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1 Introduction
Suppose that we have an urn containing $m$ minus balls and $p$ plus balls in it, where

the value-l is attached to minus ball and the $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}+1$ to plus ball. We draw balls one
at a time randomly, without replacement until we wish to stop. We know the values of
$m$ and $p$ and are also allowed not to draw at all. Let $X_{k}$ be the value of the ball chosen
at the k-th draw, $1\leq k\leq m+p$, and define

$Z_{0}=0$ , $Z_{n}= \sum_{k=1}x_{k_{)}}n$ $1\leq n\leq m+p$ . (1.1)

$Z_{n}$ can be interpreted, for example, as a net gain we can earn if we choose to stop after
the n-th draw.

Figure 1 depicts a typical sample path of the process $\{Z_{n}\}^{m}n=0+p$ by connecting $Z_{k}$ and
$Z_{k+1}$ by a straight line when $m=6$ and $p=5$ . Each time a ball is drawn, we observe the

Fig 1
A sample path for $\{Z_{n}\}^{m}n=0+p$ when $m=6$ and $p=5$ .

value of the ball and decide either to stop or continue drawing. The objective of this paper
is to find a stopping policy that will maximize the probability of success. We consider
in Section 3 the problem where the trial is regarded as successful if we could attain the
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largest value of $\{Z_{n}\}^{m}n=0+p$ upon stopping. This is a problem posed by Sakaguchi in his
$\mathrm{p}\mathrm{a}\mathrm{p}\mathrm{e}\mathrm{r}[7]$ but left unsolved. In Section 4, we also consider the problem where the trial
is regarded as successful if we could attain the largest or the second largest vakue of
$\{Z_{n}\}^{m}n=0+p$ . On the sample path given in Figure 1, stopping at time 4 or 6 only leads to
success in Section 3, while stopping at time 3,5,7 or 9 also leads to success is the problem
treated in Section 4. In Section 2, we present as preliminaries some results on the ballot
problem, because they are crucial to our analysis.

$\mathrm{S}\mathrm{h}\mathrm{e}_{\mathrm{P}}\mathrm{p}[8]$ considered the optimal stopping problem related to the urn among other
things, but his main concerns were to examine what urns are fovourable. That is, for
what $m$ and $p$ is there a stopping policy that will make thte expected net gain positive ?
Boyce further studied the Shepp’s urn problem in [8] and generalized it to allow a prob-
ability distribution on $m$ (though the total number of balls $m+p$ in the urn is assumed
to be known) to analyze the bond-selling problem in [2].

2 Preliminaries
Before formulating our problems, we give several preliminary lemmas.

Lemma 2.1 (ballot problem) In an election, candidate $A$ receives $a$ votes and can-
didate $B$ receives $b$ votes where $a\geq b$ . If all orderings for counting the votes are equally
likely, then we have the following results.
(i) Let $P_{a,b}$ denote the probability that candidate $A$ will always lead (at least by one
vote) throughout the counting process. Then

$P_{a,b}= \frac{a-b}{a+b}$ .

(ii) Let $\overline{P}_{a,b}$ denote the probability that candidate $A$ never falls behind throughout the
counting process. Then

$\overline{P}_{a,b}=\frac{a+1-b}{a+1}$ .

Proof. These results are known under the name of the ballot problem. For a proof, see,
e.g., Karlin and $\mathrm{T}\mathrm{a}\mathrm{y}\mathrm{l}\mathrm{o}\mathrm{r}[5]$ ( $\mathrm{s}\mathrm{e}\mathrm{C}.13.2$ and problem 45, p.134).

Let $\{Z_{n}\}_{n}^{m+\mathrm{P}}=0$ be the process as defined in (1.1), and assume $m\geq p$ through this section
unless otherwise specified. Let $Q_{k}(m,p)$ denote the probability that $Z_{n}$ ever exceeds
$k(1\leq k\leq p)$ , that is,

$Q_{k}(m,p)=P_{r} \{_{1\leq\leq}\max_{nm+p}Zn\geq k\}$ .

Obviously $Q_{1}(m,p)=1-\overline{P}_{m,p}$ from the ballot problem. For general $k$ , we have the
following lemma.
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Lemma 2.2 For $1\leq k\leq p$ ,

$Q_{k}(m,p)= \frac{p(p-1)\cdots(p.-.k+1)}{(m+1)(m+2)\cdot(m+k)}$ .

