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1. The Swift-Hohenberg equation

The Swift-Hohenberg equation is a fundamental equation in the study of spatio-
temporal pattern formation in extended systems. It was first put forward in 1976 by
Swift and Hohenberg [SH] as a simple model for the Rayleigh-B\’enard instability of roll
waves. However, since then it has proved an effective model equation for a variety of
systems in physics and mechanics.

The Swift-Hohenberg equation is the evolution equation associated with the gradi-
ent system

$u_{t}=- \frac{\delta \mathcal{L}}{\delta u}$ (1.1)

in which $u_{t}=\partial u/\partial t$ and the Lagrangian density $\mathcal{L}$ is given by

$\mathcal{L}(u)=\int\{\frac{1}{2}(u_{xx})^{2}-(u_{x})^{2}+\frac{1}{2}F_{\kappa}(u)\}dx$. (1.2)

Here the potential function $F_{\kappa}$ is given by

$F_{\kappa}(s)= \frac{1-\kappa}{2}s^{2}+\frac{1}{4}s^{4}$ , (1.3)

and has been normalised so that $F_{\kappa}(\mathrm{O})=0$ . The constant $\kappa$ is viewed as an eigenvalue
parameter. Note that if $\kappa<1$ , then $F_{\kappa}$ is a single well potential, and if $\kappa>1$ , it is a
double well potential, with the bottoms of the wells located at $s=\pm a$ , where

$a=\sqrt{\kappa-1}$ , $\kappa>1$ . (1.4)

The corresponding evolution equation is the parabolic equation

$\frac{\partial u}{\partial t}=\kappa u-(1+\frac{\partial^{2}}{\partial x^{2}})^{2}u-u^{3}$ . (1.5)

involving a fourth order spatial derivative.
The Swift-Hohenberg equation has been studied a great deal, both analytically and

numerically. Many references can be found in the book by Collet and Eckmann [CE],
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in the extensive survey paper by Cross and Hohenberg [CH] and in the recent review
by Bodenschatz, Pesch and Ahlers [BPA]. It also arises in a variety of other contexts,
such as the study of incommenurate materials [DB1,2, DBCR], and in problems in the
mechanics of second order materials [LM, MPT], and the study of travelling waves in
nonlinearly supported beams $[\mathrm{L}\mathrm{M}\mathrm{c}\mathrm{K}, \mathrm{P}\mathrm{T}2]$.

In this paper we focus on stationary periodic solutions, that is on periodic solutions
$u(x)$ of the ODE

$u^{iv}+2u’’+f_{\kappa}(u)=0$ , (1.6)

in which the source function $f_{\kappa}=F_{\kappa}’$ is given by

$f_{\kappa}(s)=(1-\kappa)s+s^{3}$ . (1.7)

It has been shown [CE, $\mathrm{E}\mathrm{P}$] that a branch of periodic solutions, which are odd with
respect to their zeros and even with respect to their critical points, bifurcates from the
trivial solution at $\kappa=0$ . Its local behaviour near the bifurcation point is given by

$||u(\cdot, \kappa)||_{\infty}\sim 2\sqrt\overline{\frac{\kappa}{3}}$ as $\kappaarrow 0^{+}$ . (1.8)

In this paper we follow this branch and prove that it continues at least as far as the line
$\kappa=1$ in the $(\kappa, u)$-plane. Inside the half strip

$\Sigma_{0}=\{(\kappa, M) : 0\leq\kappa\leq 1, M\geq 0\}$ , $M=||u(\cdot, \kappa)||_{\infty}$ ,

the periodic solutions preserve their qualitative properties: they remain odd with respect
to their zeros and even with respect to their critical points. No critical points emerge
out of the blue and no critical points disappear.

In addition to following this first branch of single bump periodic solutions, we follow
branches of periodic solutions with more complex graphs: $n$ -lap periodic solutions for
any $n\geq 1$ . When $n$ is odd then these solutions are odd with respect to their zeros.
These branches bifurcate from the trivial solution at critical values $\kappa_{n}\in(0,1)$ , and
they all traverse the region $\Sigma_{0}$ preserving their qualitative properties.

