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ABSTRACT. The calculation of $b_{P}$ -function via Gr\"obner basis for an
group invarinat differential operator $P(x, \partial)$ on a finite dimensional vec-
tor space is considered in this paper. Let $(G, V)$ be a regular pre-
homogeneous vector space. It is often observed that the space of all
$G$-invariant hyperfunction solutions $u(x)$ to the differential equation
$P(x, \partial)u(x)=v(x)$ is determined by its $b_{P}$ -function, a polynomial as-
sociated with the $G$-invariant differential operator $P(x, \partial)$ . We prove
in this paper that the $b_{P}$ -function is computed by an algorithm using
Gr\"obner basis of the Weyl algebra on $V$ for a typical class of prehomo-
geneous vector spaces.
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INTRODUCTION.

The ultimate purpose of theory of differential equations is to “compute the
solutions” of a given differential equations. For example, to give a solution
in an explicit form, to write a solution using known special functions and
functional relations and to give an algorithm to construct a solution and so
on are all trials along this purpose. There never, of course, exists a unified
way to solve all differential equations. What we can do is to devise a way of
solving the differential equation according to the properties and peculiarities
of the given differential equation.
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We consider in this article a linear differential equation
$P(x, \partial)u(x)=v(x)$ (1)

with one unknown function $u(x)$ for a given differential operator $P(x, \partial)$

and a given function $v(x)$ on a real non-singular algebraic variety $X$ . In
particular, we suppose that a real algebraic group $G$ acts on $X$ transitively
in an algebraic manner. Let $H$ be an algebraic subgroup of $G$ . We suppose
that $P(x, \partial)$ and $u(x),$ $v(x)$ are all $H$ -invariant and call (1) a H-invariant
differeniial equation. The author does not know a universal method to
solve the $H$-invariant differential equations in a general form. However,
he recently found a natural way to construct $H$-invariant hyperfunction
solutions to the $H$-invariant differential equations (1) on a class of regular
prehomogeneous vector spaces ([9]) when $H$ is a kernel of the characters of
relative invariants which is often denoted by $G^{1}$ . According to the method
in [9], when $P(x, \partial)$ is a $\chi$ -\’invariant differential operator, it is important to
compute a polynomial $b_{P}(s)$ in a complex parameter $s\in \mathbb{C}$ defined by

$P(x_{J}.\partial)f(x)^{s}=b_{P}(s)f(x)^{s+\chi}$ (2)

where $f(x)$ is a relative invariant of the prehomogeneous vector space, $f(x)^{s}$

is the complex power of $f(x)$ and $\chi$ is the “character” of the $G^{1}$ -invariant
differential operator $P(x, \partial)$ . In fact, if $s_{0}$ is a root of the equation $b_{P}(s)=0$ ,
then a hyperfunction obtained as a complex power $|f(x)|^{s_{0}}$ is a $G^{1}$ -invariant
kernel of the $G^{1}$-invariant differential operator. Here $G^{1}$ is a kernel of the
character $\chi$ satisfying $f(g\cdot x)=\chi(g)f(x)$ . This means that the $b_{P}$-function
$b_{P}(s)$ is closely related to the construction of the $G^{1}$-invariant hyperfunction
solutions to (1).

The main issue of this article is the calculation of $b_{P}$-function of a given
$G^{1}$ -invariant differential operator $P(x, \partial)$ on a given regular prehomoge-
neous vector space. We shall give an algorithm to compute the bp-function
for a given $P(x, \partial)\in D(V)^{G^{1}}$ on the space of real symmetric matrices
$V:=\mathrm{S}\mathrm{y}\mathrm{m}_{n}(\mathbb{R})$ with the group action of $G^{1}=\mathrm{S}\mathrm{L}_{n}(\mathbb{R})$ (Algorithm 3.1).
Instead of the direct computation of the $bp$-function, we first compute the
$b_{P}$-functions for the fundamental invariant differential operators and then
write a given $P(x, \partial)$ as a polynomial with variables of the fundamental in-
variant differential operators. The algorithm we give here is that to express
a given $P(x, \partial)$ by using the fundamental invariant differential operators.

1. INVARIANT DIFFERENTIAL OPERATORS AND THEIR $b_{P}$ -FUNCTIONS ON

PREHOMOGENEOUS VECTOR SPACES.

Let $V$ be a finite dimensional vector space defined over the real field $\mathbb{R}$

and let $G$ be a closed algebraic subgroup of the linear transformation group
$\mathrm{G}\mathrm{L}(V)$ . The complexifications of $V$ and $G$ are denoted by $V_{\mathbb{C}}$ and $G_{\mathbb{C}}$ ,
respectively. We say that the pair $(G, V)$ a prehomogeneous vector space
if there exists an open dense $G_{\mathbb{C}}$-orbit in $V_{\mathbb{C}}$ with respect to the Zariski
topology. We suppose here it is a regular prehomogeneous vector space, i.e.,
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there exists a relative invariant whose Hessian does not vanish identically.
Let $f_{1}(x),$

$\ldots,$
$f_{l}(x)$ be the fundamental system of relative invariants of the

prehomogeneous vector space $(G, V)$ and let $\chi_{1}(g),$
$\ldots,$

$\chi\iota(g)$ be their cor-
responding characters, i.e., $f_{i}(g\cdot x)=\chi_{i}(g)f_{i}(x)$ for $i=1,$ $\ldots,$

$l$ . These
polynomials $f_{1}(x),$

$\ldots,$
$f_{l}(x)$ are defined on $V_{\mathbb{C}}$ . We suppose that all $f_{i}(x)’ \mathrm{s}$

are polynomials with real coefficients on $V$ . Then each $\chi_{i}(g)$ is real valued
on $G$ . From the general theory of prehomogeneous vector space, we see that
$f_{1}(x),$

$\ldots,$
$f_{l}(x)$ are algebraically independent homogeneous polynomials.

