communicated. The node keeps both the correct and the
corrected strings.

By a network of standard Watson-Crick DOL systems (an NSWDOL system, for short)
with m components, where $m\geq 1$, we mean an $m+1$-tuple

$\Gamma=(\Sigma, (P_{1}, w_{1}), \ldots, (P_{m}, w_{m}))$,

where

45

\bullet
Σ is a DNA-like alphabet, the alphabet of the system,

\bullet P_{i} is a complete deterministic set of pure context-free rules over Σ , the set of rules
of the i-th component (or the i-th node) of $\Gamma,$ $1\leq i\leq m$, and

\bullet

w_{i} is a correct nonempty word over Σ , the axiom of the i-th component, $1\leq i\leq m$.

The first component, (P_{1}, w_{1}) , is said to be the master node.
By a state of an NSWDOL system $\Gamma=(\Sigma, (P_{1}, w_{1}), \ldots, (P_{m}, w_{m})),$ $m\geq 1$, we mean

an m-tuple (L_{1}, \ldots, L_{m}) , where L_{i} is a set of correct words over $\Sigma,$ $1\leq i\leq m$.
The initial state of the system is $(\{w_{1}\}, \ldots\{w_{m}\})$.
NSWDOL systems change their state as follows:
Let $\Gamma=$ $(\Sigma, (P_{1}, w_{1}), \ldots , (P_{m}, w_{m})),$ $m\geq 1$, be an NSWDOL system and let $s_{1}=$

(L_{1}, \ldots, L_{m}) and $s_{2}=(L_{1}’, \ldots, L_{m}’)$ be two states of Γ .
We say that s_{1} directly derives s_{2} , written as $s_{1}\Rightarrow\Gamma s_{2}$, if the following condition

holds: for each $i,$ $1\leq i\leq m,$ $L_{i}’=A_{i}’\cup B_{i}’$, where
$A_{i}’=$ { $z|z=h_{w}(y),$ $x\Rightarrow_{P_{i}}y,$ $x\in L_{i},$ y is a not correct string} and
$B_{i}’=$ { $y|x\Rightarrow P_{j}y,$ $x\in L_{j},$ $1\leq j\leq m,$ y is a correct string}.
The transitive and reflexive closure $\mathrm{o}\mathrm{f}\Rightarrow \mathrm{r}$ is denoted $\mathrm{b}\mathrm{y}\Rightarrow_{\Gamma}^{*}$.
Thus, according to this protocol, after applying a parallel rewriting step, the node

sends a copy of every obtained correct string to each other node and changes each obtained
not correct string to the complementary. At any derivation step, there are only correct
strings in the network.

The language of an NSWDOL system $\Gamma=(\Sigma, (P_{1}, w_{1}), \ldots, (P_{m}, w_{m})),$ $m\geq 1$, is

$L(\Gamma)=\{u_{1}\in L_{1}|(\{w_{1}\}, \ldots, \{w_{m}\})\Rightarrow_{\Gamma}^{*}(L_{1}, \ldots, L_{m})\}$.

That is, the language of Γ is the set of strings which appear at the master node at the
derivation steps of the computation, included the initial step with the axioms.

By an extended NSWDOL system (an ENSWDOL system, for short) we mean an
$m+2$-tuple $\Gamma=(\Sigma, T, (P_{1}, w_{1}), \ldots, (P_{m}, w_{m})),$ $m\geq 1$, where $T\subseteq\Sigma$ and all other
components of Γ are defined in the same way as in the case of NSWDOL systems. The
language of Γ is defined by $L(\Gamma)=\{u_{1}\in(T^{*}\cap L_{1})|(\{w_{1}\}, \ldots , \{w_{m}\})\Rightarrow_{\Gamma}^{*}(L_{1}, \ldots, L_{m})\}$

3 Power of ENSWDOL systems
In the following we show that any recursively enumerable language can be obtained as the
language of an extended NSWDOL system. The idea of the proof is based on simulation
of $\mathrm{g}.\mathrm{e}$neration of words of the recursively enumerable language according to the Extended
Post Correspondence (EPC).

