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Abstract

In Saito [8] it is revealed that in an optimal stopping problem where any offer is allowed
to be reserved in exchange for some cost and each reservation is valid indefinitely after the
contract, any reserved offer should not be recalled except at the deadline of the planning
horizon. It fails to account, however, that what condition makes the action of reservation
economically meaningful. On account of this we shall explore the condition in this paper.

1. Introduction
This paper presents some additional results to the author [8], dealing with optimal stopping

problem with infinite-period reservation. In order to understand the so-called optimal stopping
problem, consider the following example:

Suppose that you would like to dispose of a house by a certain date in the future (the deadline)
and that you have just found a buyer. The offer of the buyer seems pretty good but you reject it on
account that you feel you could find a better deal within the periods remaining. If you continually
repeated such rejections and reached the deadline, you would face a dire situation where the offer
of the buyer just found is too low while you may have no choice but to sell to him. However, if a
too low selling price is accepted early in the time frame because of the fear of the dire situation,

there is every chance that better buyers who may have appeared later would be missed. To avoid
these two extremes, you should have a rule to guide to the best action on a daily basis.

To sum up, optimal stopping problem is a problem of when and how to make a decision to
maximize the expected reward in the situation where an offer has to be taken among ones appearing
subsequently and randomly up to the deadline. We easily notice that the question whether or not
a rejected offer will become available again in the future dominates the structure of the optimal
decision rule. In view of this point, almost all models investigated so far are classified into three
types: Without recall type$([2][4])$ , in which every offer once rejected is supposed to disappear
instantly and become unavailable forever, thus at any point in time, the offer found recently is
only the offer available then. With recall type$([7][10])$ , in which every rejected offer is supposed
to stay there forever, thus at any point in time, all the offers having appeared up to then remain
available. With uncertain recall type$([1][3])$ , in which the future availability of a rejected offer
is supposed to be determined by a certain probability, thus at any point in time, it is uncertain
whether an offer available then remains available at the next point in time.

What to be emphasized here is that, in these three types, the future availability of an offer
appearing in the past is determined independently of the will of the decision maker. In other
words, little attention has been given to the question of what happens if the decision maker himself
can control the availability, or reserve an opportunity, in exchange for a certain compensation.
Rose [5] [6] and the author [8] [9] tried to answer this question. In Rose [6] each offer is allowed to

be reserved for $k$ periods in return for a cost $bk$ with a given $b>0$ where only one offer can be
reserved at any point in time and it is prohibited to renew the reservation of an offer at the time

of its maturity. A similar model is treated in Rose [5] where $k=1$ and renewals are permitted.
In the author [8] [9] any offer is allowed to be reserved if some cost is payed. The term of validity

of reservation is not considered in [8] and is restricted to $k$ periods in [9].
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As stated earlier, in this paper we shall research the model which is the same as that dealt
with in [8]. A major result obtained in [8] is that you should not recall any reserved offer prior to
the deadline. Optimal behavior against reserved offers was revealed, however, the condition for
reservation was not treated. So, in this paper, we will try to reveal the condition which makes
action of reservation economically meaningful.

The model and the optimal equation is formulated in sections 2 and 3, respectively. In section
4, we introduce some mathematical results obtained in Saito [8] and show some other results. The
main topic of the paper, the condition for reservation, is dealt with in section 5.

2. Model
Consider a person who periodically searches for offers with the intention to accept one of them

up to the deadline. The searcher can find one offer at each time as long as a search cost $s>0$
was paid at the previous time, however, he does not know in advance what offer will come up.
The only information available is that values of subsequent offers $w,$ $w’,$ $w”,$ $\cdots$ are i.i.d. random
variables following a distribution function $F$ such that $F(w)=0$ for $w<a,$ $0<F(w)<1$ for
$a\leq w<b$ , and $F(w)=1$ for $b\leq w$ with $0\leq a<b<\infty$ . Let the expectation of values of offers
be denoted by $\mu$ .

After inspecting the offer just drawn, the current offer, he must decide his next action. As for
the current offer, he is allowed not only to accept it or pass it up but also to reserve it. Reserving
an offer with value $w$ , simply called offer $w$ later on, gives him a right to recall and accept it
at any time in the future, but requires him to pay a reserving cost $r(w)$ , which is a positive,
continuous, and nondecreasing function of $w$ . On the other hand, he can never return to any of
non-reserved offers in the future. Note here that although any reserved offer is recallable at each
time, the reserved offer to be recalled is only the most lucrative one. Let such reserved offer be
called leading offer.