In Section 2 we present the main results and illustrate them with a series of nu-
merically obtained bifurcation pictures. In Section 3 we give the flavour of some of the
proofs, and in Section 4 we present a few generalisations. In particular we discuss there
the continuation of the branches and their solutions in the region beyond $\kappa=1$ :

$\Sigma_{1}=\{(\kappa, M) : \kappa>1, M\geq 0\}$ .

We shall find that, unlike in $\Sigma_{0}$ , in $\Sigma_{1}$ the qualitative properties of periodic solutions
does change along branches. Details of the proofs of Theorems 2.2- 2.4 in Section 2,
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and further numerical results can be found in Chapter 9 of [PT3], and for related results

in [BPT].
The numerical results presented in this paper have been obtained with the ODE

software Phase Plane of Ermentrout [E], and the bifurcation software $A$ $UTO\mathit{9}7$ of Doedel
$et$ . al. [D].

2. The main results

We begin with the important observation that the equation

$u^{iv}+2u’’+(1-\kappa)u+u^{3}=0$ , (2.1)

has a first integral, the energy identity:

$\mathcal{E}(u)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}u’u’’’-\frac{1}{2}(u’’)^{2}+(u’)^{2}+F_{\kappa}(u)=E$ , (2.2)

where $E$ , the energy, is a constant. Plainly, the trivial solution $u=0$ has energy $E=0$ .
Being interested in branches of solutions which bifurcate from $u=0$ , we shall focus here

on periodic solutions which have zero energy.
In our first result we show that equation (2.1) has no periodic solutions if $\kappa\leq 0$ .

This allows us to restrict our attention to positive values of $\kappa$ .

Theorem 2.1. If $\kappa\leq 0$ , then there exist no $n$ontrivial periodic $sol\mathrm{u}$ tions of $eq$uation

(2.1).

The proof relies on a functional $\mathcal{H}(u)$ , which is of some interest in its own right. We

therefore give the proof right away.

Proof of Theorem 2.1. We introduce the functional

$\mathcal{H}(u)=\frac{1}{2}(u’’)^{2}+(u’)^{2}+F_{\kappa}(u)$ ,

and we set $H(x)=\mathcal{H}(u(x))$ . For any solution $u$ of equation (2.1) we have

$H’(x)=u”u”’+2u’u”+f_{\kappa}(u)u’$ ,

$H”(x)=(u”’)^{2}+2u’u’’’+f_{\kappa}’(u)(u’)^{2}$ .

Thus we see that $H”$ is a quadratic polynomial in $u”’$ ; it is positive if the discriminant

$D$ is negative. For $D$ we find

$D=(u’)^{2}\{4-4f_{\kappa}’(u)\}=4(u’)^{2}(\kappa-3u^{2})$ .
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Hence, if $\kappa<0$ , then $D<0$ whenever $u’\neq 0$ , and $H$ is strictly concave. In fact, even
when $\kappa=0$ , then $H$ is concave when $u\neq 0$ and $u’\neq 0$ . Since $u$ is nontrivial, this means
that

$H’(x)>H’(\mathrm{O})$ for $x>0$ . (2.3)

However, if $u$ is periodic with period $p$ , we should have $H’(\ell)=H’(0)$ , which contradicts

(2.3).

Next, we turn to the branch of single bump periodic solutions which bifurcates

from the origin of the $(\kappa, u)$ plane.

Theorem 2.2. For each $\kappa\in(0,1)$ there exists a zero-energy periodic $sol$ution of equa-

tion (2.1), which is symmetric with respect to its criiical points and odd with respect

to its zeros, such that $u’(0)>0$ .

In view of the symmetry of equation (2.1), we see that if $u$ is a solution, then so $\mathrm{i}\mathrm{s}-u$ .
Note that if $u$ is odd, then it can be transformed into $-u$ by translation over half the

period.

We denote the branch of odd single bump periodic solutions in the $(\kappa, M)$-plane

by $S_{1}$ . Here
$M= \max\{u(x) : x\in \mathrm{R}\}$ .

In Figure 2.1 we present the numerically computed branch $S_{1}$ in the $(\kappa, M)$-plane.