Proof. See Karlin and $\mathrm{T}\mathrm{a}\mathrm{y}\mathrm{l}\mathrm{o}\mathrm{r}[5]$ (problems 46 and 48, p.135).

Define $T_{k}(m,p),$ $1\leq k\leq p$ , as the first time $Z_{n}$ attains $k$ , if any, that is,

$T_{k}(m,p)= \min\{n : Z_{n}=k, 1\leq n\leq m+p\}$ .

Obviously the possible values $T_{k}(m,p)$ can take are $k+2i$ for $i=0,1,$ $\cdots,p-k$ . If
we denote by $p_{j}^{(k)}(m,p)$ the probability mass function of $T_{k}(m,p)$ ,i.e., $p_{j}^{(k)}(m,p)=$

$P_{r}\{T_{k()}m,p=j\}$ , then this is given in the following lemma.

Lemma 2.3 For $1\leq k\leq p$ , the probability mass function of $T_{k}(m,p)$ is given by

$p_{2i+k}^{()}k(m,p)= \frac{k}{2i+k}\frac{(\begin{array}{l}mi\end{array})(\begin{array}{ll}p i+ k\end{array})}{(\begin{array}{l}m+pk2i+\end{array})}$ , $i=0,1,$ $\cdots,p-k$ .

Proof. $p_{2i+}^{(k)}k(m,p)$ can be obtained by first conditioning on the total number of minus
balls during the first $2i+k$ drawings. This yields

$p_{2i+k}^{()}(km,p)=P_{r}\{\tau_{k}(m,p)=2i+k|i$ minus balls and $i+k$ plus balls

Given that a total of $i$ minus balls during the first $2i+k$ drawings, it is easy to see
that all possible orderings of the $i$ minus balls and $i+k$ plus balls are equally likely and
thus the above conditional probability turns out to be $P_{i+k,i}$ from the ballot problem if
we trace the process going backwords in time. Thus the proof is completed. $j$

Remark: Lemma 2.3 is also valid for $m<p$ .

The following lemma gives two identities related to the probability mass function
$p_{j}^{(k)}(m,p)$ .

Lemma 2.4 For $1\leq k\leq p$ ,

(i) $\sum_{i=0}^{p-k}p_{2}^{()}ki+k(m,p)=\frac{p(p-1)\cdots(p.-.k+1)}{(m+1)(m+2)\cdot(m+k)}$

3



(ii) $i= \sum_{0}^{p-k}\frac{m+1+k-p}{m+1-i}\mathrm{P}_{2i+}(k)k(m,p)=\frac{p(p-1)\cdots(p-k.+1)(m+1+2k-p)}{(m+1)(m+2)\cdot\cdot(m+k)(m+k+1)}$ .

Proof. (i) The event that $Z_{n}$ ever exceeds the value $k$ can be broken up in terms of the
first time $Z_{n}$ attains the value $k$ , that is, the event $\{\max_{1\leq n\leq p}m+z_{n}\geq k\}$ is equivalent to
the event $\cup ip-k=0\{\tau_{k}(m,p)=2i+k\}$ . We have thus

$\sum_{i=0}^{p-k}p_{2ik}^{(}+(k)m,p)=Q_{k}(m,p)$ ,

which, combined with Lemma 2.2, yields (i).
(ii) $P_{r} \{\max_{1\leq}n\leq m+pZ_{n}=k\}$ can be expressed in two ways. One way is to express it in
terms of $Q_{k}(m,p)$ ;

$P_{r} \{_{1\leq}\leq\max_{nm+p}Zn=k\}$ $=$ $P_{r} \{_{1\leq}\leq\max_{nm+p}Zn\geq k\}-P_{r}\{_{1\leq}\leq\max_{nm+p}Zn\geq k+1\}$

$=$ $Q_{k}(m,p)-Qk+1(m,p)$ . (2.1)

Another expression can be obtained by conditioning on $T_{k}(m,p)$ as follows.