Then, the actions which can be taken at each time except for the deadline are classified into
the following four: accepting current offer and stopping the search (AS), reserving current offer
and continuing the search $(\mathrm{R}\mathrm{C})$ , passing up current offer and stopping the search by accepting
leading offer (PS), and passing up current offer and continuing the search $(\mathrm{P}\mathrm{C})$ , where AS, $\mathrm{R}\mathrm{C}$ , PS,
and PC represent the four decisions, respectively. Of course, at the deadline, only decisions AS and
PS are permitted.

In the model, the value of time is considered by a discount factor $\beta$ such as $0<\beta\leq 1$ , that is,
the present value of $q$ monetary units obtained at the next time is given by $\beta q$ monetary units.

The objective here is to find an optimal decision rule that guides him to which action should
be taken at each decision point so as to maximize the total expected discounted present net profit
obtainable in the process ahead, that is, the expectation of the present discounted value of an
accepted offer minus that of the amount of search costs and reserving costs paid over the periods
from the present point in time to the termination of the search by accepting an offer.

Consequently, at each time, leading offer is the offer with the highest value of all offers reserved
up to the previous time.

Finally, for later discussion, we let

$\alpha\equiv-s+\beta\mu>a$ . (2.1)

By noting that $\alpha$ represents the expected discounted net profit attainable from one more search
and that $a$ is the worst value of offers, we can understand that if $\alpha\leq a$ , no one is willing to engage
in the search process. Not only intuitively but also theoretically we find that the relationship
$\alpha\leq a$ reduces the the optimal decision rule to a trivial form as follows: “as soon as you start the
search, you should stop it by accepting an offer you first draw” (see p.98 in Saito [8]).
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3. Optimal Equation and Optimal Decision Rule
Let points in time $t$ , simply referred to as time $t$ later on, be equally spaced and numbered

backward from the deadline $t=0$ , thus $t$ also represents the number of periods remaining.
Let $u_{t}(w, x)$ denote the maximum total expected present discounted net profit attainable by

starting the search for offers from time $t$ with having current offer $w$ and leading offer $x$ . Then,

$u_{t}(w, x)= \max\{w, -r(w)-s+\beta v_{t-1}(\max\{w, x\}), x, -S+\beta v_{t-1}(x)\}$ , $t\geq 0$ ,

where $v_{t}(x)= \int_{a}^{b}u_{t}(w, x)\mathrm{d}F(w)$ for $t\geq 0$ and $v_{-1}(x)=-\infty$ .
However, we easily obtain that, for any $w,$ $x$ , and $t\geq 0$ ,

$\max\{w, -r(w)-s+\beta v_{t-1}(\max\{w, x\}), x, -S+\beta v_{t1}-(x)\}$

$= \max\{w, -r(w)-s+\beta v_{t-1}(w), x, -S\backslash +\beta v_{t-1(}x)\}$ . (3.1)

Furthermore, the left-hand side of (3.1) is maximized by the first term in its braces if and only
if the right-hand side of (3.1) is maximized by the first term in its braces, and this relationship
holds also with respect to the second, third, and fourth terms, respectively. These results are
interpreted intuitively as that we have no need to reserve an offer if its value is less than that of
leading offer because every reserved offer is recallable at any time in the future.

Owing to the facts above we redefine $u_{t}(w, x)$ as

$u_{t}(w, x)= \max$ , $t\geq 0$ , (3.2)

and $v_{t}(x)$ , by using the redefined $u_{t}(w, x)$ , as

$v_{t}(x)= \int_{a}^{b}u_{t}(w, x)\mathrm{d}F(w)$ , $t\geq 0$ ; $v_{-1}(x)=-\infty$ . (3.3)

Then, $u_{0}(w, x)= \max\{w, x\}$ , which indicates decisions RC and PC are prohibited at the deadline.
Let us define two functions $z_{t}^{O}(X)$ and $z_{t}^{r}(w)$ as follows:

$z_{t}^{O}(x)= \max\{x, -S+\beta v_{t-1(}x)\}$ , $t\geq 0$ , (3.4)

$z_{t}^{r}(w)= \max\{w, -r(w)-s+\beta v_{t-1}(w)\}$ , $t\geq$

.
$0$ . (3.5)

Clearly $z_{0(}^{O}X$ ) $=x$ and $Z_{0}^{r}(w)=w$ . Since $z_{t}^{O}(x)$ consists of the third and fourth terms in braces
of (3.2), it represents the total expected present discounted net profit attainable by passing up
current offer $w$ at time $t$ and following the optimal decision rule after that time. Similarly, $z_{t}^{r}(w)$

can be interpreted as the total expected present discounted net profit attainable by not passing
up current offer $w$ , that is, either accepting or reserving it at time $t$ and following the optimal
decision rule after that time.