Let $T=\{a_{1}, \ldots, a_{n}\}$ be an alphabet, where $n\geq 1$. An Extended Post Correspondence
(an EPC, for short) is a pair $P=(\{(u_{1}, v_{1}), ‘. . , (u_{r}, v_{r})\}, (z_{a_{1}}, . ‘. , z_{a_{n}}))$, where $u_{j},$ $v_{j},$ $z_{a_{i}}\in$

$\{0,1\}^{*},$ $1\leq j\leq r,$ $1\leq i\leq n$.
The language represented by P in T, written as $L(P)$, is

$L(P)$ $=$ { $x_{1}\ldots x_{m}\in T^{*}|$ there are indices $s_{1},$ $\ldots,$
$s_{t}\in\{1, \ldots , r\},$ $t\geq 1$,

such that $u_{s_{1}}\ldots u_{s\iota}=v_{s_{1}}\ldots v_{s\iota}z_{x_{1}}\ldots z_{x_{m}}$ }.

46

It is known that for each recursively enumerable language L there exists an Extended
Post Correspondence P such that $L=L(P)[2]$.

Thus, according to the above theorem, a word $w=x_{1}\ldots x_{m},$ $x_{i}\in T,$ $1\leq i\leq m$,
is in L if and only if there exist indices $s_{1},$ \ldots , $s_{t}\in\{1, \ldots, r\}$ such that the two words
$u_{s_{1}}\ldots u_{s\iota}$ and $v_{s_{1}}\ldots v_{s_{t}}z_{x_{1}}\ldots z_{x_{m}}$ consist of the same number of digits and they have the
same value as binary numbers.

It is easy to see that we can determine the words of L as follows: We start the
generation with a string of the form $u_{s_{1}}v_{s_{1}},$ $s_{1}\in\{1, \ldots, r\}$. Then we add u-s and v-s to
the string in the correct manner while obtaining a string of the form $u_{s_{1}}\ldots u_{s_{t}}v_{s_{1}}\ldots v_{s_{t}}$,
$t\geq 1$. Then, in the second phase of the generation we add x-s and z-s to the string in a
correct manner while obtaining $x_{1}\ldots x_{m}u_{s_{1}}\ldots u_{s_{t}}v_{s_{1}}\ldots v_{s_{t}}z_{x_{1}}$. , . $z_{x_{m}}$. In the final phase
we check whether $\alpha=u_{s_{1}}$. $,$ $.u_{s_{t}}$ and $\beta=v_{s_{1:}},$ $.v_{s_{t}}z_{x_{1}}\ldots z_{x_{m}}$ are equal or not, and if they
are equal, we eliminate both substrings from the string. If the empty word is in L , then
after the first phase of the above process, we continue with the final generation phase.

We shall use the following notation in the sequel: for a word $u\in\{0,1\}^{*}$, we denote
by $val(u)$ the value of u as a binary number and by dig (u) the number of digits in u .

Theorem 3.1 For each recursively enumerable language L there exists an ENSWDOL
system Γ such that $L=L(\Gamma)$.

Proof. Let $L\subseteq\tau*$, where $T=\{a_{1}, \ldots , a_{n}\},$ $n\geq 1$, and let L be represented by an
EPC $P=(\{(u_{1}, v_{1}), \ldots, (u_{r}, v_{r})\}, (z_{a_{1}}, \ldots, z_{a_{n}}))$, where $u_{j},$ $v_{j},$ $z_{a_{i}}\in\{0,1\}^{*},$ $1\leq j\leq r$,
$1\leq i\leq n$. To prove the statement, we construct an ENSWDOL system Γ such that
$L(\Gamma)=L(P)$ and Γ simulates the generation of words of L according to P. For each
pair $(u_{j}, v_{j}),$ $1\leq j\leq r$, and for each pair $(a_{i}, z_{a_{i}}),$ $1\leq i\leq n,$ Γ will have a dedicated
node which simulates the effect of adding the pair to the string in generation in a correct
manner. (For legibility, we also use the short term ” the node for the pair (u, v) or (a, z_{a})

”

in the sequel instead of the long version ”the node dedicated for simulating the effect of
adding the pair (u, v) or (a, z_{a}) to the string in generation.”)

