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1 Introduction
We consider geometric counter parts of $\mathrm{C}^{*}$-algebras. By [1] and our studies, we have
the following tabular of correspondences as a generalization of classical (commuta-
tive) known results:

$-$

where the part of the group of automorphisms and modules are our studies $[2, 3]$ .
We want to fill ? in this tabular. $\mathrm{C}^{*}$-subalgebra and representation are treated

as special studies of homomorphisms between two $\mathrm{C}^{*}$-algebras.
The aim of present paper is a presentation of studies of fibration structure as-

sociated $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}*$-homomorphisms for two unital $\mathrm{C}^{*}$-algebras $A$ and $B$ . We introduce
three levels of studies as follows:

(i) one homomorphism $\phi\in \mathrm{H}\mathrm{o}\mathrm{m}(A, B)$ itself,

(ii) the space $\mathrm{H}\mathrm{o}\mathrm{m}(A,B)$ of $\mathrm{a}\mathrm{l}1*$-homomorphisms,

(iii) a $\mathrm{b}\mathrm{i}$-functor $\mathrm{H}\mathrm{o}\mathrm{m}$.
We introduce examples of three levels (i), (ii), (iii). We show relations between
them, quantum mechanics and non commutative geometry.
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2 General setting
In [1],

Theorem 2.1 Each unital $C^{*}$ -algebra $A$ can be realized faithfully as a function sub-
algebra on the $set/p$ of all pure states on it as Gelfand representation

$f$ : $Aarrow \mathcal{F}(\mathcal{P})$ ; $A\vdash+f_{A}$ ,

$f_{A}(\rho)\equiv\rho(A)$ $(\rho\in \mathcal{P})$

with $a*$ -product on the function space $\mathcal{F}(P)$ on $P$ .

This theorem brings us a possibility of a geometrical study of $\mathrm{C}^{*}$-algebra. Though
the correspondence between a $\mathrm{C}^{*}$-algebra and $P$ is not categorical, that is, it is not
suitable for studies of morphisms and subalgebras. Hence we try to consider the
following two possibilities:

(i) give up to study about their categorical property and study the phenomena
which appear from morphisms and subalgebras.

(ii) find the other generalization of the correspondence between $\mathrm{C}^{*}$-algebras and
its dual objects.

We review facts in commutative case once more. Let $X$ and $\mathrm{Y}$ be two compact
Hausdorff spaces. Then there is a $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}\mathrm{o}$-one correspondence between $C(X, Y)$ and
$\mathrm{H}\mathrm{o}\mathrm{m}(C(\mathrm{Y}), c(X))$ . For example, $f$ : $Xarrow Y$ is surjective if and only if $f^{*}$ :
$C(Y)arrow C(X)$ is injective. In this sense, subalgebra of commutative $\mathrm{C}^{*}$-algebra
is corresponded to a $\mathrm{f}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\Gamma_{\wedge}$. Then there is a question what happens in the non
commutative case.

In general, for $\phi\in \mathrm{H}\mathrm{o}\mathrm{m}(A, \beta),$ $\emptyset*(\mathcal{P}_{B})\not\subset P_{A}$ . This is one of problems of breakdown
of the categorical equivalence in the commutative case. We treat this type of dual
of morphisms in the next section.

3 A fibration associated with single morphism
As the case (i) in section 1, we explain easy examples. We obtain the following
fibration from an inclusion $\iota$ : $\mathrm{C}^{2}rightarrow M_{2}(\mathrm{C})$ as an observation of a naive spin
system.
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Proposition 3.1 (Torus fibration for $S^{3}$) There is a continuous surjection $\mu$ : $S^{3}arrow$

$[0,1]$ of $S^{3}$ on a closed interval $[0,1]$ and this fibration induces a decomposition as

follows:
$S^{3} \cong\prod_{z\in[0,1]}T_{z}$

where $T_{0}\cong\tau_{1}\cong S^{1}$ and $T_{z}\cong T^{2}$ for $z\in(\mathrm{O}, 1)$ .

Proof. Define a map
$f$ : $s^{3}=s(\mathrm{c}^{2})arrow[0,1]$

by
$f(Z_{1}, z_{2})\equiv|z_{1}|$ $((z_{1,2}z)\in S^{3})$ .