Let $\mathbb{C}[V]$ and $D(V)$ be the polynomial algebra and the algebra of differen-
tial operators on $V$ , respectively. Here we assume that both of them are with
complex coefficients. Let $x=(x_{1}, \ldots, x_{n})$ be a linear coordinate of $V$ and
let $\partial=(\partial_{1}, \ldots, \partial_{n})$ with $\partial_{i}:=\frac{\partial}{\partial x_{i}}$ be the partial derivatives. Then a polyno-
mial $P(x)\in \mathbb{C}[V]$ is written as $P(x)= \sum_{\alpha\in \mathbb{Z}^{n_{0}}}a_{\alpha}x^{\alpha}\geq$ and alinear differential

operator $P(x, \partial)\in D(V)$ is written as $P(x, \partial)=\sum_{\alpha,\beta\in \mathbb{Z}_{\geq 0}^{n}}a_{\alpha,\beta}x^{\alpha}\partial^{\beta}$ , where
$x^{\alpha}=x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}}$ and $\partial^{\beta}=\partial_{1}^{\beta_{1}}\cdots\partial_{n^{n}}^{\beta}$ are multi-powers for the multi-indices
$\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{Z}_{\geq 0}^{n}$ and $\beta=(\beta_{1}, \ldots, \beta_{n})\in \mathbb{Z}_{\geq 0}^{n}$. The coefficients $a_{\alpha}$

and $a_{\alpha,\beta}$ are taken to be complex numbers C. We denote $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$

and $|\beta|=\beta_{1}+\cdots+\beta_{n}$ and call them total index of $\alpha$ and $\beta$ . If a polynomial
$P(x)$ is written as

$P(x)= \sum_{|\alpha|=k}a_{\alpha}x^{\alpha}$

for a given non-negative integer $k$ , then $P(x)$ is a homogeneous polynomial
with homogeneous degree $k$ . On the other hand, if a differential operator
$P(x, \partial)$ is written as

$P(x, \partial)=\sum_{|\alpha|-|\beta|=k}a_{\alpha,\beta}x^{\alpha}\partial^{\beta}$
,

then we call it a homogeneous differential operator with homogeneous degree
$k$ .

Let $G^{1}$ (resp. $G_{\mathbb{C}}^{1}$ ) be a closed algebraic subgroup of $G$ (resp. $G_{\mathbb{C}}$ )
defined as a kernel of all the characters $\chi_{1},$ $\ldots,$

$\chi_{l}$ . We denote by $\mathbb{C}[V]^{G^{1}}$

and $D(V)^{G^{1}}$ the subalgebras of $G^{1}$ -invariant elements of $\mathbb{C}[V]$ and $D(V)$ ,
respectively. They are naturally isomorphic to $\mathbb{C}[V_{\mathbb{C}}]^{G_{\mathrm{C}}^{1}}$ and $D(V_{\mathbb{C}})^{G_{\mathrm{C}}^{1}}$ , the
subalgebras of $G_{\mathbb{C}}^{1}$-invariant elements of $\mathbb{C}[V_{\mathbb{C}}]$ and $D(V_{\mathbb{C}})$ , respectively. It
is because an element in $\mathbb{C}[V]^{G^{1}}$ or $D(V)^{G^{1}}$ is naturally extended to $V_{\mathbb{C}}$ as
an element in $\mathbb{C}[V_{\mathbb{C}}]$ or $D(V_{\mathbb{C}})$ , respectively and an element in $\mathbb{C}[V_{\mathbb{C}}]^{G_{\mathrm{C}}^{1}}$ or
$D(V_{\mathbb{C}})^{G_{\mathbb{C}}^{1}}$ can be regarded as an element in $\mathbb{C}[V]$ or $D(V)$ by restriction to
$V$ , respectively.

The algebra $\mathbb{C}[V]^{G^{1}}$ is isomorphic to the polynomial algebra $\mathbb{C}[f_{1}, \ldots\}f_{l}]$ .
Namely, $\mathbb{C}[V]^{G^{1}}$ is generated by the algebraically independent elements
$f_{1},$

$\ldots,$
$f_{l}$ . In particular, the relative invariant corresponding to the charac-

ter $\chi=\chi_{1}^{p_{1}}\cdots\chi_{l}^{p_{l}}$ is given by a constant multiple of $f_{1}(x)^{p_{1}}\cdots f_{l}(x)^{p_{l}}$ . We
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denote it by $f^{\chi}(x)$ for abbreviation and we call a relative invariant corre-
sponding to the character $\chi$ a $\chi$ -invariant polynomial. When all the power
$p_{1},$ $\ldots,$ $p_{l}$ are non-negative integer, we write it as $\chi\geq 0$ . Let $d_{1},$

$\ldots$ , $d_{l}\in$

$\mathbb{Z}_{>0}$ be the homogeneous degrees of $f_{1}(x),$
$\ldots,$

$f_{l}(x)$ , respectively. Then the
homogeneous degree of $f^{\chi}(x)$ is given by $d_{1}p_{1}+\cdots+d\iota p_{l}$ . We denote it
by $|\chi|$ . In particular $|\chi_{i}|=d_{i}$ . A $G^{1}$ -invariant homogeneous polynomial of
degree $d$ is written as

$f(x)= \sum_{|\chi|=d,\chi\geq 0}a_{\chi}f^{\chi}(x)$

with $a_{\chi}\in \mathbb{C}$ and $\chi$ runs through all the characters satisfying $|\chi|=d$ and
$\chi\geq 0$ .