Furthermore, Γ will have a node dedicated for deciding whether or not the two auxiliary
substrings α and β over $\{0,1\}$ (see the short explanation before the theorem) are equal.

The nodes for the pairs $(a_{i}, z_{a_{i}}),$ $1\leq i\leq n$, will have the strings $x_{1}\ldots x_{m}u_{s_{1}}\ldots u_{s_{t}}v_{s_{1}}$

. . . $v_{s\iota}z_{x_{1}}\ldots z_{x_{m}},$ $x_{i}\in T,$ $1\leq i\leq m,$ $s_{1},$ $\ldots,$
$s_{t}\in\{1, \ldots, r\},$ $t\geq 1$, in the coded form

$x_{1}\ldots x_{m}_{0}A_{2}^{k}_{2,A}B_{2}^{l}_{2},{}_{B}C_{2}^{h}_{2,C}D_{2}^{g}_{2,D}$, where k is the binary value of $\alpha=u_{s_{1}}\ldots u_{s_{t}},$
l is

the binary value of $\beta=v_{s_{1}}\ldots v_{s_{t}}z_{x_{1}}\ldots z_{x_{m}},$ h is the number of digits of α , and g is the
number of digits of β .

Similarly, the nodes for the pairs $(u_{j}, v_{j}),$ $1\leq j\leq r$, will have the strings $u_{s_{1}}\ldots u_{s_{t}}v_{s_{1}}$

. . . $v_{s_{b}},$ $s_{1},$
$\ldots,$

$s_{t}\in\{1, \ldots, r\},$ $t\geq 1$, in the coded form $_{0}A_{1}^{k}_{1,A}B_{1}^{l}_{1},{}_{B}C_{1}^{h}_{1,C}D_{1}^{g}_{1,D}$,
where k is the binary value of $\alpha=u_{s_{1}}\ldots u_{s_{t}},$

l is the binary value of $\beta=v_{s_{1}}\ldots v_{s_{t}},$ h is
the number of digits of α , and g is the number of digits of β .

When we simulate the effect of adding the pair $(u_{j}, v_{j}),$ $1\leq j\leq r$, or the pair $(a_{i}, z_{a_{i}})$,
$1\leq i\leq n$, to the string, then the number of occurrences of A-s, B-s, C-s, and D-s in the
string will change according to the simulated effect.

Finally, the node dedicated for deciding whether or not $\alpha=\beta$ holds will decide whether
or not $k=l$ and $h=g$ hold for the string $x_{1}\ldots x_{m}_{0}A_{2}^{k}_{2,A}B_{2}^{l}_{2},{}_{B}C_{2}^{h}_{2,C}D_{2}^{g}_{2,D}$ or for the
string $_{0}A_{1}^{k}_{1,A}B_{1}^{l}_{1},{}_{B}C_{1}^{h}_{1,C}D_{1}^{g}_{1,D}$. (The latter case is for determining whether or not
the $\mathrm{e}\mathrm{m}\iota$) $\mathrm{t}\mathrm{y}$ word is in $L.$)

47

After the above short explanation, we define Γ . To help the legibility, we provide the
reader only with the necessary details.