Accordingly, the set of offers to be either accepted or reserved at time $t$ can be expressed by

$W_{t}(x)\equiv\{w|z_{t}^{o}(X)\leq z_{t}^{r}(w)\}\subseteq \mathbb{R}$ , $t\geq 0$ . (3.6)

All these things make it clear that

$v_{t}(x)= \int_{a}^{b}\max\{z_{t}^{r}(w), Z^{O}(X)\}t\mathrm{d}F(w)$ (3.7)

$= \int_{W_{t}(x)}z_{t}^{r}(w)\mathrm{d}F(w)+\int_{W_{t}(x)^{c}}Z^{O}(x)\mathrm{d}t(Fw)$ . (3.8)
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Let $\theta_{t}$ denote the number of $x$ which equates the two terms in braces of (3.4) and let $\lambda_{t}$ denote
the number of $w$ which equates the two terms in braces of (3.5), if they exist. As their definition,
$\theta_{t}$ is a point of indifference between accepting leading offer $x$ (decision PS) and continuing the
search (decision $\mathrm{P}\mathrm{C}$), and $\lambda_{t}$ is a point of indifference between accepting current offer $w$ (decision
AS) and reserving it (decision $\mathrm{R}\mathrm{C}$).

Rom what has seen above, the optimal decision rule can be generally described as follows:

Optimal decision rule: Suppose that you are at time $t$ with leading offer $x$ and have just
drawn an offer $w$ . Then the optimal choices are:

(a) if $w\in W_{t}(x)$ , then:

$\bullet$ if $\lambda_{t}<w$ , AS (accept current offer $w$ and stop the search),
$\bullet$ if $w\leq\lambda_{t}$ , RC (reserve current offer $w$ and continue the search);

(b) if $w\not\in W_{t}(x)$ , then:

$\bullet$ if $\theta_{t}<x$ , PS (pass up current offer $w$ and stop the search by accepting leading offer $x$ ),
$\bullet$ if $x\leq\theta_{t}$ , PC (pass up current offer $w$ and continue the search).

4. Fundamental Properties of Optimal Decision Rule
In this section, we first pick up some properties with respect to $v_{t}(x),$ $Z_{t}^{O}(X),$ $z_{t}^{r}(w),$ $\theta_{t},$ $\lambda_{t}$ , and

$W_{t}(x)$ from Saito [8], and then show some other properties of them.
First of all, let $\theta$ denote a root of equation

$\beta\int_{a}^{b}\max\{w, x\}\mathrm{d}p(w)-x-s=0$

where it can be shown that $\theta$ exists uniquely with $\alpha\leq\theta<b$ (see Saito [8]).

Lemma 4.1 For $t\geq 0$ :

(a) $v_{t}(x)$ is continuous, convex, and nondecreasing in $x$ ; and nondecreasing in $t$ .

(b) $\beta v_{t}(x)-x$ is strictly decreasing in $x$ .

Proof: See Lemma 4.1 in Saito [8]. 1

Lemma 4.2 For $t\geq 1$ :

(a) $\theta_{t}$ exists uniquely with $\alpha\leq\theta_{t}<b$ and satisfies $\theta_{t}=\theta$ .

(b) $\lambda_{t}$ exists uniquely with $\lambda_{t}<\theta$ and is nondecreasing in $t$ .

Proof: See Lemma 5.1 and Theorem 5.3 in Saito [8]. 1

The lemma above indicates $\lambda_{t}<\theta_{t}=\theta$ for $t\geq 1$ , and the relationship tells us that, at each
time except for the deadline, any offer to be reserved has value under $\theta$ , thus there comes no
leading offer with value over $\theta$ . Therefore, we conclude that no reserved offer should be recalled
except at the deadline.

In the model it is allowed to recall the leading offer at any time over the whole planning
horizon, and a search cost $s>0$ must be spent in order to proceed the search. So, it seems
natural to think that recalling the leading offer in the middle of the search can become an optimal
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decision. The result above, however, tells that such an action is not optimal at all. Consequently,
we conclude that the aim of reserving an offer is only to avoid any dire situation which may be
awaiting at the deadline.

By virtue of Lemma $4.2(\mathrm{a})$ , we use $\theta$ instead of $\theta_{t}$ from now on.

Lemma 4.3 For $t\geq 1$ :

(a) $z_{t}^{O}(_{X)}=\{$

$-s+\beta vt-1(X)$ , $x<\theta$ ,
$-s+\beta v_{t-}1(_{X)x}=,$ $x=\theta$ ,

$x$ , $\theta<x$ .

