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1 Introduction

We introduce on the space $\mathcal{E}_{n}=\mathfrak{g}\mathfrak{l}(n, \mathbb{R})\cross \mathbb{R}^{n}$ the antisymmetric bracket operation

[ $(A_{1}, v_{1}),$ $(A_{2}, v_{2}) \mathrm{I}=([A_{1}, A_{2}], \frac{1}{2}(A_{1}v_{2}-A_{2}v_{1}))$ . (1)

Without the factor of $\frac{1}{2}$ , this would be the semidirect product Lie algebra for the usual

action of $\mathfrak{g}\mathfrak{l}(n, \mathbb{R})$ on $\mathbb{R}^{n}$ . With the factor of $\frac{1}{2}$ , the bracket does not satisfy the Jacobi

identity. Nevertheless, it does satisfy the Jacobi identity on many subspaces which are

closed under the bracket. In fact, we will see that any Lie algebra structure on $\mathbb{R}^{n}\mathrm{i}\mathrm{S}$

realized on such a subspace.

If $B$ is any bilinear operation on $\mathbb{R}^{n}$ , we define the adjoint operator $\mathrm{a}\mathrm{d}_{B}$ : $\mathbb{R}^{n}arrow \mathrm{g}l(n, \mathbb{R})$

by $\mathrm{a}\mathrm{d}_{B}(v)(w)=B(v, u))$ , and we denote by $\mathcal{F}_{B}\subset \mathcal{E}_{n}$ the graph of this operator. A simple

calculation shows:

Proposition 1.1 If $B$ is a skew symmetnc bilinear operation on $\mathbb{R}^{n},$ then $B$ sa’tisfies the

Jacobi identity if and only if $\mathcal{F}_{B}$ is closed under the bracket operation (1) on $\mathcal{E}_{n}$ . When

this condition is satisfied, the restriction to $F_{B}$ of the natural projection from $\mathcal{E}_{n}$ to 1R$n$ is

an isomorphism between the restncted $\mathcal{E}_{n}$ bracket and the operation $B$ .
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The skew symmetry of an operation $B$ can also be seen as a property of the graph

$\mathcal{F}_{B}$ . We introduce a symmetric bilinear form on $\mathcal{E}_{n}$ with values in $\mathbb{R}^{n}$ :

$\langle(A_{1}, v_{1}), (A_{2}, v_{2})\rangle=\frac{1}{2}(A_{1}v_{2}+A_{2}v_{1})$ . (2)

The operation $B$ is skew symmetric if and only if $F_{B}$ is isotropic for this bilinear form.

When this is the case, $\mathcal{F}_{B}$ is actually a maximal isotropic subspace.

As we mentioned above, the bracket operation [ , I does not satisfy the Jacobi identity.

In fact, we have a simple formula for the jacobiator

$J(e_{1}, e_{2}, e_{3})=[[e_{1},$ $e_{2}\mathrm{I},$ $e_{3}\mathrm{I}+\mathrm{c}.\mathrm{p}.$ , (3)

where the $e_{j}$ are elements of $\mathcal{E}_{n}$ and “
$\mathrm{c}.\mathrm{p}.$

” means to add the two terms obtained by cyclic

permutation of the three indices. In terms of the “Cartan 3-form”

$T(e_{1}, e_{2}, e_{3})= \frac{1}{3}\langle[e_{1}, e_{2}\mathrm{I}, e_{3}\rangle+\mathrm{c}.\mathrm{p}.,$ $\epsilon$ (4)

the jacobiator is given by:

$J(e_{1}, e_{2}, e_{3})=(0, T(e_{1}, e_{2}, e_{3}))$ . (5)

Proposition 1.1 follows immediately from Equation 5 and the fact that the graph $F_{B}$

is maximal isotropic.

We define a $D$-structure on $\mathbb{R}^{n}$ to be any maximal isotropic subspace of $\mathcal{E}_{n}$ which is

closed under the bracket operation. By (5), any $D$-structure is a Lie algebra with the

restricted bracket. Among the $D$-structures are not only the $n$-dimensional Lie algebras,

realized on the graphs of their adjoint representations, but also the “horizontal” subspace

$\mathfrak{g}\mathfrak{l}(n, \mathbb{R})\oplus\{0\}$ . Unfortunately, this is the only graph of a mapping from $\mathfrak{g}\mathfrak{l}(n, \mathbb{R})$ to $\mathbb{R}^{n}$

which is isotropic in $\mathcal{E}_{n}$ . The reader is invited to find other D-structures.