Then $f$ is surjective and continuous. The fibration by $f$ gives the statement of
proposition. 1

Specially, a map $f’$ which is induced by $f$

$f^{J}$ : $\mathrm{C}P^{1}\equiv S^{3}/U(1)arrow[0,1]$

is just the restriction of dual map $\iota$ : $\mathrm{C}^{2}\mathrm{c}arrow M_{2}(\mathrm{C})$ to the set $\mathrm{C}P^{1}$ of pure states
of $M_{2}(\mathrm{C})$ . $[0,1]$ is the set of all(mixed)states of $\mathrm{C}^{2}$ . The fiber of $f^{J}$ is regarded as
lost freedom in the observation of quantum states of $M_{2}(\mathrm{C})$ . The image of $f^{J}$ is the
probability which the spin takes value, $0$ ( $=$ down) or 1 $(=\mathrm{u}\mathrm{p})$ . In this sense, we
note that $[0,1]$ is a l-simplex.

In other point of view, Proposition 3.1 represents the locus of deformation of
torus $T^{2}$ in $\mathrm{C}^{2}\cong \mathrm{R}^{4}$ . Or, $S^{3}$ can be considered as a locus of $T^{2}$ in $\mathrm{R}^{4}$ which moves
with 1-parameter. At point of the start and the end in $[0,1],$ $T^{2}$ collapses $S^{1}$ by
pinching out one of two cycles of $T^{2}$ .

In the same way, we have a little bit general result.

Proposition 3.2 Any $2n+1$ -dimensional sphere has a singular fibration on a n-
simplex with $k+1$ -torus as a fiber at a point on the interior of k-subsimplex.

In general, the normal (mixed)state space of $\mathcal{L}(\mathcal{H})$ has a fibration on a Hilbert
simplex with flag manifold as the fiber. This is proved by the uniqueness of diago-
nalization of positive normalized trace class operator as its ordered eigen values for a
complete orthonormal basis. In this way, the state space of an algebra of observables
has a fibration with respect to the spectrum of the commutative algebra affiliated
with Hamiltonian. This is just an observation in a quantum system. We can watch
lost freedom in an observation as a flag manifold.

4 Fibrations of homomorphism spaces
$i$

4.1 Morphisms between matrix algebras

We show easy examples as the case (ii) in section 1. We consider $H_{2,3}$ defined by
the set of $\mathrm{a}\mathrm{l}1*$-homomorphisms:

$H_{2,3}\equiv \mathrm{H}\mathrm{o}\mathrm{m}(M2(\mathrm{c}), M_{3}(\mathrm{c}))$ .
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The content of $H_{2,3}$ is classified two types, $\phi=0$ or not. Define $\Lambda_{2,3}\equiv H_{2,3}/\sim \mathrm{w}\mathrm{h}\mathrm{e}x\mathrm{e}$

$\phi\sim\phi’$ if there is $\mathrm{a}*$-automorphism $g$ of $M_{2}(\mathrm{C})$ such that $\phi’=\phi \mathrm{o}g$ . Remark that
the automorphism group of $M_{2}(\mathrm{C})$ is isomorphic to the projective unitary group
PU(2) $\equiv U(2)/U(1)$ . Denote the natural projection

$\pi$ : $H_{2,3}arrow\Lambda_{2,3}$ .

Then we have a fibration $(H_{2,3}, \pi, \Lambda_{2,3})$ . We have the following proposition

Proposition 4.1 There is the following equivalence offibration:
$(H_{2,3}, \pi, \Lambda_{2,3})\cong(PV_{2}(\mathrm{C}^{3})\cup\{0\}, 1^{\text{ノ}}\sim, \mathrm{c}P^{2}\cup\{0\})$

where $(PV_{2}(\mathrm{C}^{3}), \iota \text{ノ}, \mathrm{c}P^{2})$ is a principal PU(2)-bundle, $PV_{2}(\mathrm{c}^{3})$ is projective Stiefel
manifold consisting of $U(1)$ -orbits of 2-orthonormal basis of $\mathrm{C}^{3}$ and $\tilde{\nu}$ is the exten-
sion of lノ by $\tilde{\nu}(0)=0$ .