A $G^{1}$ -invariant homogeneous differential operator $P(x, \partial)$ of degree $d$ is
given by

$P(x, \partial)=\sum_{|\chi|=d}P_{\chi}(x, \partial)$
.

Here $P_{\chi}(x, \partial)$ is a differential operator satisfying

$P_{\chi}(g\cdot x, g^{*}\cdot\partial)=\chi(g)P_{\chi}(x, \partial)$

for all $g\in G$ and we call it a $\chi$-invariant differential operator. However ei-
ther $d$ or $\chi$ may not be non-negative in this case. Then the sum $\sum_{|\chi|=d}$ seems
to contain infinite number of terms formally. Of course only finite number
of them are non-zero in the summand. The differential operator $P_{\chi}(x, \partial)$

corresponding to the character $\chi$ is not determined uniquely up to constant
multiples. There may exist infinite number of $G^{1}$ -invariant differential op-
erators corresponding to the character $\chi=\chi_{1}^{p_{1}}\cdots\chi_{l}^{p\mathrm{t}}(p_{1}, \ldots, p_{l}\in \mathbb{Z})$.

Next we consider the complex power of the relative invariants. Let $S:=$

$\{x\in V|f_{1}(x)\cdot\tau\cdot f_{l}(x)=0\}$ and let $V_{1}\cup\cdots\cup V_{m}=V-S$ be the connected
component decomposition. We define the complex power function $|f(x)|_{j}^{s}$

by

$|f(x)|_{j}^{s}:=\{$
$|f_{1}(x)|^{s_{1}}\cdots|fi(x)|^{s_{l}}$ $x\in V_{j}$

$0$ $x\not\in V_{j}$

(3)

with $j=1,$ $\ldots,$ $m$ and $s:=(s_{1}, \ldots\}s\iota)\in \mathbb{C}^{l}$ . Then each $|f(x)|_{j}^{s}$ is well de-
fined as a tempered distribution , and hence a hyperfunction, with holomor-
phic parameters $s:=(s_{1}, \ldots, s\iota)\in \mathbb{C}^{l}$ on $V$ if the real parts $\Re(s_{1}),$

$\ldots,$
$\Re(s\iota)$

are all sufficiently large since the integral $\int|f(x)|_{j}^{s}\phi(x)dx$ is absolutely con-
vergent for any rapidly decreasing $C^{\infty}$ -function $\phi(x)$ on $V$ . It is well known
that $|f(x)|_{j}^{s}$ can be extended to the whole complex numbers $s\in \mathbb{C}^{l}$ mero-
morphically. Thus each $|f(x)|_{j}^{s}$ is well defined as a hyperfunction on $V$ with
meromorphic parameters $s:=(s_{1}, \ldots, s_{l})$ on the whole complex parameter
space $\mathbb{C}^{l}$ .
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Let $P(x, \partial)\in D(V)^{G^{1}}$ be a homogeneous $G^{1}$ -invariant differential oper-
ator which is $\chi$-invariant. Then we have

$P(x, \partial)|f(x)|_{j}^{s}=b_{P}(s)f^{\chi}(x)|f(x)|_{j}^{s}$ (4)

where $b_{P}(s)$ is a polynomial in $s=(s_{1}, \ldots , s\iota)\in \mathbb{C}^{l}$ . We call $b_{P}(s)$ the
$b_{P}$ -function of the relatively invariant differential operator $P(x, \partial)$ . By ex-
panding the both hand sides of (4) to the Laurent series1 and comparing
the Laurent expansion coefficients, we can obtain $G^{1}$ -invariant hyperfunc-
tion solutions to the differential equation

$P(x, \partial)u(x)=v(x)$ (5)

with a given $G^{1}$ -invariant hyperfunction $v(x)$ and an unknown $G^{1}$-invariant
hyperfunction $u(x)$ , systematically. In particular, if $|f(x)|_{j}^{s}$ has a pole at
$s=s_{0}$ , then the order of poles of $|f(x)|_{j}^{s}$ is often larger than those of
$b_{P}(s)f^{\chi}(x)|f(x)|_{j}^{s}$ , and hence we see that the Laurent expansion coefficients
of $|f(x)|_{j}^{s}$ of low orders are annihilated by $P(x, \partial)$ .

This method is definitely strong because we can construct all singular
hyperfunction solutions2 in some typical cases like a real symmetric matrix
space (see Muro [9]). Singular solutions are known to be difficult to handle
since we have little resource to express and compute singular hyperfunctions.
However we have to clear the following two obstacles before realizing our
method.

1. The explicit computation of the $b_{P}$-function $b_{P}(s)$ .
2. The explicit computation of the Laurent expansion of $|f(x)|_{j}^{s}$ .

For the second problem, micro-local analysis of invariant hyperfunctions
is highly efficient (see Muro [8]) and the author believes that this is one
of the best way to solve the second problem. But, for the first problem,
the author does not know any good solution to compute $b_{P}(s)$ explicitly.
The author believes that it is important to establish the standard way to
compute $b_{P}$-function and he thinks it will be effective to give an algorithm
to compute $b_{P}$-function for a given $\chi$-invariant differential operator $P(x, \partial)$ .