Fig. 2.1. The branch $S_{1}$ of odd 1-Lap periodic solutions

and the branch $S_{3}$ of odd 3-Lap solutions

The curve $Z$ in Figure 2.1 will be explained in Section 4.

We see that $S_{1}$ bifurcates from the point $(\kappa, M)=(0,0)$ , traverses the strip $0<$

$\kappa<1$ and continues into the regime $\kappa\geq 1$ . In this regime it loops back and enters the

strip $0<\kappa<1$ again to end on the $M=0$ axis. We see from the solution graphs shown
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in Figure 2.2 that by the time the branch reenters the strip $0<\kappa<1$ the solution

graphs have acquired a dimpte near the maxima and the minima. This happens as $\kappa$

passes through the critical value $\kappa=1.678$ . At this value we have $u’=0$ and $u”=0$ at

the maximum of the solution, as indicated in Figure 2.2.

on $S_{1}$ at $\kappa=0.96$ at $P_{1}(\kappa=1.678)$ on $S_{3}$ at $\kappa=0.96$

Fig. 2.2. Solution graphs on the loop shown in Figure 2.1

In the strip $0<\kappa<1$ , solutions on $S_{1}$ are symmetric with respect to their crit-

ical points. Therefore, they have one monotone segment–or one $Lap-\mathrm{b}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{e}\mathrm{e}\mathrm{n}$ two

consecutive points of symmetry, i.e. critical points $\zeta$ with the property

$u(\zeta+y)=u(\zeta-y)$ for all $y\in \mathrm{R}$ .

Solutions on the lower branch of the loop, where it passes through the strip $0<\kappa<$

$1$ , have three monotone segments between two consecutive points of symmetry. We

therefore denote this branch by $S_{3}$ . More generally:

We call a periodic solution with $m$ monotone segments between points of symmetry an

m-Lap solution. A branch of $m$ -Lap periodic solutions such that $u’>0$ in a right

neighbourhood of the origin will be denoted by $S_{m}$ .

We see that the branch $S_{3}$ also bifurcates from the trivial solution at

$\kappa_{3}=\frac{14}{25}$ .

To understand why it bifurcates just there we need to understand the local behaviour

near the trivial solution. Linearising equation (1.6) about $u=0$ , we obtain

$v^{iv}+2v’’+(1-\kappa)v--0$ . (2.4)

Thus, the characteristic equation is

$\lambda^{4}+2\lambda^{2}+1-\kappa=0$ ,

and, when $\kappa>0$ , its eigenvalues are

$\lambda_{\pm}^{2}=-1\pm\sqrt{\kappa}$ . (2.5)
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Since $\kappa\in(0,1)$ , they are purely imaginary:

$\lambda=\pm ia$ and $\lambda=\pm ib$ , (2.6a)

where
$a=\sqrt{1+\sqrt{\kappa}}$ and $b=\sqrt{1-\sqrt{\kappa}}$. (2.6b)

Resonance occurs if $a$ is an integral multiple of $b$ ([GH], p.397), i.e. when

$\frac{a}{b}=m\geq 1$ $\Leftrightarrow$ $\kappa=\kappa_{m}=\mathrm{d}\mathrm{e}\mathrm{f}(\frac{m^{2}-1}{m^{2}+1})^{2}$ (2.7)

It is at these points of resonance that branches $S_{m}$ bifurcate from the trivial solution.
Specifically, we prove the following result.

Theorem 2.3. Let $n\geq 1$ . For each $\kappa\in(\kappa_{2n-1},1)$ there exists an odd zero-energy
periodic $sol\mathrm{u}$ tion $u_{n}(x)$ of equaiion (1.6) which $h$as $2n-1$ laps in each half-period, such
that $u_{n}’(0)>0$ . Its first positive poini of symmetry is $\zeta_{n}$ , a$nd$

$u_{n}(x)>0$ for $0<x<2\zeta_{n}$ .

Computations show that these solutions also lie on loop shaped branches in the $(\kappa, M)$

plane. The branch emanating from $\kappa_{5}$ and returning to $\kappa_{7}$ on the $M=0$ axis is shown
in Figure 2.3.