Proof. For $0\neq\phi\in H_{2,3}$ , the image $\phi(I_{2})$ of the unit $I_{2}$ of $M_{2}(\mathrm{C})$ is a 2-dimensional
projection on $\mathrm{C}^{3}$ . On the other hand, for a two dimensional subspace $V\subset \mathrm{C}^{3}$ , we
obtain a isomorphism $\mathrm{E}\mathrm{n}\mathrm{d}_{\mathrm{C}}(V)\cong M_{2}(\mathrm{c})$ up to automorphism of $M_{2}(\mathrm{C})$ . Hence we
have an equivalence

$\Lambda_{2,3}^{\cross}\equiv$ $\{\phi\in H_{2,3} : \phi\neq 0\}/\sim$

$\cong$ $\{\phi(I_{2}):\emptyset\in H2,3\backslash \{0\}\}$

$\cong$
$G_{2}(\mathrm{c}^{\mathrm{s}})$

$\cong$ $\mathrm{C}P^{2}$ .
For $\phi,$ $\phi^{l}\in H_{2,3}^{\cross}$ such that $\phi\sim\phi^{J}$ , then $\phi^{-1}0\phi’\in \mathrm{A}\mathrm{u}\mathrm{t}M_{2}(\mathrm{C})\cong PU(2)$ . The action
of PU(2) on the fiber on $0\neq z\in\Lambda_{2,3}$ is free. Hence

$\pi^{-1}(z)\cong PU(2)$ $(0\neq z\in\Lambda_{2,3})$ .

The correspondence between $H_{2,3}^{\cross}$ and $PV_{2}(\mathrm{C}^{3})$ is given to calculate the isotropy
subgroup of PU(3)-(left)action on $H_{2,3}\backslash \{0\}$ .

In the same way, we have

Proposition 4.2 There is an equivalence of fibrations:
$(H_{2,4}, \pi, \Lambda_{2,4})$

$\cong(\{0\}\cup PV_{2}(\mathrm{C}^{4})\cup FM_{2}(\mathrm{C}^{4}),\tilde{\nu}, \{0\}\cup G_{2}(\mathrm{C}^{4})\cup G_{2}(\mathrm{C}^{4})/\mathrm{Z}_{2})$

where $FM_{2}(\mathrm{C}^{4})$ is a homogeneous space defined by

$FM_{2}(\mathrm{C}^{4})\equiv PU(4)/P(U(2)\otimes I_{2})$ .

The fiber of this fibration is equal to PU(2) except $\{0\}$ .
$FM_{2}(\mathrm{C}^{4})$ is the space of all fermions on $\mathrm{C}^{4}$ because an element of $FM_{2}(\mathrm{C}^{4})$ is
a homomorphism determined by a partial isometry $v$ on $\mathrm{C}^{4}$ which satisfies the
canonical anti-commutation relation:

$\{v, v^{*}\}=$ $I_{4}$ , $\{v, v\}--0$ , $\{v^{*}, v^{*}\}=0$
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where $\{\cdot, \cdot\}$ is the anti-commutator on $M_{4}(\mathrm{C})$ . $FM_{2}(\mathrm{C}^{4})$ has no name in usual text

book of geometry and it is not known other realization like a Stiefel manifold yet.

For $n,$ $m\in \mathrm{N},$ $H_{n,m}$ is described as a union of space of $n-1$-chain of B-

construction for the category of projections on $\mathrm{C}^{m}$ . For example, an element of
$FM_{2}(\mathrm{C}^{4})$ is a 1-chain, that is an edge between two orthogonal $\mathrm{p}\mathrm{r}\mathrm{o}.\mathrm{j}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}$ on $\mathrm{C}^{4}$ .
$0\neq\phi\in H_{3,6}$ corresponds to $2$-chain(,$\mathrm{o}\mathrm{r}2$-simplex) of the set of projections on $\mathrm{C}^{6}$ .

A matrix algebra has one-point spectrum. Hence it is regarded as a point with

some kind of internal freedom. $H_{2,3}$ is a non commutative mapping space between

non commutative points with internal symmetries PU(2) and PU(3), respectively.

4.2 Structure theorem of representation space of Cuntz al-
gebra

Let $\mathcal{O}_{n}$ be a Cuntz algebra with Cuntz generator $\{s_{i}\}_{i=1}^{n},$ $n\geq 2$ , and $\mathcal{H}$ a sepa-

rable infinite dimensional Hilbert space. Denote Rep $(\mathcal{O}n’ \mathcal{H})$ the set of all unital
$*$-representations of $\mathcal{O}_{n}$ on $\mathcal{H}$ .