$P_{r} \{_{1\leq}\leq\max_{nm+p}Zn=k\}=\sum_{i=^{0}}^{p-k}Pr\{_{1\leq}\leq\max_{nm+p}Zn=k|T_{k}(m,p)=2i+k\}p_{2}^{(k}i+k()m,p)$. (2.2)

The $\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{V}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}$ probability is equivalent to the probability that, in an election
where candidate $A$ has $m-i$ votes (which correspond to minus balls) and candidate $B$

has $p-(i+k)$ votes (which correspond to plus balls), candidate $A$ never falls behind in
the counting until the last vote. Thus, from the ballot problem

$P_{r} \{_{1\leq\leq}\max_{nm+p}Zn=k|T_{k}(m,p)=2i+k\}=\overline{P}_{m-i,p-}-ik$ . (2.3)

Fkom $(2.1)-(2.3)$ , we now have the following identity;

$\sum_{i=0}^{p-k}\overline{P}_{m-i,p-kp_{2}^{(k)}}-ii+k(m,p)=Q_{k}(m,p)-Qk+1(m,p)$ ,

which, combined with Lemmas 2.1 and 2.2, yields (ii).

We further introduce a random variable $T(m,p)$ that represents the first time $Z_{n}$ becomes
non-negative, if any, namely

$T(m,p)= \min\{n:Z_{n}\geq 0, 1\leq n\leq m+p\}$ .
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$T(m,p)$ takes the values of 1, 2, 4, $\cdots,$ $2.p$ , and if we let $p_{j}(m,p)=P_{r}\{T(m,p)=j\}$ , this
is given in the following lemma.

Lemma 2.5 The probability mass function of $T(m,p)$ is given by

$p_{1}(m,p)$ $=$ $\frac{p}{m+p}$

$p_{2i}(m,p)$ $=$ $\frac{1}{2(2i-1)}\frac{(\begin{array}{l}mi\end{array})(\begin{array}{l}pi\end{array})}{(\begin{array}{l}m+p2i\end{array})}$, $i=1,2,$ $\cdots,p$ .

Proof. Omitted because the proof is similar to that given in Lemma 2.3.

The following lemma gives the identities related to $p_{j}(m,p)$ .

Lemma 2.6

(i) $\sum_{i=1}^{p}\frac{m+1-p}{m+1-i}p_{2}i(m,p)=\frac{p(m+2-p)}{(m+1)(m+p)}$

(ii) $\sum_{i=1}^{p}\frac{(m+2-p)(m+1+p-2i)}{(m+1-i)(m+2-i)}p_{2}i(m,p)=\frac{p(m+3-p)}{(m+1)(m+2)}$ .

Proof. Observe that, from Lemmas 2.3 and 2.5, $p_{2i+1}^{(1)}(m,p)$ can be expressed in terms
of $p_{2(i+1}$ ) $(m,p)$ as follows.

$p_{2i+1}^{()}1(m,p)= \frac{m+p-(2i+1)}{m-i}p2(i+1)(m,p)$ , $i=0,1,$ $\cdots,p-1$ .

Thus substituting these into (i) and (ii) of Lemma 2.4 (for $k=1$ ) yields the desired
results.

Remark: identity (i) can be found in Karlin and Taylor( $\mathrm{s}\mathrm{e}\mathrm{e}$ problem $47(\mathrm{i})$ , p.135).

3 Stopping at the largest
Suppose that we have drawn $k$ balls and recognized $Z_{1},$ $\cdots,$

$Z_{k}$ through the observed
values of $X_{1},$ $\cdots,$

$X_{k}$ . Also suppose that we know there still remain $m$ minus balls and
$p$ plus balls in the urn. If $Z_{k}< \max\{Z_{0}, Z_{1,2}\ldots z_{k}\}$ , we do not stop drawing because
$Z_{k}$ cannot be the largest among all. If $m<p$ , we do not stop drawing because drawing

all the remaining balls is better than stopping immediately. Thus the serious decision of

either stop or continue takes place only when $Z_{k}= \max\{z_{0}, z1, \cdots, zk\}$ and $m\geq p$ . Let

this state be described as $(m,p)$ regardless of $k$ because, as a bit of consideration shows,

5



the decision depends only on the remaining numbers of minus balls and plus balls in the
urn but not on the number of balls already drawn.