(b) $z_{t}^{r}(w)=$ $w<\lambda_{t}w=\lambda_{t}<w\lambda_{t},’$

.

Proof: See Corollary 5.2 in Saito [8]. 1

Lemma 4.4 For $t\geq 0$ :

(a) $W_{t}(x_{1})\supseteq W_{t}(x_{2})$ for any $x_{1}$ and $x_{2}$ such that $x_{1}<x_{2}$ .

(b) $W_{t}(x)\supseteq W_{t+1}(x)$ for any $x$ .

Proof: See Theorem 5.4 in Saito [8]. 1

Lemma 4.5 $v_{t}(x)-Vt-1(x)$ is nonincreasing in $x$ for $t\geq 1$ .

Proof: We shall first show the assertion for $\theta\leq x$ . Choose $x$ so that $\theta\leq x$ . Then, due to
Lemma $4.3(\mathrm{a})$ we have $z_{t}^{O}(X)=x$ .

If $w\leq\lambda_{t}$ , then $w<\theta$ by Lemma $4.2(\mathrm{b})$ , thus it follows from Lemmas $4.3(\mathrm{b},\mathrm{a})$ and 4.1(a) that

$z_{t}^{r}(w)=-r(w)-S+\beta v_{t}-1(w)\leq-r(w)-s+\beta v_{t}-1(\theta)=-r(w)+\theta<\theta$ . (4.1)

If $\lambda_{t}<w$ , Lemma $4.3(\mathrm{b})$ indicates $z_{t}^{r}(w)=w$ . From this and (4.1) we obtain $z_{t}^{r}(w)\leq\theta\leq x$ for
any $w$ and $x$ while $w\leq\theta\leq x$ .

Therefore, it follows from (3.7) that, for $\theta\leq x$ and $t\geq 1$ ,

$v_{t}(x)= \int^{b}a)\max\{z_{t}(r)w, x\}\mathrm{d}F(w=\int a\theta bx\mathrm{d}F(w)+\int_{\theta}\max\{w, X\}\mathrm{d}F(w)=\int_{a}b)\max\{w, X\}\mathrm{d}F(w$ .

From this and $v_{0}(x)= \int_{a}^{b}\max\{w, x\}\mathrm{d}F(w)$ , we conclude that $v_{t}(x)-Vt-1(x)=0$ holds for $\theta\leq x$ ,

thus the assertion holds true for $\theta\leq x$ .
Next, in order to prove the assertion for $x\leq\theta$ , choose $x^{1}$ and $x^{2}$ so that $x^{1}<x^{2}\leq\theta$ and let

$W_{1}=W_{t}(x^{1})$ and $W_{2}=W_{t}(x^{2})$ . Then, from (3.8) we get

$v_{t}(x^{1})= \int_{W_{1}}z_{t}^{r}(w)\mathrm{d}F(w)+\int_{W_{1}^{c}}Z_{t}^{o}(x)\mathrm{d}1F(w)$ , (4.2)

$v_{t}(x^{2})= \int_{W_{2}}z_{t}^{r}(w)\mathrm{d}F(w)+\int_{W_{2}^{\mathrm{c}}}z_{t}(_{X}O2)\mathrm{d}F(w)$. (4.3)
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Since $W_{1}\supseteq W_{2}$ due to Lemma $4.4(\mathrm{a})$ , we have $W_{1}=W_{2}\cup(W_{1}\cap W_{2}^{c})$ and $W_{2}^{C}=W_{1}^{C}\cup(W_{1}\cap W_{2}^{C})$ .
Hence, due to (4.2) and (4.3) we obtain

$v_{t}(x^{2})-vt(x1)= \int_{W_{1}^{c}}(z_{t}(Ox^{2})-z(tx^{1})O)\mathrm{d}F(w)+\int_{W_{1}\cap W_{2}}c(Z_{t}^{o}(X^{2})-z^{r}t(w))\mathrm{d}F(w)$ . (4.4)

From (3.6) we have $z_{t}^{O}(X^{1})\leq z_{t}^{r}(w)$ for any $w\in W_{1}$ , thus
$z_{t}^{O}(X)2-z_{t}(rw)\leq z_{t}^{O}(_{X}2)-z_{t}^{O}(x^{1})$ , $w\in W_{1}\cap W^{\mathrm{C}}2(\subseteq W_{1})$ . (4.5)

It follows $\mathrm{h}\mathrm{o}\mathrm{m}$ Lemma $4.3(\mathrm{a})$ that if $x^{1}<x^{2}\leq\theta$ , then