We show that Rep $(\mathcal{O}_{n}, \mathcal{H})$ is realized as a fiber product of representation space
of matrix algebra and space of some partial isometries. Remark Rep $(\mathcal{O}n’ \mathcal{H})=$

$\mathrm{H}\mathrm{o}\mathrm{m}(\mathcal{O}_{n}, \mathcal{L}(\mathcal{H}))$.
Let $G_{\infty,\infty}(\mathcal{H})$ be the set of all projections on $\mathcal{H}$ with both rank and $\mathrm{c}\mathrm{o}$-rank $\infty$ .

We call $G_{\infty,\infty}(\mathcal{H})$ the Grassmanian on $\mathcal{H}$ type of $(\infty, \infty)$ . Let $H_{n}(\mathcal{H})$ be the set of

all $\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{l}*$-homomorphisms from $M_{n}(\mathrm{C})$ to $\mathcal{L}(H)$ . Let $PI(I, G_{\infty,\infty}(\mathcal{H}))$ be the set
of all partial isometries consisting $v$ satisfying

$\iota$

$v^{*}v=I$ , $vv^{*}\in G_{\infty,\infty}(\mathcal{H})$ .

Then we have three fibrations on $G_{\infty,\infty}(\mathcal{H})$ as follows:

$\pi$ : Rep $(\mathcal{O}_{n}, \mathcal{H})$ $arrow$ $G_{\infty,\infty}(\mathcal{H})$ ,

$\nu$ : $H_{n}(\mathcal{H})$ $arrow$ $G_{\infty,\infty}(\mathcal{H})$ ,

$\mu$ : $PI(I, G_{\infty,\infty}(\mathcal{H}))$ $arrow$ $G_{\infty,\infty}(\mathcal{H})$

defined by
$\pi(\phi)\equiv$ $\phi(s_{1}s_{1}*)$ $(\phi\in \mathrm{R}\mathrm{e}\mathrm{p}(\mathcal{O}_{n}, \mathcal{H}))$ ,

$\nu(\psi)\equiv$ $\psi(E_{11})$ $(\psi_{\in}H_{n}(\mathcal{H}))$ ,

$\mu(v)\equiv$ $vv^{*}$ $(v\in PI(I, G\infty,\infty(\mathcal{H})))$

where $\{E_{ij}\}^{n}i,j=1$ is the canonical matrix unit of $M_{n}(\mathrm{C})$ . Define the fiber product of
$(H_{n}(\mathcal{H}), \nu, G_{\infty,\infty}(\mathcal{H}))$ and $(PI(I, G_{\infty,\infty}(\mathcal{H})),$ $\mu,$

$G\infty,\infty(\mathcal{H}))$ by

$H_{n}(\mathcal{H})\cross_{G_{\infty,\infty}()}\mathcal{H}PI(I, G\infty,\infty(\mathcal{H}))$

$\equiv\{(\psi, v)\in H_{n}(\mathcal{H})\mathrm{x}PI(I, G\infty,\infty(\mathcal{H})) : \nu(\psi)=\mu(v)\}$ .
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We denote the natural projection

$p:H_{n}(\mathcal{H})\mathrm{x}_{G_{\infty,\infty}(\{)}\gamma PI(I, G\infty,\infty(\mathcal{H}))arrow G_{\infty,\infty}(\mathcal{H})$ .

$(H_{n}(\mathcal{H})\cross_{G_{\infty,\infty}(\mathcal{H})}PI(I, G_{\infty},\infty(\mathcal{H})), p, G_{\infty,\infty}(\mathcal{H}))$ is a fibration, too.

Theorem 4.1 There is the following equivalence of fibrations:

(Rep $(\mathcal{O}_{n},$ $\mathcal{H}),$ $\pi,$ $G(\infty,\infty \mathcal{H})$ )

$\cong(H_{n}(\mathcal{H})\cross_{G_{\infty,\infty}(\mathcal{H})}PI(I, G_{\infty,\infty}(\mathcal{H})),$ $p,$ $G_{\infty,\infty}(\mathcal{H}))$ .