Let $v(m,p)$ be the probability of success starting from state $(m,p)$ , and let $s(m,p)$

and $c(m,p)$ be respectively the probability of success when we stop drawing and continue
drawing in an optimal manner in state $(m,p)$ ; then, from the principle of optimality,

$v(m,p)= \max\{S(m,p), c(m,p)\}$ , $m\geq p\geq 0$ , (3.1)

where
$s(m,p)=\overline{P}m,p$

’
$m\geq p\geq 0$ , (3.2)

and

$c(m,p)=p_{1}(m,p)v(m,p-1)+ \sum_{i=1}^{p}p2i(m,p)v(m-i,p-i)$ , (3.3)

for $m\geq p\geq 1$ with the boundary condition $c(m, 0)\equiv 0$ for $m\geq 0$ . $\mathrm{E}\mathrm{q}.(3.2)$ is immediate
from the ballot problem because we succeed only when stopping at the largest value of $z$ .
$\mathrm{E}\mathrm{q}.(3.3)$ follows because the time duration until the next decision epoch is distributed as
$T(m,p)$ and the state makes a transition into $(m,p-1)$ or $(m-i,p-i)$ with probability
$p_{1}(m,p)$ or $p_{2i}(m,p),$ $1\leq i\leq p$ .

Let $\tilde{c}(m,p)$ be the probability of success attainable by continuing drawing (starting
from state $(m,p))$ until the next decision epoch is reached and then stopping. Then, from
(3.3) and Lemma $2.6(\mathrm{i})$

$\tilde{c}(m,p)$ $=p_{1}(m,p)s(m,p-1)+ \sum_{i=1}^{p}p_{2}i(m,p)s(m-i,p-i)$

$=$ $\frac{p(m+2-p)}{(m+1)(m+p)}+\sum_{1i=}^{p}\frac{m+1-p}{m+1-i}p2i(m,p)$

$=$ $\frac{2p(m+2-p)}{(m+1)(m+p)}$ . (3.4)

Let $B$ be the stopping region derived by the one-stage look-ahead (OLA) stopping
policy, that is, the set of states for which stopping immediately is at least as good as
continuing one more transition and then stopping; then from (3.2) and (3.4),

$B$ $=$ $\{(m,p):s(m,p)\geq\tilde{c}(m,p)\}$

$=$ $\{(m,p) : m^{2}-(2p-1)m+p(p-3)\geq 0\}$

$=$ $\{(m,p):m\geq m^{*}(p)\}$ ,

where
$m^{*}(p)=p+ \frac{\sqrt{8p+1}-1}{2}$ . (3.5)

The following theorem states that the OLA stopping region $B$ in fact gives the optimal
stopping region.
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Theorem 3.1 The optimal policy stops drawing as soon as the state enters the set $B$ .

Proof. It is well known (see $\mathrm{R}\mathrm{o}\mathrm{s}\mathrm{s}[7]$ or Chow,Robbins and $\mathrm{Z}\mathrm{i}\mathrm{e}\mathrm{g}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{d}[4]$ ) that the region
$B$ becomes the optimal stopping region if $B$ is closed in a sense that once the state enters
$B$ , then the process never leaves $B$ . To show that $B$ is closed, it suffices to show that if
$(m,p)\in B$ then $(m,p-1)\in B$ and $(m-i,p-i)\in B$ for $1\leq i\leq p$ . This property is
immediate from the easily verifiable fact that $m^{*}(p+1)-m(*p)\geq 1$ .

Let PS$(m,p)$ denote the probability of success when we start with an urn having $m$

minus balls and $p$ plus balls. Then we have

Corollary 3.2

PS$(m,p)=$

’

$v(m,p)$ , if $m\geq p$

$\backslash \sum_{i=0}^{m}p2i+p-m((p-m))m,pv(m-i, m-i)$ , if $m<p$ .

Proof. Obviously if $m\geq pPS(m,p)=v(m,p)$ from the definition. If $m<p$ , we must
at any rate continue drawing until the remaining number of minus balls equals that of
plus balls and so the result follows from the remark of Lemma 2.3. Before concluding this
section, we give some comments on the asymptotics of the problem. We easily see the
following result from (3.5).

The following asymptotic result is immediate from (3.5).

