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1. INTRODUCTION

We introduce the notion of multi-polytopes generalizing that of convex polytopes, and
report that Ehrhart polynomials and Khovanskii-Pukhlikov on lattice convex polytopes
(i.e., convex polytopes with vertices in the lattice) can be extended to lattice multi-
polytopes. This is ajoint work with A. Hattori and the detailed argument and a connec-
tion with geometry can be found in [7].

Let us briefly explain the idea of multi-polytopes. It comes from geometry. According
to the theory of toric varieties, a lattice convex polytope $P$ corresponds to an ample line
bundle $L$ over a compact non-singular toric variety $M$ . In fact, $P$ is the image of $M$ by
the moment map associated with $L$ . This suggests us to view the convex polytope $P$ as
being formed from two combinatorial data corresponding to $M$ and $L$ . We shall explain
them for a convex polygon (i.e., two-dimensional convex polytope) $P$ shown in Figure
1(1). We take an (outward) normal vector to each side and form four two-dimensional
cones, each of which is spanned by two normal vectors whose corresponding sides intersect
at a vertex of $P$ . Then we obtain a complete fan shown in Figure 1(2). This complete
fan is the combinatorial datum corresponding to the base space $M$ in the theory of toric
varieties. The other datum is an arrangement of lines obtained by extending the sides of
$P$ , see Figure 1(3). This arrangement is the information brought by the line bundle $L$ .
Note that the arrangement is related to the fan. Namely the lines in the arrangement are
perpendicular to the edge vectors in the fan.

$(|)$
’ $(s_{b})$

$\mathrm{E}^{1}\mathrm{I}\mathrm{G}\mathrm{U}\mathrm{R}\mathrm{E}1$

The observation above can be applied to $n$-dimensional convex polytopes. In this case,
the associated fan is an $n$-dimensional complete fan and the arrangement consists of affine
hyperplanes in an $n$-dimensional vector space which are perpendicular to edge vectors in
the fan.

Now, let us take the following star shaped figure $Q$ and make the same observation as
above.
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FIGURE 2

Then we obtain five two-dimensional cones, each of which is spanned by two normal
vectors whose corresponding sides intersect at a vertex. A notable fact is that the cones
have overlap and the degree of overlap is uniformly two. This is an example of almost
what we call a complete multi-fan. The multi-polytope associated with $Q$ is a pair of the
complete multi-fan and the arrangement of lines obtained by extending the five sides of
$Q$ . In general, a multi-polytope is defined to be a pair of a complete multi-fan and an
arrangement of affine hyperplanes perpendicular to edge vectors in the multi-fan.

This article is organized as follows. In section 2 we give a precise definition of multi-fan
and multi-polytope. We also define the notion of completeness, simpliciality and non-
singularity of a multi-fan. The definition of simpliciality and non-singularity is straight-
forward but the definition of completeness is somewhat complicated and essential in our
argument. In section 3 we associate with a simple multi-polytope an interger valued lo-
cally constant function (called the Dusitermaat-Heckman function) on the complenent of
the hyperplane arrangement. When the multi-polytope arises from a convex polytope $P$ ,
the function takes 1 on the interior of $P$ and $0$ on the other regions divided by the hyper-
plane arrangement. The generalization of Ehrhart polynomials and Khovanskii-Pukhlikov
formula is discussed in sections 4 and 5 respectively.

2. MULTI-FANS AND MULTI-POLYTOPES

In this section, we define a multi-fan which is a complete generalization of a fan
and introduce the notion of multi-polytopes. We also define the completeness and non-
singularity of a multi-fan generalizing the corresponding notion of a fan. We shall begin
with reviewing the definition of a fan.

Let $N$ be a lattice of rank $n$ , which is isomorphic to $\mathbb{Z}^{n}$ . We denote the real vector
space $N\otimes \mathbb{R}$ by $N_{\mathbb{R}}$ . A subset $\sigma$ of $N_{\mathbb{R}}$ is called a strongly convex rational polyhedral cone
(with apex at the origin) if there exits a finite number of vectors $v_{1},$ $\ldots,$ $v_{m}$ in $N$ such
that

$\sigma=$ { $r_{1}v_{1}+\cdots+r_{m}v_{m}|r_{i}\in \mathbb{R}$ and $r_{i}\geq 0$ for all $i$}
and $\sigma\cap(-\sigma)=\{0\}$ . Here “rational” means that it is generated by vectors in the lattice
$N$ , and “strong” convexity that it contains no line through the origin. We will often call
a strongly convex rational polyhedral cone in $N_{\mathbb{R}}$ simply a cone in $N$ . The dimension
$\dim\sigma$ of a cone a is the dimension of the linear space spanned by vectors in $\sigma$ . A subset
$\tau$ of a is called a face of $\sigma$ if there is a linear function $\ell:N_{\mathbb{R}}arrow \mathbb{R}$ such that $p$ takes
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nonnegative values on a and $\tau--\ell^{-1}(0)\cap\sigma$ . A cone is regarded as a face of itself, while
others are called proper faces.

Definition. A fan $\triangle$ in $N$ is a set of a finite number of strongly convex rational polyhe-
dral cones in $N_{\mathbb{R}}$ such that

(1) Each face of a cone in $\triangle$ is also a cone in $\triangle$ ;
(2) The intersection of two cones in $\Delta$ is a face of each, (so that different cones do not

overlap).

Definition. A fan $\triangle$ is said to be complete if the union of cones in $\triangle \mathrm{c}\mathrm{o}$

, vers $\mathrm{t}\mathrm{h}\mathrm{e}arrow$ entire
space $N_{\mathbb{R}}$ .

A cone is called simplicial, or a simplex, if it is generated by linearly independent
vectors. If the generating vectors can be taken as a

$.\mathrm{p}$
art of a $\mathrm{b}.$asi.s o..f $N,$ th.en the con..e is

called non-singular.

Definition. A fan $\triangle$ is said to be simplicial (resp. non-singular) if every cone in $\Delta$ is
simplicial (resp. non-singular).

The fundamental fact in the theory of toric varieties says that there is a $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{0}$-one
correspondence between $n$-dimensional toric varieties and $n$-dimensional fans, and a fan
is complete (resp. simplicial or non-singular) if and only if the corresponding toric. variety
is compact (resp. an orbifold or non-singular).