Let

Γ $=$ $(\Sigma,$ $T,$ (P_{e}, w_{e}) ,
$(P_{(u_{1},v_{1})}, w_{(u_{1},v_{1})}),$

$\ldots,$
$(P_{(u_{r},v,)}, w_{(u_{r},v_{r})})$,

$(P_{(a_{1},z_{a_{1}})}, w_{(a_{1},z_{a_{1}})}),$
$\ldots,$

$(P_{(a_{n},z_{a_{n}})}, w_{(a_{n},z_{a_{n}})}))$,

where n and r are given by EPC P.
Let

Σ $=$ $\{a_{i}, a_{i,j},\overline{a}_{i},\overline{a}_{i,j}|1\leq i\leq n, 3\leq j\leq 7\}\cup\{_{0}, F, E,\overline{\}_{0},\overline{F},\overline{E}\}$

$\cup\{X_{j},\overline{X}_{j}|1\leq j\leq 7, X\in\{A, B, C, D\}\}$

$\cup\{_{j,X},\overline{\}_{j,X}|1\leq j\leq 2, X\in\{A, B, C, D\}\}$.

We note that F is a special symbol, the so-called trap symbol.
The axioms are defined as follows: $w_{(u_{j},v_{j})}=E$, for $1\leq j\leq r,$ $w_{(a_{i},z_{a_{i}})}=F$, for

$1\leq i\leq n$, and $w_{e}=F$.
Notice that the master node is (P_{e}, w_{e}) .
In the following we define the rule sets of the nodes, with some short explanations

concerning their functioning.
The rule set $P_{(u_{j},v_{j})}$ of the node dedicated for simulating the effect of adding the pair

$(u_{j}, v_{j},)1\leq j\leq r$, to the string consists of the following rules:

$A_{1}arrow A_{1}^{2^{dig(u_{j})}}_{1,A}arrow A_{1}^{val(u_{j})}’_{1,A}$

,
$_{1,B}arrow B_{1}^{val(v_{j})}_{1,B}B_{1}arrow B_{1}^{2^{dig(v_{j})}},$

,
$C_{1}arrow C_{1}_{1,C}arrow C_{1}^{dig(u_{j})}’_{1,C}$

,
$D_{1}arrow D_{1}_{1,D}arrow D_{1}^{dig(v_{j})}’_{1,D}$

,

$_{0}arrow_{0}$, and for any other letter Y from Σ but E the node contains rule $Yarrow F$.
Moreover, the node has rule $Earrow_{0}A_{1}^{k_{j}}_{1,A}B_{1}^{l_{j}}_{1},{}_{B}C_{1}^{h_{j}}_{1,C}D_{1}^{\mathit{9}j}_{1,D}$, where $A_{1}^{k_{j}}$ and $C_{1}^{h_{j}}$

represent the value and the number of digits of u_{j} , and $B_{1}^{l_{j}}$ and $D_{1}^{\mathit{9}j}$ represent the value
and the number of digits of $\beta=v_{j}$, respectively.

The reader can easily check that starting from a string of the form

$_{0}A_{1}^{k_{1}}_{1,A}B_{1}^{l_{1}}_{1},{}_{B}C_{1}^{h_{1}}_{1,C}D_{1}^{g_{1}}_{1,D}$,

where $A_{1}^{k_{1}}$ and $C_{1}^{h_{1}}$ represent the value and the number of digits of $\alpha=u_{s_{1}}\ldots u_{s_{t}}$, and
$B_{1}^{l_{1}}$ and $D_{1}^{g_{1}}$ represent the value and the number of digits of $\beta=v_{s_{1}}\ldots v_{s_{t}},$ $s_{1},$ $\ldots,$

$s_{t}\in$

$\{1, \ldots , r\},$ $t\geq 1$, by applying the above rules we obtain a string

$_{0}A_{1}^{k_{2}}_{1,A}B^{l_{2}}_{1},{}_{B}C_{1}^{h_{2}}_{1,C}D_{1}^{g_{2}}_{1,D}$,

where $k_{2}=k_{1}\cdot 2^{dig(u_{j})}+val(u_{j}),$ $l_{2}=l_{1}\cdot 2^{dig(v_{j})}+val(v_{j}),$ $h_{2}=h_{1}+dig(u_{j})$ and
$g_{2}=g_{1}+dig(v_{j})$. Thus, the rewriting simulates the effect of adding pair (u_{j}, v_{j}) to the
string $u_{s_{1}}\ldots u_{s\iota}v_{s_{1}}\ldots v_{s\iota}$ in the correct manner, obtaining $u_{s_{1}}\ldots u_{s_{t}}u_{j}v_{s_{1}}\ldots v_{s_{t}}v_{j}$.