In the following sections, the author proposes one algorithmic method
to compute the $b_{P}$-functions on the space of real symmetric matrices. For
a given differential operator $P(x, \partial)$ , we shall give an algorithm to deter-
mine whether $P(x, \partial)$ is $\chi$-invariant or not and to express $P(x, \partial)$ by using
“fundamental” invariant differential operators of the algebra of invariant dif-
ferential operators when $P(x, \partial)$ is an invariant differential operator. Then
by computing the $b_{P}$-functions for the “fundamental” invariant differential
operators, we can compute the $b_{P}$-function of the invariant differential op-
erator $P(x, \partial)$ .

lHowever, when $s$ is multivariate, we have to define the Laurent series expansion at
poles. In our case, since we can prove that $f^{\epsilon}$ is regularized by multiplying some linear
polynomials we may expand $f^{\mathrm{q}}$ after regularization.

2A hyperfunction is singular if its support is contained in a proper algebraic subvarity
in $v$ .
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2. THE CASE OF THE SPACE OF SYMMETRIC MATRICES.

Let $V:=\mathrm{S}\mathrm{y}\mathrm{m}_{n}(\mathbb{R})$ be the space of $n\cross n$ symmetric matrices over the real
field $\mathbb{R}$ and let $G:=\mathrm{G}\mathrm{L}_{n}(\mathbb{R})$ be the special linear group over $\mathbb{R}$ of degree
$n$ . Then the group $G$ acts on the vector space $V$ by

$\rho(g)$ : $x\mapsto g\cdot x\cdot {}^{t}g$ ,

with $x\in V$ and $g\in G$ . This is a typical prehomogeneous vector space
because the complex vector space $V_{\mathbb{C}}=\mathbb{C}\otimes V:=\mathrm{S}\mathrm{y}\mathrm{m}_{n}(\mathbb{C})$ has an open
dense $\mathrm{G}\mathrm{L}_{n}(\mathbb{C})$-orbit consisting of the elements $x\in \mathrm{S}\mathrm{y}\mathrm{m}_{n}(\mathbb{C})$ with $\det(x)\neq$

$0$ . The group $G^{1}=\{g\in G|\det(g\cdot x)=\det(x)\}$ is $\mathrm{S}\mathrm{L}_{n}(\mathbb{R})$ in this case.
From now on, we only consider the case of the prehomogeneous vector

space $(\mathrm{G}\mathrm{L}_{n}(\mathbb{R}), V)$ . In this section we shall give the generators of the sub-
algebras $D(V)^{G}$ and $D(V)^{G^{1}}$ and compute the $b_{P}$-functions for these gener-
ators. By giving an algorithm to write a given invariant differential operator
$P(x, \partial)\in D(V)^{G^{1}}$ as a polynomial in the generators of $D(V)^{G^{1}}$ in \S 3, we
can obtain an algorithm to compute $b_{P}$-function for $P(x, \partial)$ automatically.

The polynomial $f(x)=f_{1}(x):=\det(x)$ is the only one irreducible relative
invariant and the corresponding character is $\chi(g)=\chi_{1}(g):=\det(g)^{2}$ . The
subgroup $G_{1}:=\{g\in G|\chi(g)=1\}=\mathrm{S}\mathrm{L}_{n}(\mathbb{R})$ . A complex power function
$|f(x)|_{j}^{s}$ is defined as follows. Let $V_{0}\cup\ldots\cup V_{n}=V-S$ be the connected
component decomposition of the compliment of the set $S:=\{f(x)=0\}$ .
Here $V_{j}$ is the set of elements which has $j$ positive elements and $n-j$
negative elements. Then, we can define $|f(x)|_{j}^{s}(j=0, \ldots, n)$ by

$|f(x)|_{j}^{s}:=\{$
$|f(x)|^{s}$ $x\in V_{j}$

$0$ $x\not\in V_{j}$

(6)

in the same manner as (3). However, in this case, the parameter $s$ is only
one complex number.

A homogeneous differential operator of degree $k\in \mathbb{Z}$ is given by

$P(x, \partial)=\alpha,\beta\in \mathbb{Z}^{m}\sum_{\geq 0}a_{\alpha\beta}x^{\alpha}\partial^{\beta}$
(7)

$|\alpha|-|\beta|=k$

where $m=n(n+1)/2$ in the case of symmetric matrix space. In (7), we
denote

$x=(x_{ij})_{n\geq j\geq i\geq 1}$ , $\partial=(\partial_{ij})=(\frac{\partial}{\partial x_{ij}})_{n\geq j\geq i\geq 1}$

and

$x^{\alpha}:= \prod_{n\geq j\geq i\geq 1}x_{ij}^{\alpha_{ij}}$
,

$\partial^{\beta}:=\prod_{n\geq j\geq i\geq 1}\partial_{ij}^{\beta_{\iota j}}$

with $\alpha=(\alpha_{ij})\in \mathbb{Z}_{\geq 0}^{m}$ , $| \alpha|=\sum_{n\geq j\geq i\geq 1}\alpha_{ij}$ and $\beta=(\beta_{ij})\in \mathbb{Z}_{\geq 0}^{m}$ , $|\beta|=$

$\sum_{n\geq i\geq i\geq 1}\beta_{ij}$ .
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Every $G^{1}$ -invariant homogeneous polynomial of homogeneous degree $k\in$

$\mathbb{Z}\geq 0$ is written by a constant multiple of $f(x)^{k/n}=\det(x)^{k/n}$ and it is a
relative invariant with the character $\chi^{k/n}$ . On the other hand, $G^{1}$-invariant
homogeneous differential operator can not been written by using only one
differential operator. However, we can prove that every $G^{1}$ -invariant homo-
geneous differential operator is automatically relatively invariant differential
operator. Therefore, if $P(x, \partial)$ is a $G^{1}$ -invariant homogeneous differential
operator, then there exists an integer $l\in \mathbb{Z}$ satisfying that $P(x, \partial)$ is a rel-
atively invariant differential operator with the character $\chi^{l}$ . Then it is a
homogeneous differential operator of homogeneous degree $ln$ .