For each $\tau\in\triangle$ , we define $N^{\tau}$ to be the quotient lattice of $N$ by the sublattice generated
(as a group) by $\tau\cap N$ ; so the rank of $N^{\tau}$ is $n-\dim\tau$ . We consider cones in $\triangle$ that contain

$\tau$ as a face, and project them on $(N^{\mathcal{T}})_{\mathbb{R}}$ . These projected cones form a fan in $N^{\tau}$ , which
we denote by $\triangle_{\tau}$ and call the projected fan with respect to $\tau$ . The dimensions of the
projected cones decrease by $\dim\tau$ . The completeness, $\mathrm{s}\mathrm{i}\mathrm{m}_{\mathrm{P}^{1}}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$

. $\mathrm{a}.\mathrm{n}$

.
$\mathrm{d}.\mathrm{n}$

on-sing
$\mathrm{t}$

ular..ity
of $\triangle$ will be inherited to $\triangle_{\tau}$ for any $\tau$ .

We now generalize these notions of a fan. Let $N$ be as before. Denote by $C(N)$ the
set of all cones in $N$ . An ordinary fan is a subset of $C(N)$ . The set $C(N)$ has a (strict)
partial $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}\prec \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}$ by: $\tau\prec\sigma$ if and only if $\tau$ is a proper face of $\sigma$ . The cone $\{0\}$

consisting of the origin is the unique minimum element in $C(N)$ . On the other hand, let
$\Sigma$ be a partially ordered finite set with a unique minimum element. We denote by the
(strict) partial ordering by $<$ and the minimum element by $*$ . An example of $\Sigma$ used
later is an abstract simplicial set with an empty set added as a member, which we call
an augmented simplicial set. In this case the partial ordering is defined by the inclusion
relation and the empty set is the unique minimum element which may be considered as
a $(-1)$ -simplex. Suppose that there is a map

$\Lambda:\Sigmaarrow C(N)$

such that
(1) $\Lambda(*)=\{0\}$ ;
(2) If $I<J$ for $I,$ $J\in\Sigma$ , then $\Lambda(I)\prec\Lambda(J)$ ;
(3) For any $I,$ $J\in\Sigma$ and $\kappa\in C(N)$ such that $I<J$ and $\Lambda(I)\prec\kappa\prec\Lambda(J)$ , there is a

unique element $K\in\Sigma$ such that $I<K<J$ and $\Lambda(K)=\kappa$ .
For an integer $m$ such that $0\leq m\leq n$ , we set

$\Sigma^{(m)}:=\{I\in\Sigma|\dim\Lambda(I)=m\}$ .
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One can easily check that $\Sigma^{(m)}$ does not depend on A. When $\Sigma$ is an augmented simplicial
set, $I\in\Sigma$ belongs to $\Sigma^{(m)}$ if and only if the cardinality $|I|$ of $I$ is $m$ , namely $I$ is an
$(m-1)$-simplex. Therefore, even if $\Sigma$ is not an augmented simplicial set, we use the
notation $|I|$ for $m$ when $I\in\Sigma^{(m)}$ .

The image $\Lambda(\Sigma)$ is a finite set of cones in $N$ . We may think of a pair $(\Sigma, \Lambda)$ as a set of
cones in $N$ labeled by the ordered set $\Sigma$ . Cones in an ordinary fan intersect only at their
faces, but cones in $\Lambda(\Sigma)$ may overlap, even the same cone may appear repeatedly with
different labels. The pair $(\Sigma, \Lambda)$ is almost what we call a multi-fan, but we incorporate
a pair of weight functions on cones in $\Lambda(\Sigma)$ of the highest dimension $n=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}N$. More
precisely, we consider two functions

$w^{\pm}:$ $\Sigma^{(n)}arrow \mathbb{Z}_{\geq 0}$ .

These two functions naturally arise from geometry, and their sum corresponds to $\mathrm{E}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{r}\backslash$

number while their difference is related to Todd genus (see [10]).

Definition. We call a triple $\triangle:=(\Sigma, \Lambda, w^{\pm})$ a multi-fan in $N$ . We define the dimension
of $\triangle$ to be the rank of $N$ (or the dimension of $N_{\mathbb{R}}$ ).

Since an ordinary fan $\triangle$ in $N$ is a subset of $C(N)$ , one can view it as a multi-fan by
taking $\Sigma=\triangle,$ $\Lambda=\mathrm{t}\mathrm{h}\mathrm{e}$ inclusion map, $w^{+}=1$ , and $w^{-}=0$ . In a similar way as in the
case of ordinary fans, we say that a multi-fan $\triangle=(\Sigma, \Lambda, w^{\pm})$ is simplicial (resp. non-
singular) if every cone in $\Lambda(\Sigma)$ is simplicial (resp. non-singular). The following lemma is
easy.

Lemma 2.1. A multi-fan $\triangle=(\Sigma, \Lambda, w^{\pm})$ is simplicial if and only if $\Sigma$ is isomorphic to
an $au.,gm_{\mathrm{I}}e$

nted si.mp..l.ic.$ial$

:
set as $p.artia\iota l\backslash \backslash \cdot y$ o.rdered sets.

$\mathrm{r}$ The definition of completeness of a multi-fan $\triangle$ is rather complicated. A naive definition
of the completeness would be that the union of cones in $\Lambda(\Sigma)$ covers the entire space
$N_{\mathbb{R}}$ . But this is not a right definition. Although the two weighted functions $w^{\pm}$ are
incorporated in the definition of a multi-fan, only the difference

$w:=w^{+}-w^{-}$

matters in this article. We shall introduce the following intermediate notion of pre-
completeness at first.

Definition. We call a multi-fan $\triangle=(\Sigma, \Lambda, w^{\pm})$ pre-complete if the integer

$v \in\Lambda\sum_{(I)}w\{I)$

is independent of the coice of a generic element $v$ in $N$ . Here the sum above is understood
to be zero if there is no such $I$ , and “generic” means that $v$ does not lie on alinear subspace
spanned by a cone in $\Lambda(\Sigma)$ of dimension less than $n$ . We call the integer above the degree
of $\triangle$ and denote it by $\deg(\triangle)$ .

Remark. For an ordinary fan, pre-completeness is same as completeness.