Fig. 2.3. The branches $S_{1},$ $S_{3},$ $S_{5}$ and $S_{7}$

Since Theorem 2.3 establishes the existence of odd solutions such that $u’(0)\neq 0$ , it is
concerned with solutions with an odd number of laps, that is solutions on branches $S_{m}$

for $m$ odd.
For solutions with an even number of laps we focus on even solutions. Their exis-

tence is the subject of Theorem 2.4.
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Theorem 2.4. Let $n\geq 1$ . For each $\kappa\in(\kappa_{2n}, 1)$ there exists two even zero-energy
periodic solution, $u_{na}$ and $u_{nb}$ of $e\mathrm{q}$ uation (1.6) which have $2n$ laps in each half-period

such that $u_{na}<0,$ $u_{na}’’>0$ and $u_{nb}<0,$ $u_{nb}’’<0$ at the origin. Their first positive

point of symmetry is $\zeta_{2n}$ , and they have precisely one zero on their halfperiod $(0, \zeta_{2n})$ .

In Figure 2.4 we see how two branches bifurcate from the point $\kappa_{2}$ , both with solutions

having two laps. On one of the branches–denoted by $S_{2a}$ –the solutions are convex at

the origin, and on the other–denoted by $S_{2b}$ –the solutions are concave at the origin.

Fig. 2.4. The branches $S_{1},$ $S_{2a},$ $S_{2b}$ and $S_{3}$

In Figure 2.5 we give two solution graphs, one on $S_{2a}$ and one on $S_{2b}$ .

on $S_{2a}$ on $S_{2b}$

Fig. 2.5. Solutions of Theorem 2.4

Since $f_{\kappa}(-s)=f_{\kappa}(s)$ , it is clear that if $u$ is a solution, then so $\mathrm{i}\mathrm{s}-u$ . In addition, since

$u_{2a}’’>0$ at the origin, and the number of laps is even, we must have $u_{2a}’’>0$ at the point

of symmetry, i.e. the point of symmetry is a local minimum. Therefore, if we reflect

$u_{2a}$ and then shift it over half a period $L$ , the resulting function

$u_{2b}(x)=-u_{2a}(x-L)$

is a solution of equation (1.6) such that $u_{2b}<0$ and $u_{2b}’’<0$ at the origin. Since, unlike

with the odd solutions,

$\max\{u_{2a}(x) : x\in \mathrm{R}\}\neq\min\{u_{2a}(x) : x\in \mathrm{R}\}=-\max\{u_{2b}(x) : x\in \mathrm{R}\}$ ,
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these two solutions show up as two different branches.

Note that in contrast to the branches of odd solutions, the branches of even solutions
are loops which begin and end at the same value of $\kappa$ on the M-axis.

We conclude with a second family of periodic solutions. They all have the property
that they have zero slope at the origin. Solutions on the two first branches are shown
in Figure 2.6.

on $\mathcal{W}_{3}$ on $\mathcal{W}_{5}$

Fig. 2.6. Solutions on branches $\mathcal{W}_{3}$ and $\mathcal{W}_{5}$ at $\kappa=.96$

These solutions are odd, and if we regard the points of inflection on the $u$-axis as a lap
which has collapsed to a point, then the first such solution has 3 laps, the second 5 and
so on. We denote these branches by $\mathcal{W}_{m}$ , where $m$ is now an odd integer. The branches
$\mathcal{W}_{3}$ and $\mathcal{W}_{5}$ are shown in Figure 2.7.

Fig. 2.7. The branches $\mathcal{W}_{3}$ and $\mathcal{W}_{5}$

Note that $\mathcal{W}_{3}$ and $\mathcal{W}_{5}$ bifurcate from the trivial solution at respectively $\kappa_{3}$ and $\kappa_{5}$ . One
can prove the general result that the family of branches $\{\mathcal{W}_{2n+1} : n\geq 1\}$ , indeed exists,
with $\mathcal{W}_{2n+1}$ bifurcating at $\kappa_{2n+1}$ .