Proof. Define a map

$\theta$ : Rep $(\mathcal{O}n’ \mathcal{H})arrow H_{n}(\mathcal{H})\mathrm{x}_{G_{\infty,\infty}()}\mathcal{H}PI(I, G\infty,\infty(\mathcal{H}))$ ,

$\theta(\phi)\equiv(\{\phi(siSj*))\}_{i,j}^{n}=1’\phi(_{S_{1})})$ $(\phi\in \mathrm{R}\mathrm{e}\mathrm{p}(\mathcal{O}_{n}, \mathcal{H}))$

where we identify a matrix unit and an element in $H_{n}(\mathcal{H})$ .
Then we have

$\nu(\{\phi(S_{i}S_{j})*)\}in,j=1)=$ $\phi(s_{11}s^{*})$

$=$ $\phi(s_{1})\phi(s_{1})^{*}$

$=$ $\mu(\phi(S_{1}))$ .
Hence the image of $\theta$ is in $H_{n}(\mathcal{H})\cross_{G_{\infty,\infty}(H)}PI(I, G_{\infty,\infty}(\mathcal{H}))$ . On the other hand,

$\theta^{-1}(\psi, v)=\{v, \psi(E_{21})v, \psi(E_{31})v, \ldots, \psi(En1)v\}$

for $((\psi, v)\in H_{n}(\mathcal{H})\mathrm{X}_{G_{\infty,\infty}(\mathcal{H})}PI(I, G\infty,\infty(\mathcal{H}))$ where we identify a Cuntz generator
and an element in Rep $(\mathcal{O}n’ \mathcal{H})$ . Clearly, $(\theta, id_{G_{\infty},(\mathcal{H}})\infty)$ is a (set $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$ ) $\mathrm{f}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

isomorphism in Theorem 4.1. 1

4.3 General case
In general, for two $\mathrm{C}^{*}$-algebra $A$ and $B,$ $\mathrm{H}\mathrm{o}\mathrm{m}(A, B)$ becomes the union of homoge-
neous space of the inner automorphism group $\mathrm{I}\mathrm{n}\mathrm{n}B$ of $B$ with the isotropy subgroup
$H_{\phi}$ defined by

$H_{\phi}\equiv$ $\mathrm{I}\mathrm{n}\mathrm{n}\mathcal{R}_{\phi}$

$\subset$
$\mathrm{I}\mathrm{n}\mathrm{n}B$ ,

$\mathcal{R}_{\phi}\equiv$ $\phi(A)’\cap B$

$=$ $\{b\in B:[a, b]=0, a\in\phi(A)\}$ .

for $\phi\in \mathrm{H}\mathrm{o}\mathrm{m}(A, \beta)$ . We have calculated concrete examples for $\mathrm{H}\mathrm{o}\mathrm{m}(A, B)$ .
We note that a similar theorem is known in a (commutative)mapping space

between differential manifold(section 13 in [4]).
The Weyl form of the canonical quantization is a pair $(\phi, \psi)$ of faithful represen-

tation of $C(s^{1})$ on a separable infinite dimensional Hilbert space $\mathcal{H}$ such that they
are transformed by adjoint map of (abstract)Fourier (inverse)transformation each
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other. That is, the canonical commutation relation can be regarded as a special
position of two points in $\mathrm{H}\mathrm{o}\mathrm{m}(C(s^{1}), \mathcal{L}(\mathcal{H}))$ . Since Fourier transformation is a gen-
erator of $\mathrm{Z}_{4}$ , it seems a rotation of angle $90^{\mathrm{O}}$ in a 2-dimensional plane. Hence a pair
of points associated with CCR is seemed in a position of $90^{\mathrm{O}}$ in a some 2-dimensional
plane in $\mathrm{H}\mathrm{o}\mathrm{m}(C(s^{1}), L(\mathcal{H})$ around center. When a pair $(\phi, \psi)$ takes a commutative
position, the algebra generated by $\phi(C(s^{1}))$ and $\psi(C(s^{1}))$ is isomorphic to $C(T^{2})$ .
Deformation of $C(T^{2})$ to $A_{\theta}$ can be treated in the space $\mathrm{H}_{\mathrm{o}\mathrm{m}}(c(s^{1}), \mathcal{L}(\mathcal{H}))$ ( or the
quotient space of $\mathrm{H}_{\mathrm{o}\mathrm{m}}(c(s^{1}), \mathcal{L}(\mathcal{H})))$ .

In this way, many examples of $\mathrm{C}^{*}$-algebra with some generators can be stated as
a position of of representations of commutative algebras.