To define the completeness for a multi-fan $\triangle$ , we need to define a projected multi-fan
with respect to an element in $\Sigma$ . We do it as follows. For each $K\in\Sigma$ , we set

$\Sigma_{K}:=\{J\in\Sigma|K\leq J\}$ .
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It inherits the partial ordering from $\Sigma$ , and $K$ is the unique minimum element in $\Sigma_{K}$ . A
map

$\Lambda_{K}$ : $\Sigma_{K}arrow C(N^{\Lambda(K)})$

sending $J\in\Sigma_{K}$ to the cone $\Lambda(J)$ projected on $(N^{\Lambda(K)})_{\mathbb{R}}$ satisfies the three properties
above required for A. We define two functions

$w_{K^{\pm}}:$ $\Sigma_{K^{-|K|)}}^{(n}\subset\Sigma^{(n)}arrow \mathbb{Z}_{\geq 0}$

to be the restrictions of $w^{\pm}$ to $\Sigma^{(n}K-|K|$ ). A triple $\triangle_{K}:=(\Sigma_{K}, \Lambda_{K}, W_{K^{\pm}})$ is a multi-fan in
$N^{\Lambda(K)}$ , and this is the desired projected multi-fan with respect to $K\in\Sigma$ . When $\triangle$ is an
ordinary fan, this definition agrees with the previous one.

Definition. A pre-complete multi-fan $\triangle=(\Sigma, \Lambda, w^{\pm})$ is said to be complete if the pro-
jected multi-fan $\triangle_{K}$ is pre-complete for any $K\in\Sigma$ .

Example 2.2. Here is an example of a complete non-singular multi-fan of degree two.
Let $v_{1},$

$\ldots,$
$v_{5}$ be integral vectors shown in the following figure, where the dots denote

la..ttice points.

$q\}_{\Omega}$ $?)_{A}$

$\mathrm{u}_{5}$ $\mathrm{u}_{\mathrm{d}}$

FIGURE 3

The vectors are rotating around the origin twice in counterclockwise. We take
$\Sigma=\{\phi, \{1\}, \ldots, \{5\}, \{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{5,1\}\}$ ,

define $\Lambda:\Sigmaarrow C(N)$ by
$\Lambda(\{i\})=$ the cone spanned by $v_{i}$ ,

$\Lambda(\{i, i+1\})=$ the cone spanned by $v_{i}$ and $v_{i+1}$ ,

where $i=1,$ $\ldots$ , 5 and 6 is understood to be 1, and take $w^{\pm}$ such that $w=1$ on every
two dimensional cone. $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n}_{1},\triangle=(\Sigma, \Lambda, w^{\pm})$ is a comp.l.ete non-singul.ar two-dimensional
multi-fan with $\deg(\triangle)=2$ .

Examp.le 2.3. Here is an example of a complete multi-fan “with folds”. Let $v_{1},$ $\ldots,$
$v_{5}$

be vectors shown in $\mathrm{t}\dot{\mathrm{h}}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{l}\dot{\mathrm{l}}\mathrm{o}\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{g}$ figure.
We define $\Sigma$ and A as in Example 2.2 and take $w^{\pm}$ such that

$w(\{3,4\})=-1$ and $w(\{i, i+1\})=1$ for $i\neq 3$ .

Then $\triangle=(\Sigma, \Lambda, w^{\pm})$ is a complete two-dimensional multi-fan with $\deg(\triangle)=1$ .
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$\nwarrow \mathrm{r}$ .

$\bigvee_{3}$

FIGURE 4

A similar example can be constructed for a number of vectors $v_{1},$
$\ldots,$

$v_{d}(d\geq 2)$ by
defining

$w(\{i, i+1\})=1$ if $v_{i}$ and $v_{i+1}$ are rotating in counterclockwise,
$w(\{i, i+1\})=-1$ if $v_{i}$ and $v_{i+1}$ are rotating in clockwise,

where $d+1$ is understood to be 1. The degree $\deg(\triangle)$ is the rotation number of the
vectors $v_{1},$ $\ldots$ , $v_{d}$ around the origin in counterclockwise and may not be one.

Example 2.4. Here is an example of a multi-fan which is pre-complete but not complete.
Let $v_{1},$

$\ldots,$
$v_{5}$ be vectors shown in the following figure.

$v_{2}=v_{5}$

FIGURE 5

We take
$\Sigma=\{\phi, \{1\}, \ldots, \{5\}, \{1,2\}, \{2,3\}, \{3,1\}, \{4,5\}\}$,

define $\Lambda:\Sigmaarrow C(N)$ as in Example 2.2, and take $w^{\pm}$ such that
$w(\{1,2\})=2,$ $w(\{2,3\})=1,$ $w(\{3,1\})=1,$ $w(\{4,5\})=-1$ .

Then $\triangle=(\Sigma, \Lambda, w^{\pm})$ is a two-dimensional multi-fan which is pre-complete (in fact,
$\deg(\triangle)=1)$ but not complete because the projected multi-fan $\triangle\{i\}$ for $i\neq 3$ is not
pre-complete.

So far, we treated rational cones that are generated by $\backslash ’\cdot \mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{S}$ in the lattice $N$ . But,
most of the notions introduced above make sense even if we allow cones generated by
vectors in $N_{\mathbb{R}}$ but may not be in $N$ . In fact, the notion of non-singularity requires the
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lattice $N$ , but others do not. Therefore, one can define a multi-fan and its completeness
and simpliciality in this extended category as well. In t.he following we will denote $N_{\mathbb{R}}$

by $V$ .
As explained in the introduction, a convex polytope or the star shaped figure produces

a complete multi-fan and an arrangement of hyperplanes perpendicular to edge vectors
in the multi-fan. Taking this observation into account, we reverse a gear. We start with
a complete multi-fan $\triangle=(\Sigma, \Lambda, w^{\pm})$ . It is convenient to think of the hyperplanes as
sitting in the dual space $V^{*}$ of $V$ . Let HP $(V^{*})$ be the set of all affine hyperplanes in $V^{*}$ .

Definition. Let $\triangle=(\Sigma, \Lambda, w^{\pm})$ be a complete multi-fan and let $F:\Sigma^{(1)}arrow \mathrm{H}\mathrm{P}(V^{*})$ be
a map such that the affine hyperplane $F(J)$ is ‘perpendicular’ to the half line $\Lambda(J)$ for
each $J\in\Sigma^{(1)}$ , i.e., an element in $\Lambda(J)$ takes a constant on $F(J)$ . We call a pair $(\triangle, \mathcal{F})$

a multi-polytope and denote it by $P$ . The dimension of a multi-polytope $P$ is defined to
be the dimension of the multi-fan $\triangle$ . We say that a multi-polytope $P$ is simple if $\triangle$ is
simplicial. When $P$ is simple, $\bigcap_{i\in I}\mathcal{F}(\{i\})$ for $I\in\Sigma^{(n)}$ is called a vertex of $P$ , and if all
vertices of $P$ are lattice points, then we say that $P$ is a simple lattice multi-polytope.