The rule set $P_{(a_{i},z_{a_{i}})}$ of the node dedicated for simulating the effect of adding the pair
$(a_{i}, z_{a_{i}}),$ $1\leq i\leq n$, to the string contains the following rules:

$A_{1}arrow A_{2}_{1,A}arrow_{2,A}’$

,
$B_{1}arrow B_{2}^{2^{d\dot{\cdot}g(z_{a_{i^{)}}}}}_{1,B}arrow B_{2}^{val(z_{a_{i}})}’_{2,B}$

,
$C_{1}arrow C_{2}_{1,C}arrow_{2,C}’$

,
$D_{1}arrow D_{2}_{1,D}arrow D_{2}^{dig(z_{a_{i}})}’_{2,D}$

,

48

and
$A_{2}arrow A_{2}$, $B_{2}arrow B_{2}^{2^{dig(z_{a_{i}})}}$, $C_{2}arrow C_{2}$, $D_{2}arrow D_{2}$,
$_{2,A}arrow_{2,A}$, $_{2,B}arrow B_{2}^{val(z_{a_{i}})}_{2,B}$, $_{2,C}arrow_{2,C}$, $_{2,D}arrow D_{2}^{dig(z_{a_{i}})}_{2,D}$,

moreover, it has $_{0}arrow a_{i}_{0}$, and $a_{j}arrow a_{j}$, for $\leq j\leq n$, and for the other letters Y in Σ

not listed above the node has rule $\mathrm{Y}arrow F$.
Analogously to the previous considerations, we can see that starting from a string

$u_{0}A_{p}^{k_{1}}_{p,A}B_{p^{1}}^{l}_{p},{}_{B}C_{p}^{h_{1}}_{p,C}D_{p}^{g_{1}}_{p,D}$,

$u\in\tau*,$ $p\in\{1,2\}$, and $A_{p^{1}}^{k}$ and $C_{p}^{h_{1}}$ represent the value and the number of digits
of $\alpha=u_{s_{1}}\ldots u_{s_{t}}$, and $B_{p^{1}}^{l}$ and $D_{p^{1}}^{g}$ represent the value and the number of digits of
$\beta=v_{s_{1}}\ldots v_{s_{t}}z_{u}$, respectively, where $s,$ $\cdots,$

$s_{t}\in\{1, \ldots, r\},$ $t\geq 1$, and z_{u} is the sequence
of z-s corresponding to u , by applying the above rules we obtain

$ua_{i}_{0}A_{2}^{k_{2}}_{2,A}B_{2}^{l_{2}}_{2},{}_{B}C_{2}^{h_{2}}_{2,C}D_{2}^{g_{2}}_{2,D}$,

where $k_{2}=k_{1},$ $l_{2}=l_{1}\cdot 2^{dig(z_{a_{i}})}+val(z_{a_{i}}),$ $h_{2}=h_{1}$ and $g_{2}=g_{1}+dig(z_{a_{i}})$. Thus, the
rewriting simulates the effect of adding pair $(a_{i}, z_{a_{i}})$ to the string $uu_{s_{1}}\ldots u_{s_{t}}v_{s_{1}}\ldots v_{s_{t}}z_{u}$

in the correct manner, obtaining $ua_{i}u_{s_{1}}\ldots u_{s_{t}}v_{s_{1}}\ldots v_{s_{t}}z_{u}z_{a_{i}}$.
Finally, we list the rules in the rule set P_{e} of the node dedicated for deciding whether

the generated string satisfies EPC P or not, that is, whether the corresponding two
strings, α and β , mentioned above, are equal or not. This is done by using the possibility
of turning to the complementary. To help the reader in understanding how the decision
is done, we list the rules together with a derivation.