3. Ideas of the proofs

The proofs of Theoerms 2.2, 2.3 and 2.4 are based on a shooting technique. We look
for odd or even solutions of equation (1.6), and hence it suffices to construct solutions
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on $\mathrm{R}^{+}$ and continue them to $\mathrm{R}^{-}$ as odd or even functions. For simplicity we focus here

on odd solutions; even solutions are constructed in a similar manner. We then study

the initial value problem

$\{$

$u^{iv}+2u’’+u^{3}+(1-\kappa)u=0$ , $x>0$ , (3.1a)

$(u, u’, u^{\prime f}, u’’’)(0)=(0, \alpha, 0, \beta)$ . (3.1b)

When we substitute (3.1b) into the energy identity (2.2), and remember that we assume

that $E=0$ , we find that the initial data are related through the equation

$\alpha\beta=-\alpha^{2}$ . (3.2)

One can distinguish two cases:

(i) $\alpha\neq 0$ , $\beta=-\alpha$ and (ii) $\alpha=0$ , $\beta\neq 0$ . (3.1c)

By symmetry, solutions come in pairs: if $u$ is a solution, then so is $-u$ . In Case (i)

we may therefore assume without loss of generality that $u’(0)=\alpha>0$ , and in Case

(ii) that $\beta>0$ . In Case (i) we denote the solution by $u=u(x, \alpha)$ and in Case (ii) by

$u(x, \beta)$ .

The key idea of the proofs is to follow the local maxima and minima on $\mathrm{R}^{+}$ as $\alpha$

varies over $\mathrm{R}^{+}$ . We denote the successive critical points by $\zeta_{k}(\alpha)$ , the maxima by $\xi_{k}(\alpha)$

and the minima by $\eta_{k}(\alpha)$ . One can show that for $0<\kappa<1$ these critical points exist

for all $\alpha>0$ and all $k\geq 1$ , and that they depend continuously on $\alpha$ .
We are particularly interested in the position of the critical points on the solution

graph with respect to the $u$-axis: above or below, and in the function:

$\phi_{k}(\alpha)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}u’’’(\zeta_{k}(\alpha), \alpha)$ .

The continuity properties of $u$ and $\zeta_{k}$ with respect to $\alpha$ imply that if $0<\kappa<1$ , then

$\phi_{k}$ is a continuous function of $\alpha$ .
If $\alpha^{*}$ is a zero of $\phi_{k}$ , then the graph of $u(x, \alpha^{*})$ on $[0, \zeta_{k}]$ can be continued as a

symmetric solution on $[0,2\zeta_{k}]$ and then continued as an odd solution on $[-2\zeta_{k}, 2\zeta_{k}]$ , and

finally as a periodic solution of (1.6) on R. Thus the construction of a periodic solution,

which is symmetric with respect to $\zeta_{k}$ , is reduced to finding a zero of $\phi_{k}$ .

Let us now construct a periodic solution which is symmetric with respect to $\zeta_{1}=\xi_{1}$ ,

i.e. a single bump periodic solution which is even with respect to its critical points and

odd with respect to its zeros. We thereto inspect $\phi_{1}(\alpha)$ for large and small values of

$\alpha>0$ .
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For large values of $\alpha$ one can prove the following properties of $u(\xi_{1})$ :

Lemma 3.1. For $\alpha\in \mathrm{R}^{+}$ large enough we have

$u(\xi_{1}(\alpha), \alpha)>0$ and $u”’(\xi_{1}(\alpha), \alpha)<0$ .

The first inequality is evident. The proof of the second inequality is based on a scaling
argument [PT3].

To determine the sign of $\phi_{1}(\alpha)$ for small values of $\alpha$ we inspect the local behaviour
near $u=0$ and study the solution $v$ of the associated linear problem

$\{$

$v^{iv}+2v’’+(1-\kappa)v=0$ , $x>0$ , (3.3a)

$(v, v’, v”, v”’)(0)=(0,1,0, -1)$ . (3.3b)

An elementary computation shows that $v$ has the following poperties at its critical points
$\zeta_{j}[\mathrm{P}\mathrm{T}3]$ :

Lemma 3.2. Let $n\geq 1$ and $\kappa\in(\kappa_{2n-1},1)$ . Then

$v((_{j})>0$ a$nd$ $v”’(\zeta_{j})>0$ for $j=1,2,$ $\ldots$ , $n$ . (3.4)

Thus, if we set $n=1$ in Lemma 3.2 we find that

$v(\xi_{1})>0$ and $v”’(\xi_{1})>0$ for any $\kappa\in(0,1)$ .