We shall give some examples of $G$-invariant homogeneous differential op-
erators.

Example 2.1. We define $\partial^{*}$ by

$\partial^{*}--(\partial_{ij}^{*})=(\epsilon_{ij}\frac{\partial}{\partial x_{ij}})$ , and $\epsilon_{ij}:=\{$
1 $i=j$

1/2 $i\neq j$

(8)

Let $h$ and $n$ be positive integers with $1\leq h\leq n$ . A sequence of increasing
integers $p=(p_{1}, \ldots, p_{h})\in \mathbb{Z}^{h}$ is called an increasing sequence in $[1, n]$ of
length $h$ if it satisfies $1\leq p_{1}<\cdots<p_{h}\leq n$ . We denote by $IncSeq(h, n)$
the set of increasing sequences in $[1, n]$ of length $h$ . For two sequences
$p=(p_{1}, \ldots,p_{h})$ and $q=(q_{1}, \ldots , q_{h})\in IncSeq(h, n)$ and for an $n\mathrm{x}n$

symmetric matrix $x=(x_{ij})\in \mathrm{S}\mathrm{y}\mathrm{m}_{n}(\mathbb{R})$ , we define an $h\cross h$ matrix $x_{(p,q)}$ by

$x_{(p,q)}:=(x_{p_{i},q_{j}})_{1\leq i\leq j\leq h}$ .

In the same way, for an $n\cross n$ symmetric matrix $\partial=(\partial_{ij})$ of differential
operators, we define an $h\cross h$ matrix $\partial_{(p,q)}$ of differential operators by

$\partial_{(p,q)}^{*}:=(\partial_{pi,q_{j}}^{*})_{1\leq i\leq j\leq h}$ .

1. For an integer $h$ with $1\leq h\leq n$ , we define

$P_{h}(x, \partial):=\sum_{p,q\in IncSeq(h,n)}\det(x_{(p,q)})\det(\partial_{(p,q)}^{*})$
. (9)

In particular, $P_{n}(x, \partial)=\det(x)\det(\partial^{*})$ and Euler’s differential opera-
tor is given by

$P_{1}(x, \partial)=\sum_{n\geq i\geq i\geq 1}x_{ij}\frac{\partial}{\partial x_{ij}}=\mathrm{t}\mathrm{r}(x\cdot\partial^{*})$ . (10)

These are all homogeneous differential operators of degree $0$ and invari-
ant under the action of GL(V), and hence it is also invariant under
the action of $G_{1}:=\mathrm{S}\mathrm{L}_{n}(\mathbb{R})\subset$ GL (V).

2. $\det(x)$ and $\det(\partial^{*})$ are homogeneous differential operators of degree $n$

and $-n$ , respectively. They are invariant under the action of $G_{1}$ $:=$

$\mathrm{S}\mathrm{L}_{n}(\mathbb{R})$ , and relatively invariant differential operators with characters
$\chi$ and $\chi^{-1}$ , respectively.
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It is an interesting and important problem to find a “good” set of genera-
tors of the Galgebra $D(V)^{G}$ and $D(V)^{G^{1}}$ . One typical set of algebraically
independent generators of the algebra of $\mathrm{G}\mathrm{L}_{n}(\mathbb{R})$ -invariant differential op-
erators $D(V)^{G}=D(\mathrm{S}\mathrm{y}\mathrm{m}_{n}(\mathbb{R}))^{\mathrm{G}\mathrm{L}_{n}(\mathbb{R})}$ has been already obtained by Maass
[4]. (See also Nomura [11].) It is easily checked that one certain set of alge-
braically independent generators of the algebra of $\mathrm{S}\mathrm{L}_{n}(\mathbb{R})$-invariant differ-
ential operators $D(V)^{G^{1}}=D(\mathrm{S}\mathrm{y}\mathrm{m}_{n}(\mathbb{R}))^{\mathrm{S}\mathrm{L}_{n}(\mathbb{R})}$ is obtained by adding $\det(x)$

and $\det(\partial^{*})$ to the Maass’s generator set of $D(\mathrm{S}\mathrm{y}\mathrm{m}_{n}(\mathbb{R}))^{\mathrm{G}\mathrm{L}_{n}(\mathbb{R})}$. Namely we
have the following proposition.

Proposition 2.1. Every $G$ -invariant differential operator on $V$ can be ex-
pressed as a polynomial in $P_{i}(x, \partial)(i=1, \ldots, n)$ . Every $G^{1}$ -invariant
differential operaior on $V$ can be expressed as a polynomial in $P_{i}(x, \partial)$

$(i=1, \ldots, n-1),$ $\det(x)$ and $\det(\partial)$ .

The $b_{P}$-functions for the homogeneous differential operators $P_{i}(x, \partial)(i=$

$1,$
$\ldots,$ $n-1),$ $\det(x)$ and $\det(\partial)$ can be computed explicitly by the aid of

the theory of prehomogeneous vector space.

Proposition 2.2. The $b_{P}$ -functions for the invariant differential operators
$P_{i}(x, \partial)(i=1, \ldots, n-1)_{f}\det(x)$ and $\det(\partial)$ are given by the following
formulas.