We first mention that in P_{e} the rule for the trap symbol, F, is $Farrow F$. Let

$x_{1}\ldots x_{m}_{0}A_{2}^{k}_{2,A}B_{2}^{l}_{2},{}_{B}C^{h} 22,CD_{2}^{g}_{2,D}$

be a string at node $(P_{e}, w_{e}),$ $x_{i}\in T,$ $1\leq i\leq m$.
Then, by the first step, having rules $_{0}arrow\lambda,$ $_{i,X}arrow\lambda,$ $X_{i}arrow X_{3}$, for $i=1,2,$ $X\in$

$\{A, B, C, D\}$, and $a_{j}arrow a_{j,3}$, for $1\leq j\leq n$, the string changes for $x_{1,3}\ldots x_{m,3}A_{3}^{k}B_{3}^{l}C_{3}^{h}D_{3}^{\mathit{9}}$.
Then, in the next derivation step having productions $a_{i,3}arrow a_{i,4}\overline{a}_{i,4},1\leq i\leq n$, and

$A_{3}.arrow\overline{A}_{4},$ $B_{3}.arrow B_{4},$ $C_{3}arrow C_{4}\overline{C}_{4},$ $D_{3}arrow D_{4}\overline{D}_{4}$, and $A_{4}arrow F,\overline{B}_{4}arrow F$, we obtain a string
of the form

$x_{1,4}\overline{x}_{1,4}\ldots x_{m,4}\overline{x}_{m,4}\overline{A}_{4}^{k}B_{4}^{l}(C_{4}\overline{C}_{4})^{h}(D_{4}\overline{D}_{4})^{g}$.

The derivation will lead to a string over T only if $k\leq l$, otherwise the string turns to its
$\mathrm{c}\mathrm{o}\mathrm{m}\iota)\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{y}$ and at the next step occurrences of the trap symbol F will be introduced
which never will disappear from the string. Suppose that the derivation leads to a terminal
string. Then, having productions $a_{i,4}arrow a_{i,5},\overline{a}_{i,4}arrow\overline{a}_{i,5},1\leq i\leq n,\overline{A}_{4}arrow A_{5},$ $B_{4}arrow\overline{B}_{5}$,
$\overline{A}_{5}arrow F,$ $B_{5}arrow F,$ $C_{4}arrow C_{5},\overline{C}_{4}arrow\overline{C}_{5},$ $D_{4}arrow D_{5},\overline{D}_{4}arrow\overline{D}_{5}$, we obtain a string of the
form

$x_{1,5}\overline{x}_{1,5}\ldots x_{m,5}\overline{x}_{m,5}A_{5}^{k}\overline{B}_{5}^{l}(C_{5}\overline{C}_{5})^{h}(D_{5}\overline{D}_{5})^{g}$.

Again, the derivation can lead to a terminal string only if $k\geq l$, otherwise, at the next
step occurrences of the trap symbol will be introduced. Suppose that this is not the case.
Then we continue the rewriting. Having rules $a_{i,5}arrow a_{i,6},\overline{a}_{i,5}arrow\overline{a}_{i,6},1\leq i\leq n$, and

49

$A_{5}arrow\lambda,\overline{B}_{5}arrow\lambda,\overline{C}_{5}arrow\lambda,\overline{D}_{5}arrow\lambda,$ $C_{5}arrow\overline{C}_{6},$ $D_{5}arrow D_{6},$ $C_{6}arrow F,\overline{D}_{6}arrow F$, the obtained
string is

$x_{1,6}\overline{x}_{1,6}\ldots x_{m,6}\overline{x}_{m},{}_{6}\overline{C}_{6}^{h}D_{6}^{g}$.