This implies, by the continuity of $u$ and $\xi_{1}$ with respect to $\alpha$ , that there exists a $\delta>0$

such that
$u”’(\xi_{1}(\alpha), \alpha)>0$ for $0<\alpha<\delta$. (3.5)

Thus, we have shown that $\phi_{1}(\alpha)<0$ for $\alpha$ large and $\phi_{1}(\alpha)>0$ for $\alpha$ small.
Therefore $\phi_{1}(\alpha)$ must have a zero on $\mathrm{R}^{+}$ . Denoting this zero by $\alpha_{1}$ we have

$\phi_{1}(\alpha_{1})=u’’’(\xi_{1}(\alpha_{1}), \alpha_{1})=0$,

so that we can continue $u(x, \alpha_{1})$ to obtain a periodic solution of (1.6) which is even
with respect to its critical points and odd with respect to its zeros, and has period $4\xi_{1}$ .
This completes the proof of Theorem 2.2.

Solutions on $S_{3}$ are symmetric with respect to $\zeta_{2}=\eta_{1}$ . Therefore, to construct
them we need to follow $u(\eta_{1})$ and find a zero of

$\phi_{2}(\alpha)=u’’’(\eta_{1}(\alpha), \alpha)$ .
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Plainly, given any $\kappa\in(0,1)$ , we have

$u(\eta_{1})=-u(\xi_{1})$ at $\alpha_{1}$ .

On the other hand, we have seen in Lemma 3.2 that if $\kappa\in(\kappa_{3},1)$ , then

$u(\eta_{1})>0$ for $\alpha$ small.

Thus, for such $\kappa$ we know that

$\tilde{\alpha}=\sup$ { $\alpha>0:u(\eta_{1})>0$ on $(0,$ $\alpha)$ }

is well defined, and that $0<\tilde{\alpha}<\alpha_{1}$ . In additon, by continuity,

$u(\eta_{1})=0$ and $u”’(\eta_{1})<0$ at $\tilde{\alpha}$ , (3.6)

which means that $\phi_{2}(\tilde{\alpha})<0$ . We have also seen in Lemma 3.2 that if $\kappa\in(\kappa_{3},1)$ , then
$\phi_{2}(\alpha)>0$ for $\alpha$ small. Therefore, we conclude that $\phi_{2}$ has a zero, say $\alpha_{2}$ on the interval
$(0,\tilde{\alpha})$ , so that $u(x, \alpha_{2})$ is an odd periodic which is symmetric with respect to $\eta_{1}$ .

Proceeding in an analogous manner we can construct succesively the branches $S_{2n-1}$

of $(2n-1)$-lap periodic solutions for every $n\geq 1$ .

4. The region where $\kappa>1$

As we have seen in Section 2, at every critical value $\kappa_{n}$ a branch $S_{n}$ bifurcates from

the trivial solution which curls to the right and enters the region $\kappa>1$ of the $(\kappa, M)$

plane. Numerical results, as presented in the bifurcation graphs in Section 2, suggest

that for every $n\geq 1$ the projection of the loop emanating from the $u=0$ axis at $\kappa_{n}$ is

of the form $[\kappa_{n}, \kappa_{n}^{*}]$ , where $\kappa_{n}^{*}>1$ . The solutions on $S_{n}$ have $n$ laps between points of

symmetry, as long as $\kappa\in(\kappa_{n}, 1)$ .
We see from the computed graphs of the solutions, that upon entering the region

$\Sigma_{1}=\{\kappa>1\}$ , the number of laps may change. The reason is that if $\kappa>1$ , the potential

$F_{\kappa}$ is a double well potential, and the bottom of the wells have dropped below the energy

level $E=0$ . In fact, we have

$F(u)\{$
$<E$ for $0<|s|<z$ ,

$>E$ for $|s|>z$ ,
(4.1)

where
$z=Z(\kappa)\mathrm{d}\mathrm{e}\mathrm{f}=\sqrt{2(\kappa-1)}$. (4.2)