1. For the homogeneous differential operator $P_{i}(x, \partial)$ defined by (9), $we$

have

$P_{i}(x, \partial)|f(x)|_{j}^{s}=$ (const.) $\cross(s)(s+\frac{1}{2})\cdots(s+\frac{i-1}{2})|f(x)|_{j}^{s}$

Then the $b_{P}$ -function for $P_{i}(x, \partial)$ is

$b_{P}(s)=$ (const.) $\cross(s)(s+\frac{1}{2})\cdots(s+\frac{i-1}{2})$ . (11)

2. For the homogeneous differential operator $\det(x)$ of homogeneous de-
gree $n$ , we have

$\det(x)|f(x)|_{j}^{s}=f(x)|f(x)|_{j}^{s}$

Then the $b_{P}$ -function for $\det(x)$ is

$b_{P}(s)=1$ . (12)

3. For the homogeneous differential operator $\det(\partial^{*})$ of homogeneous de-
gree-n, we have

$\det(\partial^{*})|f(x)|_{j}^{s}=$ (const.) $\cross(s)(s+\frac{1}{2})\cdots(s+\frac{n-1}{2})f(x)|f(x)|_{j}^{s-2}$

Then the $b_{P}$ -function for $\det(\partial^{*})$ is

$b_{P}(s)=$ (const.) $\cross(s)(s+\frac{1}{2})\cdots(s+\frac{n-1}{2})$ . (13)
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By combining Proposition 2.1 and Proposition 2.2, we can compute the
$b_{P}$-function for any $G^{1}$ -invariant homogeneous differential operator $P(x, \partial)$

if we can find an algorithm to write the operator $P(x, \partial)$ as a polynomial in
variables

{ $P_{i}(x,$ $\partial)(i=1,$
$\ldots,$ $n-1),$ $\det(x)$ and $\det(\partial)$ }.

For example, consider the $G^{1}$-invariant homogeneous differential operator

$P(x, \partial)=\det(\partial^{*})\det(x)-\det(x)\det(\partial^{*})$ .

Since we have already computed the $b_{P}$-functions for $P(x, \partial)=\det(x)$ and
$P(x, \partial)=\det(\partial^{*})$ in (12) and (13), the $b_{P}$-function for $\det(\partial^{*})\det(x)$ -

$\det(x)\det(\partial^{*})$ is also computed by

$b_{P}(s)=$ (const.) $\cross((s+1)(s+\frac{3}{2})\cdots(s+\frac{n+1}{2})-(s)(s+\frac{1}{2})\cdots(s+\frac{n-1}{2}))$

$=$ (const.) $\cross(s+\frac{n+1}{4})(s+1)(s+\frac{3}{2})\cdots(s+\frac{n-1}{2})$ .

3. ALGORITHM TO COMPUTE $b_{P}$ -FUNCTIONS VIA GR\"OBNER BASIS.

By the arguments in the preceding section, the computation of $b_{P}$-function
of $P(x, \partial)\in D(V)^{G^{1}}$ is reduced to the problem to write $P(x, \partial)$ as a poly-
nomial in $P_{1}(x, \partial),$

$\ldots,$
$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*})$ . In this section, we shall

give an algorithm to compute the expression of a given $P(x, \partial)\in D(V)^{G^{1}}$

in terms of $P_{1}(x, \partial),$
$\ldots,$

$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*})$ as a polynomial.
Let $V^{*}$ be a dual space of the vector space $V=\mathrm{S}\mathrm{y}\mathrm{m}_{n}(\mathbb{R})$ . We first give

a necessary and sufficient condition for a polynomial $p(x, \xi)$ on $(x, \xi)\in V\cross$

$V^{*}$ to be written as a polynomial in $f_{1}(x, \xi),$ $\ldots$ , $f_{m}(x, \xi)\in \mathbb{C}[x, \xi]$ , where
$f_{1}(x, \xi),$

$\ldots,$
$f_{m}(x, \xi)$ are polynomials on $V\cross V^{*}$ which are not necessarily

algebraically independent.

Proposition 3.1 (Cox, Little and O’shea [1] Chapter 7). Suppose $f_{1},$
$\ldots,$

$f_{p}\in$

$\mathbb{C}[x_{1}, \ldots , x_{m}, \xi_{1}, \ldots, \xi_{m}]$ are given. We fix a monomial order in

$\mathbb{C}[x_{1}, \ldots, x_{m}, \xi_{1}, \ldots, \xi_{m}, y_{1}, \ldots, y_{p}]$

where any monomial involving one of $x_{1},$ $\ldots,$ $x_{m},$ $\xi_{1},$
$\ldots,$

$\xi_{m}$ is greater than
all monomials in $\mathbb{C}[y_{1}, \ldots, y_{p}]$ . Let $Gr$ be a Gr\"obner basis of the ideal

$\langle f_{1}-y_{1}, \ldots, f_{p}-y_{p}\rangle\subset \mathbb{C}[x_{1}, \ldots, x_{m}, \xi_{1}, \ldots, \xi_{m}, y_{1}, \ldots, y_{p}]$

Given $f\in \mathbb{C}[x_{1}, \ldots , x_{m}, \xi_{1}, \ldots, \mathrm{t}^{\xi}m]$, let $g:=\overline{f}^{Gr}$ be the remainder of $f$ on
division by $Gr$ . Then:

1. $f\in \mathbb{C}[f_{1}, \ldots, f_{p}]$ if and only if $g\in \mathbb{C}[y_{1}, \ldots, y_{p}]$

2. If $f\in \mathbb{C}[f_{1}, \ldots , f_{p}]$ , then $f=g(f_{1}, \ldots, f_{p})$ is an expression of $f$ as a
polynomial in $f_{1},$

$\ldots$ , $f_{p}$ .