5 A categorical extension of Gelfand transforma-
tion

In the case (iii) in section 1, we show the following categorical reformulation of
Gelfand representation of commutative unital $\mathrm{C}^{*}$-algebras:

Fact 5.1 (Gelfand representation) Denote categories $\mathcal{L}C\mathcal{H},$ $C\mathcal{H}$ and $CC_{1}^{*}$ categories
of locally compact Hausdorff spaces, compact Hausdorff spaces and unital commuta-
tive $C^{*}$ -algebras, respectively.

Then we have the following natural equivalence

$1_{CC_{1}^{*}}\cong$ $\mathcal{L}C\mathcal{H}_{\mathrm{C}^{\mathrm{O}(}}Cc^{*})_{\mathrm{C}}1$

’

$1_{C\mathcal{H}}\cong$ $(CC_{1}^{*})_{\mathrm{C}}0\mathcal{L}C\mathcal{H}\mathrm{c}|c\mathcal{H}$ ,

where $\mathcal{X}_{Y}$ is the contravariant principal representation of a category $\mathcal{X}=\mathcal{L}C\mathcal{H},Cc_{1}*$

by an object $Y$ in $\mathcal{X}$ and $1_{\mathcal{X}}$ is the identity functor on $\mathcal{X}$ .

Remark that $\mathrm{C}$ is the set of all complex numbers. $\mathrm{C}$ is 1-dimensional commu-
tative unital $\mathrm{C}^{*}$-algebra and a locally compact Hausdorff space which is homeo-
morphic to 2-dimensional Euclid space $\mathrm{R}^{2}$ . In the above fact, a covariant functor
Gel $\equiv \mathcal{L}C\mathcal{H}\mathrm{C}^{\mathrm{O}}(CC_{1}^{*})\mathrm{c}$ is a transformation of a category of $CC_{1}^{*}$ . We call Gel the
Gelfand transformation. This reformulation gives us a question what is non com-
mutative version of Gel.

The reason of the success of this reformulation is caused by regarding the set
of pure states as the character of a commutative $\mathrm{C}^{*}$-algebra. Because of this rea-
son, we consider that a generalization of Gelfand transformation to non commu-
tative case may be suitable by principal representation of category $C_{1}^{*}$ of unital
(non $\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{m}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ ) $\mathrm{c}*$-algebras. We claim that a generalization of the category $C\mathcal{H}$

of compact Hausdorff spaces with respect to generalized Gelfand transformation
is a category of some kind of 2-step fibrations: Let $F_{1}\equiv(C_{1}^{*})_{*}^{*}$ be the principal
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contravariant-covariant functor of a category $C_{1}^{*}$ . For $A,$ $B\in C_{1}^{*}$ , define

$F_{2}(A, B)\equiv$ $F_{1}(A, \beta))\beta \mathrm{n}\mathrm{n}e$ ,

$F_{3}(A, \beta)\equiv$ $\{\mathrm{K}\mathrm{e}_{1}\mathrm{r}\phi:\phi\in F_{1}(A, B)\}$

$=$ $\{\mathrm{K}\mathrm{e}\mathrm{r}\phi:[\phi]\in F_{2}(A, \beta)\}$ .

Let $r,$ $s$ be natural projections between them

$F_{1}(A, B)rarrow F2(A,g)arrow F_{3}(SA, B)$ .

Proposition 5.1 (i) $F^{(1)}\equiv(F_{1}, r, F_{2})$ is a contravariant-covariant bi-functor
from $C_{1}^{*}$ to $\mathcal{F}\mathcal{I}\beta(1)$ .

(ii) $F^{(2)}\equiv(F_{1}, r, F_{2}, s, F3)$ is a contravariant functor from $C_{1}^{*}$ to $\mathcal{F}\mathcal{I}B^{(2}$).

where $\mathcal{F}\mathcal{I}B^{()}n$ is the category of $n$ -step fibrations which is a $n+1$ -chain $(\{X_{i}\}^{n}i=0’\{p_{j}\}_{j=}^{n}1)$

of surjections between spaces:

$X_{0}-p_{\int X1s}p$ $...-3pX_{n}$ .

We note that $F_{2}=F_{1}$ in commutative case. The notion of $F_{3}$ appears in the
theory of null ideal sequence. $F_{2}$ and $F_{3}$ are some kinds of generalization of spectrum
and primitive spectrum, respectively. Now we have not yet success to define good
topology for them. We must calculate examples of this categorical fibration more.
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