The graph of $Z$ has been included in the different bifurcation diagrams.
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It follows from the energy identity (2.2) that if $u(\zeta)=z$ at a critical point $\zeta$ of $u$ ,
then $u”(\zeta)=0$ , so that at such points zeros of $u’$ can appear or disappear. We see this
happen when follow for instance the branch $S_{5}$ , starting from the trivial solution, and
return along $S_{7}$ , and inspect the solution graphs at various points along the loop. The
loop and its solutions are shown in Figures 4.1 and 4.2.

Fig. 4.1. The branches $S_{5}$ and $S_{7}$

Starting on the $M=0$ axis at $\kappa_{5}$ , the solutions have 5 laps. At the point $P_{1}$ , which
lies in $\Sigma_{1}$ , two laps disappear and the remaining monotone segments join up to form a
1-Lap periodic solution. This sequence is shown in Figure 4. $2\mathrm{a}$ .

on $S_{5}$ at $\kappa=0.9$ at $P_{1}(\kappa=1.02)$ at the tip $(\kappa=1.27)$

Fig. 4. $2\mathrm{a}$ . The first three solutions

At the point $P_{2}$ , which lies on the parabola $Z(\kappa)$ defined in (4.2), the tip acquires a
dimple and as we progress towards $\kappa_{7}$ a pair of laps is formed at $P_{3}$ , still in $\Sigma_{1}$ , and we
end up in the region $0<\kappa<1$ with 7 laps. The corresponding solutions, starting with
the one at $P_{2}$ , are shown in Figure 4. $2\mathrm{b}$ .
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at $P_{2}$ at $\kappa=1.169$ at $P_{3}(\kappa=1.01)$ on $S_{7}$ at $\kappa=0.96$

Fig. 4. $2\mathrm{b}$ . The last three solutions

We conclude with a few remarks about problems involving equation (1.6) but with
different nonlinearities $f$ . We mention the work of Kramers and Paape [PK] in which

$f_{\kappa}(s)=(1-\kappa)s$ and $|\mathrm{s}|\leq 1$ . (4.3)

In this problem the corresponding potential $F_{k}$ is for $\kappa\in(0,1)$ a single well potential
with vertical walls at $s=\pm 1$ . Other nonlinearities that have been studied [BSC, $\mathrm{G}\mathrm{L}$ ,
NTV] include

$f_{\kappa}(s)=(1-\kappa)s-\mu s^{3}+s^{5}$ , $\kappa\in \mathrm{R}$ , $\mu\in \mathrm{R}^{+}$ . (4.4)

The branch $S_{1}$ now first buckles back before it turns to positive values of $\kappa$ , i.e. we have
a subcritical bifurcation at the origin. The branches $S_{1}$ and $S_{3}$ are shown in Figure 4.3
for $\mu=0.7$ .

Fig. 4.3. The branches $S_{1}$ and $S_{3}$ , and the graph of $Z$

In Figure 4.3 we also show the graph $Z$ of the zeros of the primitive $F_{\kappa}(s, \mu)$ of the

source function $f_{k}(s, \mu)$ introduced in (4.4). It is given by

$F_{\kappa}(s, \mu)=\frac{1-\kappa}{2}s^{2}-\frac{\mu}{4}s^{4}+\frac{1}{6}s^{6}$ . (4.5)

The curve $Z$ in the $(\kappa, M)$-plane is now given implicity by the relation

$\kappa=1-\frac{\mu}{2}M^{2}+\frac{1}{3}M^{4}$ .

Solutions on the loop exhibited in Figure 4.3 are shown in Figure 4.4.
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on $S_{1}$ at $P_{1}$ on $S_{3}$

Fig. 4.4. Three solutions on the branch in Figure 4.3

We see that, as in Figures 2.1 and 2.2 the solution graphs acquire a dimple at their
maxima and minima when the branch touches the curve $Z$ at the point $P_{1}$ , where
$\kappa=1.17$ .
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