By using Proposition 3.1, we can give Algorithm 3.1.
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Algorithm 3.1 (Writing in $D(V)^{G^{1}}$ ). The following is an algorithm to com-
pute a polynomial $Q(y_{1}, \ldots, y_{n+1})$ satisfying

$Q(P_{1}(x, \partial),$
$\ldots,$

$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*}))=P(x, \partial)$

for a given $P(x, \partial)\in D(V)^{G^{1}}$ Here $Gr$ is the Gr\"obner basis of the ideal

$I:=\langle y_{1}-P_{1}(x, \xi),$
$\ldots,$

$y_{n-1}-P_{n-1}(X, \xi),$ $y_{n}-\det(X),$ $y_{n+1^{-\det(\partial^{*})\rangle}}$

in the polynomial algebra $\mathbb{C}[x_{1}, \ldots, x_{m}, \xi_{1}, \ldots , \xi_{m}, y_{1}, \ldots, y_{n+1}]and\overline{\sigma(P)(x,\xi)}^{Gr}$

is the remainder(or normal form) of the polynomial $\sigma(P)(x, \xi)(=the$ prin-
cipal symbol of $P(x, \partial))$ on division by the Gr\"obner basis $Gr$

{(Input and Output)}
Input: $P(x, \partial)\in D(V)$

Output: $\{$

$Q(y_{1}, \ldots, y_{n+1})$ if $F(x, \partial)\in D(V)^{G^{1}}$

$\ell‘ P(x, \partial)$ is not $G^{1}$ -invariant.” if $P(x, \partial)\not\in D(V)^{G^{1}}$

$\{(initialization)\}$

$q:=the$ order of $P(x, \partial)$ ;
$Q:=0$ ;
$P:=P(x, \partial)$ ;

$\{(iteration)\}$

WHILE $q>0$ DO
$R:=\overline{\sigma(P)(x,\xi)}^{Gr}$ ;
IF $R\in \mathbb{C}[y_{1}, \ldots, y_{n+1}]$

THEN
$P:=P-R(P_{1}(x, \partial),$

$\ldots,$
$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*}))$ ;

$Q:=Q(y_{1}, \ldots, y_{n+1})+R(y_{1}, \ldots, y_{n+1})$ ;
$q:=the$ order of $P(x, \partial)i$

ELSE
$q:=- \mathit{1}$ ;

$FI,\cdot$

$OD_{i}$

$\{(result)\}$

IF $q=0$

THEN
$Q:=Q+P_{f}$.
RETURN$(Q)$ ;

ELSE
“

$P(x, \partial)$ is not $G^{1}$ -invariant.”
$FI,\cdot$

Algorithm 3.1 works well. We shall show the correctness of the program
below.
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Let $x=(x_{1}, \ldots, x_{m})$ and $\xi=(\xi_{1}, \ldots, \xi_{m})$ be the coordinates on $V$ and
$V^{*}$ , respectively. Here, $m= \frac{n(n+1)}{2}$ and $(x_{1}, \ldots, x_{m})$ is a suitable arrange-
ment of the entries of the matrix $x$ . Let $\partial=(\partial_{1}, \ldots, \partial_{m})$ be the partial
differential operators with respect to the coordinate $x=$ $(x_{1}, \ldots , x_{m})$ . The
differential operators $\partial$ have the commutation relations

$\partial_{j}x_{i}-x_{i}\partial_{j}=\delta_{ij}$

where $\delta_{ij}$ is the Kronecker’s delta.
For a given $P(x, \partial)\in D(V)^{G^{1}}$ , we suppose that it is written as

$P(x, \partial)=\sum_{\geq}a_{\alpha\beta}x^{\alpha}\partial^{\beta}\alpha,\beta\in \mathbb{Z}^{m_{0}}$

.

It is also written as

$P(x, \partial)=\sum_{k=0}^{q}P(x, \partial)_{k}$

with

$P(x, \partial)_{k}=\sum_{\alpha,\beta\in \mathbb{Z}_{\geq 0}^{m},|\beta|=k}a_{\alpha\beta}x^{\alpha}\partial^{\beta}$

.

We call the non-negative integer $q$ the order of $P(x, \partial),$ $P(x, \partial)_{q}$ the prin-
cipal part of $P(x, \partial)$ and the polynomial $P(x, \xi)_{q}$ on $V\cross V^{*}$ obtained by
exchanging $\xi$ and $\partial$ the principal symbol of $P(x, \partial)$ . We often denote by
$\sigma(P(x, \partial))$ or by $\sigma(P)(x, \xi)$ the principal symbol $P(x, \xi)_{q}$ .

We see below which result we obtain after carrying out the program for
an input $P(x, \partial)\in D(V)$ .

First, we substitute given $P(x, \partial)$ for $P$ , the order of $P(x, \partial)$ for $q$ and $0$ for
$Q$ in the initialization process. Then suppose first that $P(x, \partial)\in D(V)^{G^{1}}$ .
We repeat the following operations in the iteration process. Since $\sigma(P(x, \partial))$

is a $G^{1}$-invariant polynomial on $V\cross V^{*}$ ,
$R:=\overline{\sigma(P(x,\partial))}^{Gr}$

is a polynomial in $\mathbb{C}[y_{1}, \ldots, y_{n+1}]$ and
$\sigma(P(x, \partial))=R(P_{1}(x, \xi),$

$\ldots,$
$P_{n-1}(x, \xi),$ $\det(x),$ $\det(\xi^{*}))$

by Proposition $3.1^{3}$ . Then we substitute
$P(x, \partial)-R(P_{1}(x, \partial),$

$\ldots,$
$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*}))$ (14)

for $P$ and
$Q(y_{1}, \ldots, y_{n+1})+R(y_{1}, \ldots, y_{n+1})$ (15)

for $Q$ and then we substitute the order of $P(x, \partial)$ for $q$ . The order of (14)
is strictly less than that of $P(x, \partial)$ since the principal parts of $P(x, \partial)$ and
$r(P_{1}(x, \partial),$

$\ldots,$
$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*}))$ coincide with each other4. Then

3This is the first essential point of the algrithm.
4This is the second essential point of the algrithm.
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$q$ will be $0$ sometime after several repetition of the iteration process and then
escape from the process. Therefore the iteration process must stop after
finite steps of iteration. While we are carrying out the iteration process,
$P(x, \partial)$ is always in $D(V)^{G^{1}}$ and becomes the operator of order $0$ after all.