Corollary 3.3
$\lim_{parrow\infty}\frac{m^{*}(p)-p}{\sqrt{2p}}=1$ . (3.6)

As mentioned before, $\mathrm{S}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{p}[8]$ considered the similar urn problem with the objective
of maximizing the expected net gain. Shepp shows that there exists $m^{**}(p)$ , a non-
decreasing function of $\mathrm{p}$ , such that when the remaining numbers of minus balls and plus

balls in the urn are $m$ and $p$ respectively, then the optimal policy stops drawing if and
only if $m\geq m^{**}(p)$ . In addition Shepp derived

$\lim_{parrow\infty}\frac{m^{**}(p)-p}{\sqrt{2p}}=\alpha$ , (3.7)

where $\alpha\approx 0.83992\cdots$ is the unique root of the integral equation

$(1- \alpha^{2})\int_{0}^{\infty}\exp\{\alpha x-\frac{x^{2}}{2}\}dx=\alpha$ .
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Comparison between (3.6) and (3.7) shows that the optimal stopping region of our problem
becomes narrower than that of Shepp’s problem asymptotically.

The process $\{Z_{n}\}^{m}n=0+p$ defined in (1.1) can be approximated as a Brownian bridge process
if we let $m$ and $p$ tend to infinity in an appropriate way. Fix $m$ and $p$ , and define, for
$0\leq n\leq m+p$ and $n<(m+p)t\leq n+1$

$W_{m,p}(t)= \frac{Z_{n}}{\sqrt{m+p}}$ , $0\leq t\leq 1$ .

Let $u$ be defined by

$u= \frac{m-p}{\sqrt{m+p}}$ .

Then $W_{m,p}(1)=-u$ and if $u$ is fixed, $W_{m,p}(t)$ converges in distribution as $parrow\infty$ to $W(t)$

the Brownian bridge process pinned $\mathrm{t}\mathrm{o}-u$ at $t=1$ (see Shepp, p.1001).
Suppose that we have just observed $Z_{n}= \max_{0\leq j\leq}nZ_{j}$ at time $n$ . Then from Theorem

3.1 we stop drawing if

$m- \frac{n-Z_{n}}{2}\geq m^{*}(p-\frac{n+Z_{n}}{2})$

or equivalently

$\frac{Z_{n}}{\sqrt{m+p}}\geq\sqrt{1-\frac{n-1}{m+p}}-\frac{m-p+1}{\sqrt{m+p}}$ .

Thus asymptotically the optimal policy $\tau^{*}$ can be described as

$\tau^{*}=\min\{t$ : $\max W$$0\leq s\leq t(S)\geq\sqrt{1-t}-u\}$ ,

and the asymptotic success probability $V(u)$ is expressed as

$V(u)=P_{r} \{W(\tau^{*})=\max_{0\leq t\leq 1}W(t)\}$ .

Solving this asymptotic problem is left for a future study.

4 Stopping at the largest or the second largest

Suppose that we have just observed $Z_{1},$ $\cdots,$
$Z_{k}$ and that we know that the urn contains

$m$ minus balls and $p$ plus balls. Since the objective is now to maximize the probability

of attaining either the largest or the second largest value of $\{Z_{n}\}^{m}n=0+p$ , serious decision of

stop or continue takes place only when $Z_{k} \geq\max\{Z_{0}, Z_{1}, \cdots , Z_{k}\}-1$ and $m+1\geq p$ .

We denote this state by $(m,p ; 1)$ or $(m,p ; 2)$ regardless of $k$ , distinguishing between
$Z_{k}= \max\{z_{0}, z1, \cdots, zk\}$ and $Z_{k}= \max\{z_{0}, z_{1}, \cdots, zk\}-1$ .
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Let $v_{i}(m,p),$ $i=1,2$ , be the probability of success starting from state $(m,p ; i)$ , and
let $s_{i}(m,p)$ and $c_{i}(m,p)$ be respectively the probability of success when we stop drawing
and continue drawing in an optimal manner in state $(m,p;i)$ ; then, from the principle of
optimality,

$v_{i}(m,p)= \max${ $S_{i}(m,p),$ ci $(m,p)$ }, $m+1\geq p$ , $i=1,2$ , (4.1)

where
$s_{1}(m,p)=s2(m,p)= \frac{(m+1+p)(m+2-p)}{(m+1)(m+2)}$ , $m+1\geq p$ , (4.2)