Remark. There are two notions similar to that of multi-polytopes, which were introduced
by Karshon-Tolman [8] and Khovanskii-Pukhlikov [9] when $\triangle$ is an ordinary fan. They use
the terminology twisted polytope and virtual polytope respectively. The notion of multi-
polytopes is a direct generalization of that of twisted polytopes, and also generalizes that
of virtual polytopes, see [11].

3. $\mathrm{D}\mathrm{u}\mathrm{I}\mathrm{s}\mathrm{T}\mathrm{E}\mathrm{R}\mathrm{M}\mathrm{A}\mathrm{A}\mathrm{T}$-HECKMAN FUNCTIONS

A multi-polytope $P=(\triangle, F)$ defines an arrangement of affine hyperplanes in $V^{*}$ . In
this section, we associate with $P$ a function on $V^{*}$ minus the affine hyperplanes when $P$

is simple. This function is locally constant and Guillemin-Lerman-Sternberg formula ([5]
[6] $)$ tells us that it agrees with the density function of a Duistermaat-Heckman measure
when $P$ arises from a moment map.

Hereafter our multi-polytope $P$ is assumed to be simple, so that the multi-fan $\triangle=$

$(\Sigma, \Lambda, w^{\pm})$ is complete and simplicial unless otherwise stated. We may assume that $\Sigma$

consists of subsets of $\{1, \ldots, d\}$ and $\Sigma^{(1)}=\{\{1\}, \ldots, \{d\}\}$ . Denote by $v_{i}$ a nonzero vector
in the one-dimensional cone $\Lambda(\{i\})$ . To simplify notation, we denote $F(\{i\})$ by $F_{i}$ and
set

$F_{I}:= \bigcap_{i\in I}F_{i}$ for $I\in\Sigma$ .
$F_{I}$ is an affine space of dimension $n-|I|$ . In particular, if $|I|--n$ (i.e., $I\in\Sigma^{(n)}$ ), then
$F_{I}$ is a point, denoted by $u_{I}$ .

Suppose $I\in\Sigma^{(n)}$ . Then the set $\{v_{i}|i\in I\}$ forms a basis of $V$ . Denote its dual basis
of $V^{*}$ by $\{u_{i}^{I}|i\in I\}$ , i.e., $\langle u_{i}^{I}, v_{j}\rangle=\delta_{ij}$ where $\delta_{ij}$ denotes the Kronecker delta. Take a
generic vector $v\in V$ such that $\langle u_{i}^{I}, v\rangle\neq 0$ for all $I\in\Sigma^{(n)}$ and $i\in I$ , and set

$(-1)^{I}:=(-1)\#\{i\in I|\langle u^{I},vi\rangle>0\}$ and $(u_{i}^{I})^{+}:=\{$

$u_{i}^{I}$ if $\langle u_{i}^{I}, v\rangle>0$

$-u_{i}^{I}$ if $\langle u_{i}^{I}, v\rangle<0$ .

We denote by $\Lambda(I)^{+}$ the cone in $V^{*}$ spanned by $(u_{i}^{I})^{+}’ \mathrm{S}(i\in I)$ with apex at $u_{I}$ , and by
$\phi_{I}$ its characteristic function.
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Definition. We define a function $\mathrm{D}\mathrm{H}_{P}$ on $V^{*} \backslash \bigcup_{i=1i}^{d}F$ by

$\mathrm{D}\mathrm{H}_{\mathrm{p}}:=\sum_{I\in\Sigma^{(}n)}(-1)^{I}w(I).\phi I$

a‘n$\mathrm{d}$ call it th\’e Duistermaat-Heckman $\dot{f}uncti\mathit{0}\acute{n}\mathrm{a}\mathrm{s}\mathrm{S}\mathrm{O}\mathrm{C}\mathrm{i}\mathrm{a}\mathrm{t}\dot{\mathrm{e}}\mathrm{d}\mathrm{w}\mathrm{i}:\mathrm{t}\mathrm{h}P$.

Apparently, the function $\sum_{I\in\Sigma^{(n)}}(-1)^{I}W(I)\phi I$ is defined on the whole space $V^{*}$ and
depends on the choice of the generic vector $v\in V$ , but it turns out that it restricted
to $V\backslash \cup F_{i}$ is independent of $v$ . This is the reason why we restricted the domain of the
function to $V\backslash \cup F_{i}$ . On can also prove that the support of the function $\mathrm{D}\mathrm{H}_{P}$ is bounded.

Remark. There is a $\mathrm{c}.$om.pl.etJely. different way to defin.e the $\mathrm{D}\mathrm{u}\mathrm{i}_{\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{a}\mathrm{t}}\mathrm{e}\mathrm{r}\mathrm{m}-\mathrm{H}\mathrm{e}\mathrm{c}\mathrm{k}\mathrm{m}\mathrm{a}\mathrm{n}$

. func-
tion, see [7].

Example 3.1. When $P$ is a multi-polytope associated with the following rectangle $P$

and the vector $v$ is taken as is shown,

$\nearrow \mathrm{t}I$

$\mathrm{P}$

FIGURE 6

the Duistermaat-Heckman function $\mathrm{D}\mathrm{H}_{P}$ is the sum (or difference) of the following char-
acteristic functions of the four shaded domains:

.$\cdot$ ..
$\wedge\backslash$

FIGURE 7

Therefore, $\mathrm{D}\mathrm{H}_{P}$ takes 1 on the interior of $P$ and $0$ on the other regions divided by the
arrangement of $P$ . This is the case for any (simple) convex polytope $P$ .

4. $\mathrm{p}_{\mathrm{I}\mathrm{C}\mathrm{K}}$
’ FORMULA AND EHRHART POLYNOMIALS

In this section we explain how to define the number of lattice points in a lattice multi-
polytope and state a generaliztion of a Ehrhart’s theorem on lattice convex polytopes to
lattice simple multi-polytopes.