$Q(P_{1}(x, \partial),$
$\ldots,$

$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*}))$

$+P(P_{1}(x, \partial),$
$\ldots,$

$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*}))$

is invariant through the iteration process. In the result process, by substi-
tuting $Q:=Q+P$,

$Q(P_{1}(x, \partial),$
$\ldots,$

$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*}))$

coincides with the originally given $P(x, \partial)$ . This means that $Q(y_{1}, \ldots, y_{n+1})\in$

$\mathbb{C}[y_{1}, \ldots, y_{n+1}]$ is what we are seeking for.
Next we suppose first that $P(x, \partial)\not\in D(V)^{G^{1}}$ Then while we are repeat-

ing the operations in the iteration process, we will sometime encounter the
result

$R:=\overline{\sigma(P(x,\partial))}r\not\in \mathbb{C}[y_{1}, \ldots, y_{n+1}]$ .
Then the program escapes from the loop and stops by outputting the mes-
sage $(‘ P(x, \partial)$ is not $G^{1}$ -invariant”.

Thus we have proved that the algorithm works well. Algorithm 3.1 gives
one expression of $P(x, \partial)$ as an polynomial in $P_{1}(x, \partial),$

$\ldots,$
$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*})$ .

However, this expression is not unique. This is because the generators

$P_{1}(x, \partial),$
$\ldots,$

$P_{n-1}(x, \partial),$ $\det(x),$ $\det(\partial^{*})$

of $D(V)^{G^{1}}$ are not algebraically independent.
As a special case of Algorithm 3.1, we can give the same algorithm

to compute the polynomial expression of $P(x, \partial)\in D(V)^{G}$ in terms of
$P_{1}(x, \partial),$

$\ldots,$
$P_{n}(x, \partial)$ . However since

$D(V)^{G}=\mathbb{C}[P_{1}(x, \partial), \ldots, P_{n}(x, \partial)]$

the polynomial expression of $P(x, \partial)$ is unique.

Algorithm 3.2 (Writing in $D(V)^{G}$). The following is an algorithm to com-
pute a polynomial $Q(y_{1}, \ldots, y_{n})$ satisfying

$Q(P_{1}(x, \partial),$
$\ldots,$

$P_{n}(x, \partial))=P(x, \partial)$

for a given $P(x, \partial)\in D(V)^{G}$ . Here $Gr$ is the Gr\"obner basis of the ideal

$I:=\langle y_{1}-P_{1}(x, \xi), \ldots, y_{n}-P_{n}(x, \xi)\rangle$

in the polynomial algebra $\mathbb{C}[x_{1}, \ldots, x_{m}, \xi_{1}, \ldots, \xi_{m}, y_{1}, \ldots, y_{n}]and\overline{\sigma(P)(x,\xi)}^{Gr}$

is the remainder of the polynomial $\sigma(P)(x, \xi)$ on division by the Gr\"obner ba-
$sisGr$

79



{(Input and Output)}
Input: $P(x, \partial)\in D(V)$

Output: $\{$

$Q(y_{1}, \ldots, y_{n})$ if $P(x, \partial)\in D(V)^{G}$

$‘ {}^{t}P(x, \partial)$ is not $G$ -invariant.” if $P(x, \partial)\not\in D(V)^{G}$

$\{(initialization)\}$

$q:=the$ order of $P(x, \partial)$ ;
$Q:=0\rangle$.
$P:=P(x, \partial)$ ;

$\{(iteration)\}$

WHILE $q>0$ DO
$R:=\overline{\sigma(P)(x,\xi)}^{Gr}$ ;
IF $R\in \mathbb{C}[y_{1}, \ldots, y_{n}]$

THEN
$P:=P-R(P_{1}(x, \partial),$

$\ldots,$
$P_{n}(x, \partial))$ ;

$Q:=Q(y_{1}, \ldots, y_{n})+R(y_{1}, \ldots, y_{n})$ ;
$q:=the$ order of $P(x, \partial)j$

ELSE
$q:=- \mathit{1}$ ;

$FI,\cdot$

$OD$;
$\{(result)\}$

IF $q=0$

THEN
$Q:=Q+P$;
RETURN$(Q)$;

ELSE
$‘ {}^{t}P(x, \partial)$ is not G-invariant.”

$FI,\cdot$

We can prove that Algorithm 3.2 works well in the same way as the
proof of Algorithm 3.1. Algorithm 3.2 gives one expression of $P(x, \partial)$ as
an polynomial in $P_{1}(x, \partial),$

$\ldots,$
$P_{n}(x, \partial)$ . The expression is unique in this

case. This is because $P_{1}(x, \partial),$
$\ldots,$

$P_{n}(x, \partial)$ are algebraically independent
generators of $D(V)^{G}$ and $D(V)^{G}$ is isomorphic to the polynomial algebra
$\mathbb{C}[P_{1}(x, \partial), \ldots, P_{n}(x, \partial)]$ .
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