We come now to the principal question raised by the construction above. All n-

dimensional Lie algebras can be embedded in the space $\mathcal{E}_{n}$ , which has a bracket operation

which does not quite satisfy the Jacobi identity. We will refer to $\mathcal{E}_{n}$ as an omni-Lie alge-

bra. Is there a global object corresponding to $\mathcal{E}_{n}$ , obtained by some kind of $‘ {}^{t}integration$”,

which would serve as an “omni-Lie group” (.?

Remark. In response to the posting of a preprint ,version of this work, Michael Kinyon

made some suggestions which have led to the resolution of some (but not all!) of the

problems raised here. Details will appear in [5].
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2 Courant algebroids

Although our presentation of the omni-Lie algebras in the previous section was self con-

tained, in fact we came to this construction by linearizing at a point the following bracket

on the sections of $E=TM\oplus T^{*}M$ , where $M$ is a differentiable manifold. It was introduced

by T. Courant [3].

[ $(\xi_{1}, \theta_{1}),$ $( \xi_{2}, \theta_{2})\mathrm{J}=([\xi_{1}, \xi_{2}], \mathcal{L}_{\xi_{1}}\theta_{2}-\mathcal{L}_{\xi_{2}}\theta_{1}-\frac{1}{2}d(i_{\xi_{1}}\theta_{2}-i_{\xi_{2}}\theta_{1}))$ , (6)

where $\mathcal{L}_{\xi}$ and $i_{\xi}$ are the operations of Lie derivative and interior product by the vector

field $\xi$ .

Courant introduced his bracket to unify the treatment of Poisson structures (bivector

fields $\pi$ on $M$ for which the bracket $\{f, g\}=\pi(df, dg)$ on $C^{\infty}(M)$ satisfies the Jacobi

identity) and presymplectic structures (2-forms on $M$ which are closed). Each bivector

field $\pi$ or 2-form $\omega$ on $\Lambda I$ gives rise to a graph which is a subbundle $F$ of $E$ whose fibres

are maximal isotropic with $\mathrm{r}\mathrm{e}\mathrm{s}\iota$) $\mathrm{e}\mathrm{c}\mathrm{t}$ the the (indefinite) inner product

$\langle(\xi_{1}, \theta_{1}), (\xi_{2}, \theta_{2})\rangle=\frac{1}{2}(\theta_{2}(\xi_{1})+\theta_{1}(\xi_{2}))$ . (7)

The space of sections of the subbnndle $F$ is closed under the Courant bracket (6) if

and only if $\pi$ [resp. $\omega$ ] is a Poisson [resp. presymplectic] structure. Courant defined a

Dirac structure on $M$ to be any maximal isotropic subbundle $F\subset TM\oplus T^{*}M$ whose

sections are closed under the Courant bracket. Dirac structures include not only Poisson

and presymplectic structures, but also foliations on $M$ . If $B$ is an integrable subbundle

of $TM,$ $B^{\perp}$ its annihilator in $T^{*}\mathrm{A},I$ , then $B\oplus B^{\perp}$ is a Dirac structnre.

Any Dirac structure $F$ on $M$ is a Lie algebroid. This means that: (1) the sections

of $M$ have a Lie algebra structure $[ , ]$ (over $\mathbb{R}$ ) $;(2)$ there is a bundle map $\rho:Farrow TM$ ,

called the anchor, which induces a Lie algebra homomorphism from sections of $F$ to

vector fields on $M;(3)$ for any sections $e_{1}$ and $e_{2}$ of $F$ and a function $f$ on $M$ ,

$[e_{1}, f\zeta_{2}^{\lrcorner}]=f\cdot[e_{1}, e_{2}]+(\rho(e_{1})\cdot f)e_{\mathit{2}}$ . (8)

For a Dirac structure, the bracket and anchor are the restriction to $F$ of the Courant

bracket and the projection on the first summand of $TM\oplus T^{*}M$ . When the Dirac structure

97



is a Poisson structure $\pi$ , the subbundle $F$ may be identified with $T^{*}M$ by projection $\mathrm{o}\mathrm{n}\mathrm{t}_{}\mathrm{o}$

the second summand of $E$ , and the resulting Lie algebroid structure on $T^{*}M$ is the

infinitesimal object corresponding to (local) symplectic groupoids [2] [13] for the Poisson

manifold $(M, \pi)$ .

Thus, the bundle $E$ carries a structure which does not quite satisfy the axioms of a

Lie algebroid, since its bracket does not satisfy the Jacobi identity, but it contains many

subbundles on which the restricted bracket $is$ a Lie algebroid structure, these include

the Lie algebroids of the symplectic groupoids of all the Poisson structures on $M$ . Since

Lie algebroids are the infinitesinlal objects for (local) Lie groupoids, it is natural to ask

whether there is a global, groupoid-like object corresponding to $E$ which contains all these

groupoids.