Let $P$ be a convex lattice polytope of dimension $n$ in $V^{*}$ , where “lattice polytope”
means that each vertex of $P$ lies in the lattice $N^{*}=\mathrm{H}\mathrm{o}\mathrm{m}(N, \mathbb{Z})$ of $V^{*}--\mathrm{H}_{0}\mathrm{m}(V, \mathbb{R})$ . We
denote by $\#(P)$ (resp. $\#(P^{\mathrm{o}})$ ) the number of lattice points in $P$ (resp. in the interior of
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$P)$ . The following formula called Pick’s formula asserts that when $\dim P--2$ , the area
Area$(P)$ of $P$ can be found by counting lattice points in $P$ and in the boundary $\partial P$ of
$P$ .

Theorem 4.1 (Pick’s formula). (see [4] or [12] for example.) If $P$ is a lattice (convex)
polygon, then

Area $(P)= \beta(P^{\mathrm{o}})+\frac{1}{2}\#(\partial P)-1$ .

Example 4.2. In the following lattice polygon Area$(P)=17/2,$ $\#(P)=13$ and $\#(\partial P)=$

$7$ .

FIGURE 8

Remark. (1) The convexity of $P$ is unnecessary in Pick’s formula as is seen in the
following non-convex polygon:

FIGURE 9

(2) There are many generalizations of Pick’s formula. For instance, it is generalized
in [10] to any piecewise linear closed curve with vertices in the lattice which may
have self-intersections such as the star shaped figure in the introduction. In this
case, we have to define the terms Area$(P),$ $\#(P^{\mathrm{O}})$ and $\#(\partial P)$ in an appropriate way.
An interesting fact is that the constant term, that $\mathrm{i},\mathrm{s}1$ in Pick’s formula, is not
necessarily 1 any more.

Pick’s formula can be rewritten as
$\#(P^{\mathrm{o}})=\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(P)-\frac{1}{2}\#(\partial P)+1$ or $\#(P)=\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(P)+\frac{1}{2}\#(\partial P)+1$
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because $\#(P^{\mathrm{o}})=\#(P)-\#(\partial P)$ .
For a positive integer lノ, let $\nu P:=\{\iota \text{ノ}u|u\in P\}$ . It is again a convex lattice polytope

in $V^{*}$ . Since Area $(\nu P)=\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(P)_{\mathcal{U}^{2}}$ and $\#(\partial(\mathcal{U}P))=\#(\partial P)\iota \text{ノ}$, the above two identities
imply

(1) $\#(\nu P^{\mathrm{o}})$ and $\#(\nu P)$ are both polynomials in $\nu$ of degree 2,
(2) $\#(\nu P^{\mathrm{o}})=(-1)^{n}\#(-l\text{ノ}P)$ , where $\#(-\mathcal{U}P)$ denotes the polynomial $\#(\nu P)$ with $\nu$ re-

placed $\mathrm{b}\mathrm{y}-\mathcal{U}$ .
(3) The coefficient of $\nu^{2}$ in $\#(\nu P)$ is Area$(P)$ and the constant term in $\#(\nu P)$ is 1.

Ehrhart shows that these statements hold for higher dimensional convex lattice polytopes.
The lattice $N^{*}$ determines a volume element on $V^{*}$ by requiring that the volume of the
unit cube determined by a basis of $N^{*}$ is 1. Thus the volume of $P$ , denoted by $\mathrm{v}\mathrm{o}\mathrm{l}(P)$ , is
defined.

Theorem 4.3 (Ehrhart). (See [4], [12] for example.) Let $P$ be an $n$ -dimensional convex
lattice polytope.

(1) $\#(\nu P)$ and $\#(I^{\text{ノ}}P\mathrm{O})$ are polynomials in $\nu$ of degree $n$ .
(2) $\#(\nu P^{\mathrm{o}})=(-1)^{n}\#(-I\text{ノ}P)$ , where $\#(-l\text{ノ}P)$ denotes the polynomial $\#(\nu P)$ with $\nu$ re-

placed by-v.
(3) The coefficient of $\nu^{n}$ in $\#(\nu P)$ is $\mathrm{v}\mathrm{o}\mathrm{l}(P)$ and the constant term in $\#(\nu P)$ is 1.

The polynomial $\#(\nu P)$ in $\nu$ is called the Ehrhart polynomial of $P$ . The fan $\triangle$ associated
with $P$ may not be simplicial, but if we subdivide $\triangle$ , then we can always take a simplicial
fan that is compatible with $P$ . We claim that the theorem above can be extended to simple
lattice multi-polytopes $P=(\triangle, \mathcal{F})$ . For that, we need to define $\#(P)$ and $\#(P^{\circ})$ . This is
done as follows. Let $v_{i}(i=1, \ldots, d)$ be a primitive integral vector in the half line $\Lambda(\{i\})$ .
In our convention, $v_{i}$ is chosen “outward normal” to the face $\mathcal{F}(\{i\})$ when $P$ arises from a
convex polytope. We slightly move $\mathcal{F}(\{i\})$ in the direction of $v_{i}$ (resp. $-v_{i}$ ) for each $i$ , so
that we obtain a map $\mathcal{F}_{+}$ (resp. $F_{-}$ ) : $\Sigma^{(1)}arrow \mathrm{H}\mathrm{P}(V^{*})$ . We denote the multi-polytopes
$(\triangle, F_{+})$ and $(\triangle, F_{-})$ by $P_{+}$ and $P$-respectively. Since the affine hyperplanes $\mathcal{F}_{\pm}(\{i\})’ \mathrm{s}$

miss the lattice $N^{*}$ , the functions $\mathrm{D}\mathrm{H}_{p_{\pm}}$ are defined on $N^{*}$ .

Definition. We define

$\#(P):=\sum_{u\in N^{*}}\mathrm{D}\mathrm{H}P+(u)$
,

$\#(^{\mathrm{p}^{\circ}}):=\sum_{u\in N}\mathrm{D}*\mathrm{H}P-(u)$
.

When $P$ arises from a convex polytope $P,$ $\mathrm{D}\mathrm{H}_{p_{+}}$ (resp. $\mathrm{D}\mathrm{H}_{P-}$ ) takes 1 on $u\in N^{*}$ in
$P$ (resp. in the interior of $P$ ) and $0$ otherwise. Therefore, $\#(P)$ (resp. $\#(\mathrm{p}^{0})$ ) agrees with
the number of latice points in $P$ (resp. in the interior of $P$ ) in this case.

Denote the volume element on $V^{*}$ by $dV^{*}$ , and define the volume vol(P) of $P$ by

$\mathrm{v}\mathrm{o}\mathrm{l}(P):=\int_{V^{*}}\mathrm{D}\mathrm{H}_{P}dV^{*}$ .