$z_{t}^{O}(x^{2})-\mathcal{Z}(tx)\mathit{0}1=-S+\beta v_{t-1(x)}2+s-\beta v_{t1}-(X^{1})=\beta(v_{t-1}(x^{2})-v_{t-}1(x^{1}))$ . (4.6)

Hence, by using (4.4) to (4.6) we arrive at

$v_{t}(x)2-vt(X^{1}) \leq\int_{W_{1}^{\mathrm{c}}}(\mathcal{Z}_{t}(_{X)-Z_{t}(X)}O2\mathit{0}1)\mathrm{d}F(w)+\int_{W_{1}\cap W_{2}^{\mathrm{C}}}(Z_{t}(O)X^{21}-Z_{t}^{o}(X))\mathrm{d}F(w)$

$=(z_{t}^{O}(_{X^{2}})-z^{o}t(x)1) \int_{W_{2}^{c}}\mathrm{d}F(w)$

$= \beta(v_{t-}1(X)2-v_{t}-1(x^{1}))\int_{W_{2}^{c}}\mathrm{d}F(w)$

$\leq v_{t-1}(_{X^{2})-}v_{t-}1(x^{1})$ ,

from which $v_{t}(x^{1})-v_{t}-1(x^{1})\geq v_{t}(x^{2})-v_{t}-1(x^{2})$ .

We have confirmed the assertion as for $x\leq\theta$ , thus the proof is completed. I

Lemma 4.6 For any $c$ such that $a\leq c\leq b$ ,

$\int_{a}^{b}\max\{\xi, C\}\mathrm{d}F(\xi)=\mu+\int_{a}^{c_{F(\xi}})\mathrm{d}\xi$ .

Proof: For any $c$ with $a\leq c\leq b$ we have

$\int_{a}^{b}\max\{\xi, C\}\mathrm{d}F(\xi)=\int_{a}^{\mathrm{c}_{C\mathrm{d}}}F(\xi)+\int_{c}^{b}\xi \mathrm{d}F(\xi)$ . (4.7)

As for the first integral in the right-hand side of (4.7), since $F(a)=0$ ,

$\int_{a}^{\mathrm{c}_{C\mathrm{d}}}F(\xi)=c\int_{a}^{C}\mathrm{d}F(\xi)=c(F(c)-F(a))=cF(c)$. (4.8)

As for the second, since $F$ is bounded, integration by parts can be applied and it follows from
$F(b)=1$ that

$\int_{c}^{b}\xi \mathrm{d}F(\xi)=b-cF(c)-\int_{c}^{b}F(\xi)\mathrm{d}\xi$. (4.9)

Substitute (4.8) and (4.9) into (4.7) and remember $F(\xi)=0$ for $\xi<a$ and $F(\xi)=1$ for $b\leq\xi$ .
Then we obtain

$\int_{a}^{b}\max\{\xi, C\}\mathrm{d}F(\xi)=b-\int_{\mathrm{c}}^{b}F(\xi)\mathrm{d}\xi$

$= \int_{0}^{b}\mathrm{d}\xi-\int_{0}^{b}F(\xi)\mathrm{d}\xi+\int_{0}^{C}F(\xi)\mathrm{d}\xi$

$= \int_{0}^{\infty}(1-F(\xi))\mathrm{d}\xi+\int_{0}^{a_{F(}}\xi)\mathrm{d}\xi+\int_{a}^{c_{F(\xi}})\mathrm{d}\xi$

$= \mu+\int_{a}^{c_{F(\xi}})\mathrm{d}\xi$ . I
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Now, let us define a new function $\psi(x)$ as

$\psi(X)=\alpha+\beta\int_{a}^{x}F(\xi)\mathrm{d}\xi$ , (4.10)

and let
$\psi^{(1)}(x)=\psi(X)$ ; $\psi^{(k)}(x)=\psi(\psi^{(k-1)}(X))$ , $k\geq 2$ . (4.11)

It can be easily shown that $\psi^{(t)}(x)$ is nondecreasing in $x$ and $t$ .

5. Reserving region
Define, for all $x$ ,

$R_{t}(x)=\{w|w\in Wt(X), w\leq\lambda_{t}\}\subseteq\dot{\mathbb{R}}$, $t\geq 1$ , (5.1)

and
$R_{t}=\{(_{X}, w)|x\in \mathbb{R}, w\in R_{t}(_{X})\}\subseteq \mathbb{R}2$ , $t\geq 1$ . (5.2)

We find that $R_{t}(x)$ represents the range of value of current offer which should be reserved at time
$t$ with leading offer $x$ . Thus $R_{t}$ means the set of pairs of leading offer $x$ and corresponding current
offer $w$ to be reserved at time $t$ . Let us call $R_{t}$ reserving region of time $t$ .