The properties of Courant’s bracket were the basis for the definition of a Courant

algebroid by Liu, Xu, and the author [7]. This object is defined to be a vector bundle

$E$ over a manifold $M$ carrying a field of inner $\mathrm{I}$) $\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{s}$ (i.e. nondegeIlerate symmetric

bilinear forms) along the fibres, an $\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{y}\mathrm{n}\mathrm{l}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$ bracket operation [ , I on its space of

sections, and a bundle map $\rho$ : $Earrow TM$ such that the Jacobi identity and the Leibniz rule

(8) are satisfied modulo terms which are differentials, in a certain sense, of terms involving

the inner products. In addition, the bilinear form itself satiefies sonle conditions, one of

which is a modified version of (adjoint invariance” (The precise axionls can be found in

algebraic form in Section 3 below.) When $M$ is a point, all the error terms vanish, and

a Courant algebroid is just a Lie algebra with an adjoint-invariant inner product. In this

case, the corresponding global object is clearly a Lie group with a $\mathrm{b}\mathrm{i}$-invariant (possibly

indefinite) metric.

In any Courant algebroid, one may define the Dirac structures to be the maximal

isotropic subbundles whose sections are closed under the bracket; since the anomalies

vanish on Dirac structures, they are Lie algebroids. When $M$ is a point, a pair of comple-

mentary Dirac structures is a Manin triple corresponding to a Lie bialgebra, and conversely

the direct sum of a Lie bialgebra and its dual is a Courant algebroid over a point. This is

the double of the Lie bialgebra, and the global object is the double of a Poisson Lie group

corresponding to the Lie bialgebra. Similarly, there is a notion of Lie bialgebroid due to

Mackenzie and Xu [10]. The double of a Lie bialgebroid is a Courant algebroid [7]; what
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is missing is the double of the Poisson groupoid corresponding to the Lie bialgebroid.

Some progress has been made in relating Courant algebroids to other algebraic struc-

tures. In [12], it is shown that Courant algebroids can be considered as strongly homotopy

Lie algebras. In Roytenberg’s thesis [11], an approach to Lie algebroids in terms of ho-

mological vector fields on supermanifolds was developed to describe arbitrary Courant

algebroids. The thesis also develops the idea, suggested by some calculations in [7] and

observations by Y. Kosmann-Schwarzbach and P. Severa, that a non-antisymmetric ver-

sion of the bracket on a Courant algebra is an example of the Leibniz algebras introduced

by Loday [8] and called Loday algebras in [6], where Kosmann-Schwarzbach shows how

Loday brackets can be obtained as so-called derived brackets from Poisson brackets and

derivations. It is this version of the Courant bracket which plays the central role in

Roytenberg’s work.

Although P. Severa has observed that a class of Courant algebroids obtained by de-

forming Courant’s original example may be seen as the infinitesimal objects corresponding

to gerbes (see [1] for a discussion of gerbes), there is still no satisfactory description of the

groupoid-like object corresponding to a general Courant algebroid, nor of the group-like

object corresponding to the sections of a Courant algebroid. In the hope of clarifying the

situation, we may try to “linearize” Courant’s $\mathrm{o}\mathrm{r}\mathrm{i}\dot{\mathrm{g}}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}$ example at a point of $M=\mathbb{R}^{n}$ .

The result, as we shall explain next, is the omni-Lie algebra $\mathcal{E}_{n}$ of Section 1.

3 C-Algebras

There is an algebraic version of the notion of Lie algebroid, in which the role of a vector

bundle over a manifold is played by the algebraic analogue of its space of sections, namely

a module over a commutative algebra. This concept goes under various names, including

“Lie-Rinehart algebra” and $(R, A)$ Lie algebra; we refer the reader to [9] for an extensive

list of them. In this section, we introduce an analogous algebraic version of Courant

algebroids.

We begin with a commutative ground ring $R$ and a commutative $R$-algebra $A$ (not

necessarily unital). Next, we consider an $A$-module $\mathcal{E}$ with a homomorphism $\rho$ from $\mathcal{E}$

to the $A$-module of derivations of $A$ . For any $f\in A$ , we define its $\mathcal{E}$ differential $d_{\mathcal{E}}f$ in
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the dual $A$ module $\mathcal{E}^{*}$ by $d_{\mathcal{E}}f(e)=\rho(e)f$ . Now suppose that $\mathcal{E}$ also carries a symmetric

$A$-bilinear form $\langle$ , $\rangle$ which is weakly nondegenerate in the sense that the associated

homomorphism $\beta$ from $\mathcal{E}$ to the dual $A$-module $\mathcal{E}^{*}$ is injective. If $d_{\mathcal{E}}f$ is in the image of

$\beta$ for a given $f\in A$ , we define the gradient $Df$ to be the well-defined element $\frac{1}{2}\beta^{-1}d_{\mathcal{E}}f$

of $\mathcal{E}$ ; i.e. $\langle Df, e\rangle=\frac{1}{2}\rho(e)f$ for all $e\in \mathcal{E}$ . (The factor of $\frac{1}{2}$ is irritating, but it has to go

somewhere; we have chosen to put it here to match the conventions in [7].)