Needless to say, when $P$ arises from a convex polytope $P,$ $\mathrm{v}\mathrm{o}\mathrm{l}(P)$ agrees with the actual
volume of $P$ , but otherwise it can be zero or negative.

For a (not necessarily positive) integer $\nu$ , we denote $(\triangle, \nu F)$ by $\nu P$ , where
$(l^{\text{ノ}}\mathcal{F})(\{i\}):=\{u\in V^{*}|\langle u, v_{i}\rangle=\nu ci\}$

when $\mathcal{F}(\{i\})=\{u\in V^{*}|\langle u, v_{i}\rangle=c_{i}\}$ for a constant $c_{i}$ .
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Theorem 4.4. Let $P=(\triangle, \mathcal{F})$ be a simple lattice multi-polytope of dimension $n$ .
(1) $\#(\nu P)$ and $\#(\nu \mathrm{p}\circ)$ are polynomials in $\nu$ of degree (at most) $n$ .
(2) $\#(\nu P^{\mathrm{O}})=(-1)^{n}\#(-UP)$ for any integer $\nu$ .
(3) The coefficient of $v^{n}$ in $\#(\nu P)$ is $\mathrm{v}\mathrm{o}\mathrm{l}(\mathrm{p})$ and the constant term in $\#(\nu P)$ is $\deg(\triangle)$ .

(See Section 2 for $\deg(\triangle).$ )

Let us state a key identity used to prove the theorem above. For $I\in\Sigma^{(n)}$ , we define
$G_{I}$ to be the projection image of

{(
$.a_{1}.’$

. $.$ ‘ , $a_{d}) \in \mathbb{R}^{d}|\sum_{i=1}^{d}a_{i}vi\in N$ and $a_{j}=0$ for $j\not\in I$ }

on $\mathbb{R}^{d}/\mathbb{Z}^{d}$ . Since vectors $v_{i}’ \mathrm{s}$ for $i\in I$ are linearly independent and belong to $N,$ $G_{I}$ is a
finite subgroup of $\mathbb{R}^{d}/\mathbb{Z}^{d}$ . It is trivial if the set of the vectors $v_{i}$ for $i\in I$ is a basis of the
lattice $N$ , in particular, all $G_{I}$ for $I\in\Sigma^{(n)}$ are trivial if $\triangle$ is non-singular.

On the other hand, for $i=1,$ $\ldots$ , $d$ , we define
$\rho_{i}$ : $\mathbb{R}^{d}/\mathbb{Z}^{d}arrow \mathbb{C}^{*}$

to be the homomorphism induced from a homomorphism: $\mathbb{R}^{d}arrow \mathbb{C}^{*}$ mapping $(a_{1}, \ldots, a_{d})arrow$

$\exp(2\pi\sqrt{-1}a_{i})$ .
Let $N_{\Delta}^{*}$ be the lattice of $N_{\mathbb{R}}^{*}$ generated by all $u_{i}^{I}’ \mathrm{s}$ for $I\in\Sigma^{(n)}$ and $i\in I$ (see Section 3

for $u_{i}^{I}’ \mathrm{s}$). If $\triangle$ is non-singular, then $N_{\Delta}^{*}=N^{*}$ . The group ring $\mathbb{C}[N_{\Delta}^{*}]$ is a commutative
$\mathbb{C}$-algebra, and it has a basis $t^{u}(u\in N_{\triangle}^{*})$ as a complex vector space with multiplication
determined by the addition in $N_{\Delta}^{*}:$

$t^{u}\cdot t^{u’}:=t^{u+u’}$

The following is the key identity used in the proof of Theorem 4.4.

Lemma 4.5. Let the notation be as above. Then

$\sum_{I\in\Sigma^{()}n}\frac{w(I)t^{u_{I}}}{|G_{I}|}\mathit{9}\in\sum G_{t}\frac{1}{\prod_{i\in I}(1-\rho i(g)t-u^{I})i}=u\in\sum N^{*}\mathrm{D}\mathrm{H}\mathrm{p}+(u)t^{u}$

as elements in the quotient ring of $\mathbb{C}[N_{\triangle}^{*}]$ . In particular, if the multi-fan $\triangle$ is non-
singular, then $N_{\Delta}^{*}=N^{*}$ and

$\sum_{I\in\Sigma^{(n)}}\frac{w(I)t^{u_{I}}}{\prod_{i\in I}(1-t^{-}u_{t}^{I})}=\sum_{u\in N^{*}}\mathrm{D}\mathrm{H}P+(u)t^{u}$ .

5. COHOMOLOGICAL FORMULA FOR $\#(P)$

In the theory of toric varieties, a fan corresponds to a toric variety and a lattice convex
polytope corresponds to an ample line bundle over a toric variety. Therefore, one can
view the cohomology of a toric variety as that of the corresponding fan and the first
Chern class of an ample line bundle as that of the corresponding lattice convex polytope.
This viewpoint leads us to define the “(equivariant) cohomology” of a complete simplicial
multi-fan and the “(equivariant) first Chern class” of a multi-polytope. We then define
an index map “in cohomology” and establish a “cohomological formula” describing $\#(P)$

for a lattice multi-polytope. As an application of the cohomological formula, we show

11
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that the Khovanskii-Pukhlikov formula for a simple lattice convex polytope ([2] [3]) can
be generalized to a simple lattice multi-polytope.

Let $T$ be a compact toral group of dimension $n=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{\mathbb{Z}}N$ and let $BT$ be the classifying
space of $T$ . Then $H_{2}(BT)$ is canonically isomorphic to $\mathrm{H}\mathrm{o}\mathrm{m}(S^{1}, \tau)$ the group consisting of
homomorphisms from $S^{1}$ to $T$ . In fact, a homomorphism $f:S^{1}arrow T$ induces a continuous
map $Bf:BS^{1}arrow BT$ and once we fix a generator $\alpha$ of $H_{2}(BS^{1})\cong \mathbb{Z},$ $(Bf)_{*}\alpha$ defines an
element of $H_{2}(BT)$ . The correspondence : $farrow(Bf)_{*}\alpha$ is known to be an isomorphism
from $\mathrm{H}\mathrm{o}\mathrm{m}(S^{1}, \tau)$ to $H_{2}(BT)$ . In the following we assume $N=H_{2}(BT)$ and identify it
with $\mathrm{H}\mathrm{o}\mathrm{m}(S^{1}, \tau)$ . Then $N^{*}=H^{2}(BT)$ is identified with $\mathrm{H}\mathrm{o}\mathrm{m}(T, S^{1})$ and the group ring
$\mathbb{C}[N^{*}]$ can be identified with the representation ring of $T$ .