$c_{1}(m,p)= \frac{p}{m+p}v_{1}(m,p-1)+\frac{m}{m+p}v_{2}(m-1,p)$ , (4.3)

and
$c_{2}(m,p)=p_{1}(m,p)v1(m,p-1)+ \sum_{\mathrm{i}=1}^{p}p_{2i}(m,p)v_{2}(m-i,p-i)$, (4.4)

for $m+1\geq p\geq 1,$ $m\geq 1$ with the boundary conditions $c_{1}(0,0)=0,$ $c_{1}(\mathrm{o}, 1)--C1(m, 0)=1$

for $m\geq 1$ and $c_{2}(0,1)=1,$ $c_{2}(m, \mathrm{o})=0$ for $m\geq 0$ . $\mathrm{E}\mathrm{q}.(4.2)$ follows from Lemma 2.2
since $s_{1}(m,p)=s_{2}(m,p)=1-Q_{2}(m,p)$ . $\mathrm{E}\mathrm{q}.(4.3)$ is immediate and $\mathrm{E}\mathrm{q}.(4.4)$ is obtained
in a similar way as $\mathrm{E}\mathrm{q}.(3.3)$ was obtained.

Assume that we choose to continue drawing in state $(m,p;1)$ when $s_{1}(m,p)=c_{1}(m,p)$ .

Then, as the next lemma shows, we never stop in state $(m,p;1)$ except for the last stage.

Lemma 4.1 For $m+1\geq p$ (except for $m=p=0$),

$c_{1}(m,p)\geq s_{1}(m,p)$ .

Proof. This lemma holds for $p=0$ because $c_{1}(m, 0)\equiv 1$ for $m\geq 1$ . For $p\geq 1$ , we have

from (4.3) and (4.2)

$c_{1}(m,p) \geq\frac{p}{m+p}s_{1}(m,p-1)+\frac{m}{m+p}S2(m-1,p)=s1(m,p)$,

which completes the proof.

From Lemma 4.1, we are only concerned with the optimal decision in state $(m,p ; 2)$ .

The following lemma attempts to express $c_{2}(m,p)$ in terms of $v_{2}$ .

Lemma 4.2

$c_{2}(m,p)= \sum_{0}^{1}pi=-\{(\frac{m}{m+i})\prod_{j=i+1}^{p}(\frac{j}{m+j})\}v_{2}(m-1, i)+\sum_{=i1}^{p}p_{2i}(m,p)v_{2}(m-i,p-i)$ .

Proof. From Lemma 4.1, Eqs.(4.3) and (4.4) are reduced to

$c_{1}(m,p)= \frac{p}{m+p}c_{1}(m,p-1)+\frac{m}{m+p}v2(m-1,p)$, (4.5)
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and

$c_{2}(m,p)=p_{1}(m,p)C1(m,p-1)+ \sum_{i=1}^{p}p2i(m,p)v_{2}(m-i,p-i)$ (4.6)

respectively. Then, since the repeated use of (4.5) yields

$c_{1}(m,p)=i=0 \sum^{p}\{(\frac{m}{m+i})\prod_{j=i+1}^{p}(\frac{j}{m+j})\}v_{2}(m-1, i)$ ,

substituting this form into (4.6) gives the desired result.

Let $\tilde{c}_{2}(m,p)$ be the probability of success attainable by continuing drawing (starting
from state $(m,p ; 2)$ until the next decision epoch is reached and then stopping. Then,
from Lemma 4.2

$\tilde{c}_{2}(m,p)=p-1\sum_{i=0}\{(\frac{m}{m+i})\prod_{j=i+1}^{p}(\frac{j}{m+j})\}s_{2}(m-1, i)+\sum p2i(m,p)s2(m-i,p-ii=1p),$ $(4.7)$

which can be further simplified as follows.

Lemma 4.3

$\tilde{c}_{2}(m,p)=\frac{2p(m+3-p)}{(m+1)(m+2)}$ .