Definition 3.1 With the definitions and notation above, an $(R, A)C$-algebra is an

$A$ -module $\mathcal{E}$ carrying a nondegenerate $A$ -valued symmetric bilinear form $\langle$ , $\rangle$ , an anti-

symmetric $R$-bilinear operation [ , $\mathrm{I}$ , and an $A$ -module homomorphism $\rho$ with values in

the $R$-derivations of $A$ such that the following properties are satisfied:

$\mathit{0}$ . The gradient $Df$ is defined for all $f\in A$ ;

1. For any $e_{1},$ $e_{2},$ $e_{3}$ in $\mathcal{E},$ [[$e_{1},$ $e_{2}\mathrm{I},$ $e_{3}\mathrm{I}+c.p$ . $=DT(e_{1}, e_{2}, e_{3})$ ;

2. for any $e_{1},$ $e_{2}$ in $\mathcal{E},$ $\rho[e_{1},$ $e_{2}\mathrm{I}=[\rho e_{1}, \rho e_{2}]$ ;

3. for any $e_{1},$ $e_{2}$ in $\mathcal{E}$ and $f$ in $A,$ [ $e_{1},$ $fe_{2}\mathrm{I}=f[e_{1},$ $e_{2}\mathrm{J}+(\rho(e_{1})f)e_{2}-\langle e_{1}, e_{2}\rangle Df$ ;

4. $\rho\circ D=0,$ $i.e.$ , for any $f,$ $g$ in $A\langle Df, Dg\rangle=0_{j}$

5. for any $e,$ $h_{1},$ $h_{2}$ in $\mathcal{E},$ $\rho(e)\langle h_{1}, h_{2}\rangle=\langle[e, h_{1}\mathrm{J}+D\langle e, h_{1}\rangle, h_{2}\rangle+\langle h_{1}, [e, h_{2}\mathrm{I}+D\langle e, h_{2}\rangle\rangle$ ,

where $T(e_{1}, e_{2}, e_{3})$ is the element of A defined by:

$T(e_{1}, e_{2}, e_{3})= \frac{1}{3}\langle[e_{1}, e_{2}\mathrm{J}, e_{3}\rangle+c.p.$ , (9)

When $R=\mathbb{R}$ and $A$ is the algebra of smooth functions on a manifold $M$ , an $(R, A)$ C-

algebra isjust the space of sections of a Courant algebroid. On the other hand, to to see the

omni-Lie algebras of Section 1 as $(R, A)C$-algebras, we let $R$ be $\mathbb{R}$ and $A$ be $\mathbb{R}^{n}$ with the

multiplication in which all products are zero. Geometrically, we should think of the latter

as the algebra of functions which are defined on an infinitesimal neighborhood of the origin

in the dual space of 1R$n$ and which vanish at the origin. (One could adjoin the constant

functions at the cost of complicating the example slightly.) $\mathcal{E}_{n}$ is $\mathfrak{g}\mathfrak{l}(n, \mathbb{R})\oplus \mathbb{R}^{n}$ with the

module structure in which all scalar products are zero. We identify the derivations of $A$

100



with $\mathrm{g}l(n, \mathbb{R})$ , so that $\rho$ can be defined as projection on the first summand of $\mathrm{g}l(n, \mathbb{R})\oplus \mathbb{R}^{n}$ .

The inner product and bracket are given by (2) and (1). The gradient $\mathrm{D}$ is then given for

all $v$ by $Dv=(0, v)$ . The axioms of an $(R, A)C$-algebra may be checked directly, or as a

consequence of identities satisfied in the original Courant algebroid.

It is clear that isotropic subalgebras of $(R, A)C$-algebras are Lie algebras. The fact

that all $n$-dimensional Lie algebras arise this way in the omni-Lie algebra $\mathfrak{g}\mathfrak{l}(n, \mathbb{R})\oplus \mathbb{R}^{n}$

can be seen as a consequence of the fact that, among the Dirac structures on the dual

space of $\mathbb{R}^{n}$ are the Lie-Poisson structures attached to all Lie algebra structures on $\mathbb{R}^{n}$ .

Finally, we note that Evens and Lu [4] have recently shown that the variety of maximal

isotropic subalgebras in the double of a Lie bialgebra carries a natural Poisson structure.

It would be interesting to see whether their work extends to our more general setting.
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