Let $\triangle=(\Sigma, \Lambda, w^{\pm})$ be a complete simplicial multi-fan in $N$ . Let $v_{i}\in H_{2}(BT)$ be
a unique primitive vector in $\Lambda(\{i\})$ for each $i=1,$ $.*\cdot,$

$d$ as before. Motivated by the
description of the equivariant cohomology of a compact non-singular toric variety (see
[10] $)$ , we define $H_{T}^{*}(\triangle)$ to be the face ring of the augmented simplicial set $\Sigma$ , i.e.,

$H_{T}^{*}(\triangle):=\mathbb{Z}[X_{1}, \ldots, x_{d}]/(x_{I}|I\not\in\Sigma)$ ,

where $x_{I}= \prod_{i\in I}x_{i}$ and the degree of $x_{i}$ is two, and call $H_{T}^{*}(\triangle)$ the equivariant cohomology
of $\triangle$ . We also define a homomorphism $\pi^{*}:$ $H^{2}(BT)arrow H_{T}^{2}(\triangle)$ by

$\pi^{*}(u)=\sum_{i=1}^{d}\langle u, vi\rangle x_{i}$ ,

where $\langle, \rangle$ denotes the natural pairing between cohomology and homology. It extends
to an algebra homomorphism $H^{*}(BT)arrow H_{T}^{*}(\triangle)$ , which we also denote by $\pi^{*}$ . One can
think of $H_{T}^{*}(\triangle)$ as a module (or more generally an algebra) over $H^{*}(BT)$ through $\pi^{*}$ .

For $I\in\Sigma^{(n)}$ , let $\{u_{i}^{I}|i\in I\}$ be the dual basis of $\{v_{i}|i\in I\}$ as before. We define a
ring homomorphism $\iota_{I}^{*}:$ $H_{T}^{*}(\Delta)\otimes \mathbb{Q}arrow H^{*}(BT;\mathbb{Q})$ by

$\iota_{I}^{*}(x_{i}):=\{$

$u_{i}^{I}$ if $i\in I$ ,
$0$ otherwise.

This map is well-defined because $x_{J}$ for $J\not\in\Sigma$ , which is zero in $H_{T}^{*}(\triangle)\otimes \mathbb{Q}$, maps to zero
through $\iota_{I}^{*}$ . One checks that $\iota_{I}^{*}$ is an $H^{*}(BT;\mathbb{Q})$-module map.

A multi-polytope $P=(\triangle, \mathcal{F})$ is associated with real numbers $c_{i}’ \mathrm{s}$ by

$\mathcal{F}(\{i\})=\{u\in H^{2}(B\tau_{;}\mathbb{R})|\langle u, v_{i}\rangle=C_{i}\}$ ,

and these numbers determine an element $c_{1}^{T}( \mathcal{P}):=\sum_{i=1}^{d}CiX_{i}$ of $H_{T}^{2}(\triangle)\otimes \mathbb{R}$, which we
call the equivariant first Chern class of P. This gives a bijective correspondence between
the set of multi-polytopes defined on $\triangle$ and $H_{T}^{2}(\triangle)\otimes \mathbb{R}$ . Note that $\iota_{I}^{*}(c_{1}^{T}(P))$ agrees with
the vertex $\bigcap_{i\in I}\mathcal{F}(\{i\})$ . If $P$ is a lattice multi-polytope, then $c_{i}’ \mathrm{s}$ are integers and the $u_{I}$

in Corollary 4.5 agrees with $\iota_{I}^{*}(c_{1}^{T}(P))$ .
Let $S$ be the multiplicative set consisting of nonzero homogeneous elements of positive

degree in $H^{*}(BT;\mathbb{Q})$ . Since $H^{*}(BT;\mathbb{Q})$ is a polynomial ring (hence an integral domain),
$H^{*}(BT;\mathbb{Q})$ can be thought of $\mathrm{a}.\mathrm{s}$ a subring of the localized ring $S^{-1}H^{*}(BT;\mathbb{Q})$ . We define
the index map

$\pi_{!}$ : $H_{T}*(\triangle)\otimes \mathbb{Q}arrow S^{-1}H^{*}(B\tau;\mathbb{Q})$

12
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“in cohomology” by

$\pi_{!}(x):=\sum_{I\in\Sigma(n)}\frac{w(I)\iota_{I}^{*}(_{X)}}{|G_{I}|\prod_{iI}\in u_{i}^{I}}$

(cf. [1, (3.8)]). This map decreases degrees by $2n$ and is an $H^{*}(BT;\mathbb{Q})$-module map. It
turns out that the image of $\pi_{!}$ lies in $H^{*}(BT;\mathbb{Q})$ .

Now, motivated by the description of the cohomology ring of a compact non-singular
toric variety (see p.106 in [4]), we define $H^{*}(\triangle)$ to be the quotient ring of $H_{T}^{*}(\triangle)$ by the
ideal generated by $\pi^{*}(H^{2}(B\tau))$ , in other words,

$H^{*}(\triangle):--\mathbb{Z}[X_{1}, \ldots, x_{d}]/\mathfrak{U}$,

where $\mathfrak{U}$ is the ideal generated by all
(1) $x_{I}$ for $I\not\in\Sigma$ ,
(2) $\sum_{i=1}^{d}\langle u, vi\rangle X_{i}$ for $u\in N$ .

Since $\pi_{!}$ is an $H^{*}(BT;\mathbb{Q})$ -module map and $H^{*}(BT;\mathbb{Q})/(H^{2}(BT;\mathbb{Q}))$ is isomorphic to
$H^{0}(BT;\mathbb{Q})=\mathbb{Q},$ $\pi_{!}$ induces a homomorphism

$\int_{\triangle}$ : $H^{*}(\triangle)\otimes \mathbb{Q}arrow \mathbb{Q}$ ,

where only elements of degree $2n$ in $H^{*}(\triangle)\otimes \mathbb{Q}$ survive through the map $\int_{\triangle}$ .