Proof. We have from (4.2) and Lemma 2.6 (ii)

$\sum_{i=1}^{p}p2i(m,p)s_{2}(m-i,p-i)=\frac{p(m+3-p)}{(m+1)(m+2)}$ . (4.8)

Thus, from (4.7) and (4.8), to prove the lemma it suffices to show

$\sum_{i=0}^{p-1}\{(\frac{m}{m+i})\prod_{j=i+1}^{p}(\frac{j}{m+j})\}s_{2}(m-1, i)=\frac{p(m+3-p)}{(m+1)(m+2)}$ . (4.9)

We show the validity of (4.9) by induction on $p$ . Let the left side of (4.9) be denoted by
$f(p)$ , that is,

$f(p)= \sum_{i=}^{p}-01B_{i}(p)$ ,

where

$B_{i}(p)$ $=$ $\{(\frac{m}{m+i})\prod_{j=i+1}^{p}(\frac{j}{m+j})\mathrm{I}^{S_{2}(}m-1,$ $i)$

$=$ $( \frac{m+1-i}{m+1})\frac{p!(m+i)}{i!(m+p)}!.$ .
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For $p=1,$ $(4.9)$ holds because $f(1)=B_{0}(1)= \frac{1}{m+1}$ .
Assume

$f(p-1)= \frac{(p-1)(m+4-p)}{(m+1)(m+2)}$

from the induction hypothesis. Then considering $B_{i}(p)=( \frac{p}{m+p})B_{i}(p-1)$ , we have

$f(p)$ $= \sum_{i=0}^{p-}1(\frac{p}{m+p})B_{i}(p-1)$

$=$ $( \frac{p}{m+p})[f(p-1)+B_{p}-1(p-1)]$

$=$ $( \frac{p}{m+p})[\frac{(p-1)(m+4-p)}{(m+1)(m+2)}+\frac{m+2-p}{m+1}]$

$=$ $\frac{p(m+3-p)}{(m+1)(m+2)}$ ,

which completes the induction.

Let $B$ be the stopping region derived by the OLA stopping region. Then, from (4.2)

and Lemma 4.3,

$B$ $=$ $\{(m,p;2) : s_{2}(m,p)\geq\tilde{C}_{2}(m,p)\}$
$.\cdot\vee$

$=$ $\{(m,p;2) : (m+1)^{2}-(2p-1)(m+1)+p(p-3)\geq 0\}$

$=$ $\{(m,p;2):m\geq m^{*}(p)-1\}$ ,

where $m^{*}(p)$ is given in (3.5).

Theorem 4.4 The optimal policy stops drawing as soon as the state $(m,p ; 2)$ enters

the set $B$ .

Proof. From the construction of $B$ , it is easy to see that, if $(m,p;2)\in B$ , then $(m-$

$1,$ $i-1$ ; $2$ ) $\in B$ and $(m-i,p-i ; 2)$ $\in B$ for $1\leq i\leq p$ . Thus $B$ proves to be closed

and hence becomes the optimal stopping region since, from Lemma 4.2, the next possible

state that the process can visit after leaving state $(m,p;2)$ is either ($m-1$ , i–l ; 2) or

$(m-i,p-i ; 2)$ for $1\leq i\leq p$ .

Let PS$(m, n)$ denote the probability of success when we start with the urn having $m$

minus balls and $p$ plus balls. Then we have

PS$(m, n)=\{$

$v_{1}(m,p)$ , if $m+1\geq p$

$\sum_{i=0}^{m}p^{(}2i+\mathrm{p}-m-1(p-m-1))m,pv_{1}(m-i,, m+1-i)$ , if $m+1<p$ .
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The problem considered in this section can be further generalized to stop at one of $r$

largest. That is, the trial is regarded as successful if we could attain either largest, 2nd
largest, $\cdots$ , or $r\mathrm{t}\mathrm{h}$ largest of $Z_{n}$ upon stopping. Though we omit the detail, we can show
(in a similar manner as in Lemma 4.1) by using an easily verifiable identity

$Q_{k}(m,p)= \frac{p}{m+p}Qk(m,p-1)+\frac{m}{m+p}Qk(m-1,p)$

that the optimal policy never stops drawing except for the last stage if the observed value
is ith largest$(1\leq i<r)$ . Consequently the serious decision of either stop or continue
takes place only when the observed value is relatively $r\mathrm{t}\mathrm{h}$ largest.
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