In the case where we can search for offers indefinitely, it is confirmed that there is no reserving

region at every time, that is, reservation has no economical meanings (see Theorem 7.1 in Saito [8]).

If the period of planning horizon we have is finite, as we mentioned in the comment after
Lemma 4.2, reservations are done to prepare for the deadline at which a dire situation may be

awaiting. This makes us to surmise that reserving region appears and becomes larger with the

lapse of time. There is some case, however, that reserving region disappears at time 1, although

it exists at time 2 or 3. For example, in the case where $\beta=0.97,$ $s=$ 0.005, $a=0.2,$ $b=1.2$ ,

$F(w)=9(w-0.2)$ for $0.2\leq w<0.3$ and $(w+7.8)/9$ for $0.3\leq w\leq 1.2,$ $r(w)=0.04$ for
$0.2\leq w<0.48,0.5w-0.2$ for $0.48\leq w<0.72$ , and 0.16 for $0.72\leq w\leq 1.2$ , there is no reserving

region at time 1 but it exists from time 2 to 14. Therefore, it is not enough to consider conditions
of reservation only for time 1.

Now, we shall reveal conditions of reserving cost function $r(w)$ not to induce us for any

reservation. $.:_{:}.\cdot$:

Lemma 5.1 $-S+\beta v_{0}(X)=\psi^{(1)}(x)$ for any $x$ ; and for $t\geq 2$ , if $R_{i}=\phi$ for $i\leq t-1$ , then
$-s+\beta_{V_{t-}1}(X)=\psi^{(}t)(x)$ for $x\leq\theta$ .

Proof: Due to (3.2), (3.3), and Lemma 4.6, we obtain $v \mathrm{o}(X)=\int_{a}b\max\{\xi, X\}\mathrm{d}F(\xi)=\mu+\int_{a}^{x_{F}}(\xi)\mathrm{d}\xi$

for any $x$ , implying

$-s+ \beta v_{0}(x)=-s+\beta(\mu+\int_{a\mathrm{I}}^{x_{F(}}\xi)\mathrm{d}\xi=\psi^{(1)}(X)$ . (5.3)

Suppose that the assertion holds true for a certain $t\geq 2$ , that is, $R_{i}=\phi$ for $i\leq t-1$ and then

$-s+\beta v_{t-}1(x)=\psi^{(}t)(x)$ , $x\leq\theta$ . (5.4)

Note here that (5.3) indicates that (5.4) holds even for $t=1$ .

For the assertion with respect to $t+1$ , suppose further $R_{t}--\emptyset$ , thus we have $R_{i}=\phi$ for $i\leq t$ .

Since $R_{t}=\phi$ means no reservation at time $t$ , it follows from (3.2) that $R_{t}=\phi$ if and only if, for

any $w$ and $x$ ,
$-r(w)-S+ \beta vt-1(w)<\max\{w, x, -s+\beta vt-1(X)\}=ut(w, x)$ . (5.5)
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For $x\leq\theta$ , due to (3.4) and Lemma $4.3(\mathrm{a})$ we have $x\leq-s+\beta v_{t-1}(x)$ , thus (5.5) and (5.4)
yield $u_{t}(w, x)= \max\{w, -s+\beta v_{t1}-(x)\}=\max\{w, \psi^{(t)}(x)\}$ , from which and Lemma 4.6 we
obtain $v_{t}(x)= \int_{a}^{b}\max\{\xi, \psi^{(t)}(X)\}\mathrm{d}F(\xi)=\mu+\int_{a}^{\psi^{(t)}}(x)_{F}(\xi)\mathrm{d}\xi$ for $x\leq\theta$ . Hence, it follows that if
$R_{i}=\emptyset$ for $i\leq t$ , then

$-s+ \beta v_{t}(x)=\alpha+\beta\int aF\psi^{(t})(x)(\xi)\mathrm{d}\xi=\psi(\psi(t)(x))=\psi^{(t+1})(X)$ , $x\leq\theta$ ,

which shows that the assertion also holds for $t+1$ . By induction on $t$ , the proof is completed. I

Theorem 5.2 For $t\geq 1$ :

(a) $R_{t}=\phi$ if and only if $\beta(v_{t-1}(w)-v_{t}-1(a))<r(w)$ for $w\leq-S+\beta v_{t-1}(a)$ .