Remember that $G_{I}$ is a finite subgroup of $\mathbb{R}^{d}/\mathbb{Z}^{d}$ . We denote by $G_{\triangle}$ the union of $G_{I}$

over all $I\in\Sigma^{(n)}$ . Since $\rho_{i}$ is defined on $\mathbb{R}^{d}/\mathbb{Z}^{d},$ $\rho_{i}(g)$ makes sense for $g\in G_{\triangle}$ . It follows
from the definition of $G_{I}$ and $\rho_{i}$ that if $g\in G_{I}$ , then $\rho_{i}(g)=1$ for $i\not\in I$ .

We define the Todd class $\mathcal{T}(\triangle)$ of the complete simplicial multi-fan $\triangle$ by

$\mathcal{T}(\triangle):=\sum_{g\in G_{\Delta}}\prod_{i=1}\frac{\overline{x}_{i}}{1-\rho_{i}(g)e^{-\overline{x}}i}d\in H^{**}(\triangle)\otimes \mathbb{Q}$,

where $\overline{x}_{i}$ denotes the image of $x_{i}\in H_{T}^{*}(\triangle)$ in $H^{*}(\triangle)$ . We also define. the first Chern
class $c_{1}(\mathcal{P})$ of a multi-polytope $P$ defined on $\triangle$ to be the image of $c_{1}^{T}(\mathrm{p})\in H_{T}^{2}(\triangle)\otimes \mathbb{R}$

in $H^{2}(\triangle)\otimes \mathbb{R}$.

Theorem 5.1. If $P$ is a simple lattice multi-polytope, then $\int_{\triangle}e^{c_{1}(\mathrm{p})}\mathcal{T}(\triangle)=\#(P)$ .

As an application of the theorem above, we shall show that Khovanskii-Pukhlikov
formula, which relates a certain variation of the volume of a simple convex lattice polytope
to the number of lattice points in it, can be generalized to simple multi-polytopes. We
begin with

Lemma 5.2. $\mathrm{v}\mathrm{o}\mathrm{l}(\mathrm{p})=\frac{1}{n!}\int_{\triangle}c_{1}(P)^{n}=\int_{\triangle}e^{c_{1}()}P$ for a simple multi-polytope $P$ .

Multi-polytopes defined on $\triangle$ form a vector space isomorphic to $H_{T}^{2}(\triangle)\otimes \mathbb{R}$ and
Lemma 5.2 implies that the volume function is a homogeneous polynomial function of de-
gree $n$ . In fact, if one writes $c_{1}^{T}( \mathrm{p})=\sum_{i=1}^{d}c_{i}x_{i}$ , then $\mathrm{v}\mathrm{o}\mathrm{l}(\mathrm{p})$

.
is a homogeneous polynomial

in $c_{1},$ $\ldots,$
$c_{d}$ of total degree $n$ .
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For $h=(h_{1}, \ldots, h_{d})\in \mathbb{R}^{d}$ , we denote by $P_{h}$ a multi-polytope with $c_{1}^{T}(P_{h})= \sum_{i=1}^{d}(c_{i}+$

$h_{i})x_{i}$ . Since $c_{1}(P_{h})= \sum_{i=1}^{d}(c_{i}+h_{i})\overline{x}_{i}$, Lemma 5.2 applied to $P_{h}$ implies that $\mathrm{v}\mathrm{o}\mathrm{l}(P_{h})$ is
a polynomial in $h_{1},$

$\ldots,$
$h_{d}$ (of total degree $n$). We define the Todd operator as follows:

$\mathcal{T}(\partial/\partial h):=\sum_{g\in c\Delta}\prod_{i=1}\frac{\partial/\partial h_{i}}{1-\rho_{i}(g)e^{-}\partial/\partial h_{i}}d$.

Although the Todd operator is of infinite order, its operation on $\mathrm{v}\mathrm{o}\mathrm{l}(P_{h})$ converges because
$\mathrm{v}\mathrm{o}\mathrm{l}(P_{h})$ is a polynomial in $h_{1},$

$\ldots,$
$h_{d}$ . The following theorem extends the Khovanskii-

Pukhlikov formula ([9] [2] [3]) to simple lattice multi-polytopes.

Theorem 5.3. If $P$ is a simple lattice multi-polytope, then
$\mathcal{T}(\partial/\partial h)_{\mathrm{V}}\mathrm{o}1(P_{h})|h=^{0}\#=(\mathrm{p})$ .

Proof. An elementary computation shows that

$\frac{\partial/\partial h_{i}}{1-p_{i}(g)e^{-}\partial/\partial h_{i}}e^{(C_{i+}}|_{h=0}hi)\overline{x}iei=ci\overline{x}i_{\frac{\overline{x}_{i}}{1-\rho_{i}(g)e^{-\overline{x}}i}}$ .

Therefore, it follows from Lemma 5.2 and Theorem 5.1 that

$\tau(\partial/\partial h)_{\mathrm{V}}\mathrm{o}1(\mathcal{P}h)|h=^{0\mathcal{T}(\partial/}=\partial h)\int_{\Delta}e^{c1(\mathrm{p}_{h})}|h=0$

$= \sum_{\mathit{9}\in c_{\Delta}}\prod^{d}i=1\frac{\partial/\partial h_{i}}{1-\rho_{i}(g)e^{-}\partial/\partial h_{i}}\int\Delta)e(c_{i}+h_{i}\overline{x}_{i}|_{h=}i0$

$= \int_{\Delta}\sum_{g\in G\Delta}\prod_{=i1}de^{c_{i}\overline{x}_{i}}\frac{\overline{x}_{i}}{1-\rho_{i}(g)e^{-\overline{x}}i}$

$= \int_{\Delta}e^{c_{1}}\mathcal{T}(\mathrm{p})(\Delta)=\#(P)$ ,

proving the theorem. $\square$

Remark. One can reformulate the Khovanskii-Pukhlikov formula as follows. As remarked
above, the volume function $\mathrm{v}\mathrm{o}\mathrm{l}$ is a polynomial in $c_{1},$ $\ldots,$

$c_{d}$ , so one can apply the Todd
operator $\mathcal{T}(\partial/\partial c)$ (with the variables $c=(c_{1},$

$\ldots,$
$c_{d})$ instead of $h=(h_{1},$

$\ldots,$
$h_{d})$ ) to

the volume function $\mathrm{v}\mathrm{o}\mathrm{l}$ and evaluate at a simple lattice multi-polytope P. The same
argument as in the proof of Theorem 5.3 shows that the evaluated value agrees with $\#(P)$ .
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