As in the previous cases, the derivation leads to a terminal string only if $h\leq g$. Let
us suppose that this condition holds. Then we continue the derivation. Having rules
$a_{i,6}arrow a_{i,7},\overline{a}_{i,6}arrow\overline{a}_{i,7},1\leq i\leq n$, and $\overline{C}_{6}arrow C_{7},$ $D_{6}arrow\overline{D}_{7},\overline{C}_{7}arrow F,$ $D_{7}arrow F$ the next
step leads to string

$x_{1,7}\overline{x}_{1,7}\ldots x_{m,7}\overline{x}_{m},{}_{7}C_{7}^{h}\overline{D}_{7}^{g}$.

Similarly to the cases above, a terminal word can be obtained only if $h\geq g$. Then, having
rules $a_{i,7}arrow a_{i},\overline{a}_{i,7}arrow\lambda,$ $1\leq i\leq n,$ $C_{7}arrow\lambda,\overline{D}_{7}arrow\lambda$, we derive

$x_{1}\ldots x_{m}$.

For any other letter Y in Σ we have not listed above, the node has rule $\mathrm{Y}arrow F$.
We note that the above procedure also works if we start from a string

$_{0}A_{1}^{k}_{1,A}B_{1}^{l}_{1},{}_{B}C_{1}^{h}_{1,C}D_{1}^{g}_{1,D}$.

The derivation results in the empty word only if $\lambda\in L(P)$ holds.
Now we should prove that Γ derives all words of L but not more.
$\mathrm{s}_{\mathrm{u}_{1^{)}\mathrm{P}^{\mathrm{o}\mathrm{s}\mathrm{e}}}}$ that $x_{1}\ldots x_{m}\in L,$ $x_{i}\in T,$ $1\leq i\leq m$, that is, there are indices $s_{1},$ $\ldots,$

$s_{t}\in$

$\{1, \ldots , r\}$ such that $u_{s_{1}}\ldots u_{s_{i}}=v_{s_{1}}\ldots v_{s_{t}}z_{x_{1}}\ldots z_{x_{m}}$ holds. Then $x_{1}\ldots x_{m}$ can be obtained
in Γ as follows: First E , the axiom of the node for simulating the effect of adding the pair
$(u_{s_{1}}, ?)_{S_{1}})$, the axiom of node for $(u_{s_{1}}, v_{s_{1}})$, for short, is rewritten to the string representing
$u_{s_{1}}v_{s_{1}}$ in the coded form, and then, by communication the string is forwarded to the
node for $(u_{s_{2}}, v_{s_{2}})$. Then, the communicated string is rewritten at this node and it is
forwarded to the next node for (u, v) in the order. We continue this procedure while the
string representing $u_{s_{1}}\ldots u_{s_{b}}v_{s_{1}}\ldots v_{s_{t}}$ is generated at node for $(u_{s_{t}}v_{s_{t}})$. Then, the string is
communicated to the node for $(x_{1}, z_{x_{1}})$, where it is rewritten and then it is communicated
to the next node in the order, a node for some pair (x, z_{x}) . Continuing this procedure,
we finish this part of the generation at node for $(x_{m}, z_{x_{m}})$ with a string representing
$x_{1}\ldots x_{m}u_{s_{1}}\ldots u_{s_{t}}v_{s_{1}}\ldots v_{s_{t}}z_{x_{1}}\ldots z_{x_{m}}$. Then the string is forwarded to node (P_{e}, w_{e}) , where
in some steps its substring $u_{s_{1}}\ldots u_{s_{t}}v_{s_{1}}\ldots v_{s_{t}}z_{x_{1}}\ldots z_{x_{m}}$ is eliminated. Thus, $x_{1}\ldots x_{m}$ is
an element of $L(\Gamma)$. The procedure for computing $\lambda\in L(P)$, if $\lambda\in L(P)$, is analogous.