(b) $R_{1}=\phi$ if and only if $\psi^{(1)}(w)-^{\psi^{()}}1(a)<r(w)$ for any $w\in[a, \psi^{(1)}(a)]$ ; and if $R_{i}=\phi$ for
$i\leq t-1$ , then $R_{t}=\phi$ if and only if $\psi^{(t)}(w)-^{\psi^{()}}t(a)<r(w)$ for any $w\in[\psi^{(t-1})(a), \psi^{(t})(a)]$ .

Proof: (a) We should note first that $R_{t}=\phi$ and $R_{t}(a)=\phi$ are equivalent, because it follows from
Lemma $4.4(\mathrm{a})$ that if $R_{t}(a)=\phi$ , then $R_{t}(x)=\phi$ for any $x\geq a$ .

Note that $z_{t}^{O}(a)=-S+\beta v_{t-1}(a)$ because $a<\theta$ holds from assumption $a<\alpha$ , Lemmas $4.2(\mathrm{a})$

and $4.3(\mathrm{a})$ , and that $z_{t}^{r}(w)=-r(w)-s+\beta vt-1(w)$ for $w\leq\lambda_{t}$ due to Lemma $4.3(\mathrm{b})$ . Furthermore,
Lemma $4.3(\mathrm{b})$ implies that $w\leq\lambda_{t}$ if and only if $w\leq-r(w)-s+\beta v_{t-1}(w)$ . Then we have

$R_{t}(a)=\{w|z_{t}^{O}(a)\leq z_{t}(rw), w\leq\lambda_{t}\}$

$=\{w|-s+\beta v_{t-}1(a)\leq-r(w)-S+\beta v_{t}-1(w), w\leq-r(w)-S+\beta v_{t-1}(w)\}$.

$= \{w|\max\{-S+\beta v_{t-1}(a), w\}\leq-r(w)-s+\beta v_{t-1}(w)\}$ . (5.6)

Now, define

$h_{t}(w)=-S+ \beta v_{t-1(w})-\max\{-\mathit{8}+\beta v_{t-1}(a), w\}$

$=\{$
$\beta(v_{t-1}(w)-vt-1(a))$ , $w\leq-s+\beta v_{t1}-(a)|’$

.

$-s+\beta v_{t-}1(w)-w$ , $-s+\beta vt-1(a)<w$ .
(5.7)

Note that $h_{t}(w)$ is continuous in $w$ because $v_{t-1}(w)$ is continuous in $w$ and $\beta(v_{t-1}(w)-v_{t1(a))}-=$

$-S+\beta v_{t1}-(w)-w$ holds at $w=-S+\beta v_{t-1}(a)$ .
By comparing (5.6) and (5.7) we immediately find that $R_{t}(a)=\phi$ if and only if $h_{t}(w)<r(w)$

for all $w$ . It follows from Lemma 4.1 $(\mathrm{a},\mathrm{b})$ and continuity of $h_{t}(w)$ that $h_{t}(w)$ is maximized at $w=$

$-s+\beta vt-1(a).\cdot$ Therefore, $h_{t}(w)<r(w)$ holds for all $w$ if and only if $\beta(v_{t-1}(w)-v_{t}-1(a))<r(w)$
$\mathrm{h}\mathrm{o}\dot{\mathrm{l}}\mathrm{d}\mathrm{s}$ for $w\leq-S+\beta v_{t-1}(a)$ . We have thus confirmed the assertion.

(b) By using assertion (a) and Lemma 5.1 we immediately find that the former part of the
assertion holds true.

If $R_{t-1}=\phi$ , then it follows from (a) and Lemma 4.5 that, for $w\in[a, -S+\beta v_{t-2}(a)]$ ,

$\beta(v_{t-1}(w)-v_{t1(a))}-\leq\beta(v_{t-2}(w)-v_{t2(a))}-<r(w)$ .

From this and (a) we conclude that if $R_{t-1}=\phi$ is supposed, it is enough for $R_{t}=\phi$ that

$\beta(v_{t-1}(w)-v_{t}-1(a))<r(w)$ , $w\in[-\mathit{8}+\beta v_{t-2}(a), -S+\beta v_{t-1}(a)]$ . (5.8)

Since Lemmas $4.1(\mathrm{a}),$ $4.2(\mathrm{a})$ , and $4.3(\mathrm{a})$ provide $-\mathit{8}+\beta v_{t-1}(a)\leq-S+\beta v_{t-1}(\theta)=\theta$, any $w$

such as $w\leq-S+\beta v_{t-1}(a)$ satisfies $w\leq\theta$ . Consequently, since $R_{i}--\emptyset$ is assumed for $i\leq t-1$ ,
we can apply Lemma 5.1 for $w\leq-S+\beta v_{t-1}(a)(\leq\theta)$ and thus rewrite (5.8) as

$\psi(t)(w)-\psi(t)(a)<r(w)$ , $w\in[\psi^{(t-1)}(a), \psi(t)(a)]$ .