We should prove that Γ does not generate a word not in L . By the definition of the
rule sets of the nodes, we can see that for each string at the node or communicated to the
node, the node for the pair $(u_{j}, v_{j}),$ $1\leq j\leq r$, either produces a new string representing a
word of one of the forms $u_{j}v_{j}$ or $u_{s_{1}}\ldots u_{s_{t}}u_{j}v_{s_{1}}\ldots v_{s\iota}v_{j},$ $s_{1\cdots\tau}s_{t}\in\{1, \ldots, r\},$ $t\geq 1$, or it
produces a new string which contains the trap symbol F, which symbol never disappears
from the string, so the obtained string is irrelevant from the point of view of generation
of terminal words of F. Notice that after each derivation step all the strings that can be
found at the node are communicated to the other nodes. Analogously, for each string at
the node or communicated to the node, it holds that the node for $(a_{i}, z_{a_{i}}),$ $1\leq i\leq n$, either
prodnces a string representing a string of the form $ua_{i}u_{s_{1}}\ldots u_{s_{b}}v_{s_{1}}$. $,$ $.v_{s\iota}z_{u}z_{a_{i}},$ $u\in T^{*},$ z_{u}

is the sequence of z-s which corresponds to u , or it generates a string with an occurrence
of the trap symbol, F. Similarly to the previous case, after each derivation step the node

50

communicates all the strings it has. But only those strings have no occurrence of the
trap symbol at the above two types of nodes which represent strings which correspond to
generation phases of words of L according to EPC P. Similarly to the above cases, the
master node, (P_{e}, w_{e}) , either produces a terminal string (or the empty word) from a string
it has or it received by communication, or the node generates a string with an occurrence
of the trap symbol. After each derivation step the master node receives all strings of the
previous two types of nodes and communicates the correct strings it produces to them.
At the next step these communicated strings at the new location either will introduce the
trap symbol or if the string is a terminal string or the empty word at an appropriate node
it will return without any change to the master node. Thus, any terminal word (included
the empty word) which can be generated by Γ can be generated according to P but

$\mathrm{n}\mathrm{o}\mathrm{t}\square$

more. Hence the $\mathrm{r}\mathrm{e}s\mathrm{u}\mathrm{l}\mathrm{t}$.

Acknowledgement
Research supported in part by the Hungarian Scientific Research Fund ”

$\mathrm{O}\mathrm{T}\mathrm{K}$

.
A

” Grant
no. T 029615.

References
[1] E. Csuhaj-Varj\’u, A. Salomaa: Networks of Watson-Crick DOL systems.

Manuscript. Presented at 3rd Int. Colloquium on Words, Languages and Combi-
natorics, March 14-18, 2000, Kyoto. Submitted for the proceedings.

[2] V. Geffert, Context-free-like forms for phrase-structure grammars. Proc.
MFCS’88, LNCS 324, Springer Verlag, 1988, 309-317.

[3] Handbook of Formal Languages. Vol. I-III. (G. Rozenberg, A. Salomaa, eds.)
Springer Verlag, Berlin-Heidelberg-New York, 1997.

[4] A. Salomaa, Formal Languages. Academic Press, New York, 1973.

[5] G. Rozenberg, A. Salomaa. The Mathematical Theory of L systems. Academic
Press, New York, London, 1980.

[6] V. Mihalache, A. Salomaa, Watson-Crick DOL systems. EATCS Bulletin 62
(1997), 160-175.

[7] V. Mihalache, A. Salomaa, Language Theoretic Aspects of DNA Complementar-
ity. TUCS Technical Report 202, September, 1998.

[8] A. Salomaa, Turing, Watson-Crick and Lindenmayer. Aspects of DNA Comple-
mentarity. In: Unconventional Models of Computation. (C.S. Calude, J. Casti,
M.J. Dinneen, eds.) Springer Verlag, Singapore, Berlin, Heidelberg, New York,
1998, 94-107.

[9] A. Salomaa, Watson-Crick Walks and Roads on DOL Graphs. Acta Cybernetica
14 (1) (1999), 179-192.

51