We have thus confirmed the assertion. 1
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Corollary 5.3 If $\beta\int_{a}^{w}F(\xi)\mathrm{d}\xi<r(w)$ for $w\leq\alpha$ and if $\psi^{(2t)}(a)-\psi^{(t)}(a)\leq\beta\int_{a}^{\alpha}F(\xi)\mathrm{d}\xi$ for
$t\geq 2$ , then there is no reserving region at every time.

..

Proof: Due to (4.10) and Theorem $5.2(\mathrm{b})$ we get $\beta\int_{a}^{w}F(\xi)\mathrm{d}\xi<r(w)$ for $w\leq\alpha$ if and only if
$R_{1}=\emptyset$ .

Given any $t\geq 2$ , it follows from (4.10) and (4.11) that, for any $w\geq a$ ,

$\psi^{(t)}(w)-\psi^{(t)}(a)=\psi(\psi^{(t-1})(w))-\psi(\psi(t-1)(a))$

$= \beta\int_{\psi^{(c_{-}1)}()}^{\psi(w}a)F(\xi \mathrm{d}\xi(t-1))$

$\leq\int_{\psi^{(-}}^{\psi^{(\iota}(w)}t1)(a)\mathrm{d}-1)\xi=\psi^{(t-1)}(w)-\psi^{(t-}1)(a)$ ,

from which and (4.10) we obtain $\psi^{(t)}(w)-^{\psi^{(}()}t)a\leq\psi^{(1})(w)-\psi^{(}1)(a)=\beta\int_{a}^{w}F(\xi)\mathrm{d}\xi$ for $w\geq a$ .
Hence, it follows from Theorem $5.2(\mathrm{b})$ that if $R_{1}=\phi$ , then

$\psi^{(t)}(w)-^{\psi^{(}()\leq\beta}t)a\int_{a}^{w_{F(\xi)\mathrm{d}\xi<}}r(w)$ , $w\leq\alpha(=\psi^{(1)}(a))$ . (5.9)

Given any $t\geq 2$ , since $\psi^{(t)}(w)$ is nondecreasing in $w$ and $\psi^{(t)}(\psi^{(t)}(a))=\psi^{(2t)}(a)$ , we get

$\psi^{(t)}(w)-\psi(t)(a)\leq\psi^{(2t)}(a)-\psi^{()}t(a)$, $w\leq\psi^{(t)}(a)$ . (5.10)

By remembering that $r(w)$ is nondecreasing in $w$ , we find that if $R_{1}=\emptyset$ and $\psi^{(2t)}(a)-\psi^{(}t)(a)\leq$

$\beta\int_{a}^{\alpha}F(\xi)\mathrm{d}\xi$ , then from (5.9), $\psi^{(t)}(w)-\psi^{(t)}(a)<r(w)$ for $w\leq\alpha$ , and from (5.10) and (5.9),
$\psi^{(t})(w)-\psi^{(}t)(a)\leq\psi^{(2t)}(a)-\psi^{(}t)(a)\leq\beta\int_{a}^{\alpha}F(\xi)\mathrm{d}\xi<r(\alpha)\leq r(w)$ for $\alpha\leq w\leq\psi^{(t)}(a)$ , thus
$\psi^{(t})(w)-\psi^{(}t)(a)<r(w)$ for $w\leq\psi^{(t)}(a)$ .

Comparing this and Theorem $5.2(\mathrm{b})$ we $\mathrm{c}\mathrm{o}\mathrm{n}\dot{\mathrm{c}}$ lude that the assertion holds true. 1

According to several hundreds of numerical experiments the author made, both uniform dis-
tribution and triangular distribution always lead to $\psi^{(2t)}(a)-\psi^{(t)}(a)\leq\beta\int_{a}^{\alpha}F(\xi)\mathrm{d}\xi$ for any $a$ ,
$b,$ $s$ , and $\beta$ with satisfying $a<\alpha$ . As a result, it seems reasonable to conclude that in the

cases where values of offers are considered to follow a uniform distribution or a triangular distri-
bution, so as to investigate the economical efficiency of reservation, it suffices to check whether
$\beta\int_{a}^{w}F(\xi)\mathrm{d}\xi<r(w)$ holds for $w\leq\alpha$ or not.
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