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ABSTRACT. We consider a free boundary problem obtained from the asymptotic limit of

a FitzHugh-Nagumo system, or more precisely, a slow-diffusion, fast-reaction equation

governing a phase indicator, coupled with an ordinary differential equation governing a

control variable $v$ . In the range $(-1,1)$ , the $v$ value controls the speed of the propagation

of phase boundaries (interfaces) and in the mean time changes with dynamics depending

on the phases. A new feature included in our formulation and thus made our model

different from most of the contemporary ones is the nucleation phenomenon: a phase

switch occurs whenever $v$ elevates to 1 or drops to-l. For this free boundary problem, we

provide a weak formulation which allows the propagation, annihilation, and nucleation of

interfaces, and excludes interfaces from having (space-time) interior points. We study,

in the one space dimension setting, the existence, uniqu..eness, and non-uniqueness of

weak solutions. A.. few $\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\underline{\mathrm{i}}\mathrm{n}\mathrm{g}$ examples are also included.

1. INTRODUCTION

We consider the limit, as $\epsilon\searrow 0$ , of the reaction diffusion system

(1.1) $\{$

$u_{t}^{\epsilon}=\epsilon\Delta u^{\epsilon}+\epsilon^{-1}f(u^{\epsilon}, v^{\epsilon})$ ,

$v_{t}^{\epsilon}=D\triangle v^{\epsilon}+g(u^{\epsilon}, v^{\epsilon})$

with typical $f$ and $g$ given by

(1.2) $f(u, v)–F(u)-v$, $F(u)=u(3/\sqrt[3]{2}-2u^{2})$ , $g(u, v)=u-\gamma v-b$ ,

where $D\geq 0,$ $\gamma>0$ and $b\in \mathbb{R}$ are constants. This system is often used to model the
propagation of chemical waves in excitable or bistable or oscillatory media, where $u$ and $v$

represent the propagator and controller respectively [6]. When $D=O(\epsilon),$ $(1.1)$ was used
by Tyson and Fife to study the Belousov-Zhabotinskii reagent [12]. When $D=0,$ $(1.1)$ is
the well-known FitzHugh-Nagumo model for nerve impulse propagation; see [5, 8, 10, 11,
and references therein].
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The local minimum and maximum of the cubic function $F(u)$ in (1.2) is $-1$ and 1. If
$v\in(-1,1)$ , the equation $f(u, v)=F(u)-v=0$ , for $u$ , has three real roots, $h_{-}(v),$ $h_{0}(v)$

and $h_{+}(v)$ , where $h_{-}(v)<h_{0}(v)<h_{+}(v)$ .
As $\epsilon\lambda 0$ , Fife [6, Chapter 4], $\mathrm{X}.\mathrm{Y}$ . Chen [4], and X. Chen [2] demonstrated that

solution $(u^{\epsilon}, v^{\epsilon})$ to (1.1) has a limit $(u, v)$ with $u=h^{\pm}(v)$ in $Q^{\pm}$ , where $(v, Q^{+}, Q^{-})$ solves
the following free boundary problem (with $\epsilon=0$ ):

(1.3) $\{$

$v_{t}$ $=$ $D\triangle v+g(h_{\pm}(v), v)$ in $Q^{\pm}$ ,

$\frac{\partial\Gamma}{\partial t}$ $=$ $\{W(v)-\epsilon\kappa\}\mathrm{N}$ on $\Gamma=\bigcup_{t>0}\Gamma_{t}\cross\{t\}=\partial Q^{+}\cap\partial Q^{-}$

where $\kappa$ and $\mathrm{N}$ are, respectively, the mean curvature and the unit normal of $\Gamma(t)$ , and
$W(v)$ is the speed of the traveling wave $(W(v), U(\cdot;v))$ of

$U_{zz}+WU_{z}+f(U, v)=0$ on $\mathbb{R}$ , $U(\pm\infty, v)=h_{\pm}(v),$ $U(0, v)=h_{0}(v)$ .

Classical solution of the free boundary problem (1. $\cdot$ 3) has been studied by Hilhorst,
Nishiura, and Mimura [9] (1-D case), X. Y. Chen [2] $(\epsilon>0)$ , X. Chen [4] $(\epsilon=0)$ . In
general interfaces may collide and annihilate each other and therefore (global in time)
classicai solutions may not exist. Giga, Goto and Ishii [7] introduced and established
the existence of viscosity (weak) solutions to (1.3) where the interface $\Gamma$ is defined as the
zero level set of the viscosity solution $\phi$ to $\phi_{t}=W(v)|\nabla\phi|+\epsilon|\nabla\phi|\mathrm{d}\mathrm{i}\mathrm{v}(\frac{\nabla\phi}{|\nabla\phi|})(\epsilon\geq 0)$ .
This formulation takes care of topological changes such as the annihilation of interfaces.
However, there is another phenomenon, the nucleation, needs to be considered.

A careful analysis of the original system (1.1) shows that, if $v(x, t)>1$ , then the phase
state at $x$ will immediately switch to the “-,, phase (regardless of its neighbors’ phase
states). Similarly, if $v(x,t)<-1$ , the phase state at $x$ will switch to the $”+$ ” phase. We
refer to this phenomenon as nucleation. This phenomenon was ignored in most of the past
works. The main purpose of this paper is to take into account the nucleation phenomenon.
For this purpose, we consider only the one space dimension case, and assume that $D=0$ ,
which corresponds to the FitzHugh-Nagumo system. More precisely, we consider

(P) $\{$

$v_{t}$ $=$ $G^{\pm}(v)$ in $\Omega_{\pm}(t)$ ,

$\frac{\partial\Gamma}{\partial t}$ $=$ $W(v)$ on $\Gamma(t)=\partial\Omega_{\pm}(t),$ $t>0$ ,

where $G^{\pm}(v)=g(h_{\pm}(v), v)\mathrm{f}\mathrm{o}\mathrm{r}\pm v\leq 1$ .
In the next section we will provide a weak formulation for problem (P). Then in \S 3, we

provide several illustrating examples. In the rest of the paper, we prove our main result
roughly stated as follows:

If the initial speeds are not zero on all initial interfacial points, then problem
(P) admits a unique, global in time, weak solution.
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If the initial speed at an interfacial point $is$ zero, there are, in general, countably many
solutions. The non-uniqueness of (P) is not due to our deficiency in the definition of
weak solutions, but due to the nature of the problem; see \S 3.4 for more details.

2. A WEAK FORMULATION OF (P) AND THE MAIN RESULT

In the sequel, we denote by $B(x, r)$ an open ball centered at $x$ with radius $r$ , and by
$\overline{B}(x, r)$ a closed ball. If $r\leq 0$ , then $B(x, r)=\emptyset$ . Also $M:= \sup_{v\in(-1,1)}|W(v)|$ . The
following weak formulation was originated from [3].

Definition 1. Let $D$ be a closed domain in $\mathbb{R}\cross[0, \infty)$ . We say that $(v, Q^{+}, Q^{-})$ is a
(weak) solution to (P) in $D$ if $v\in C^{0}(D),$ $Q^{+}$ and $Q^{-}$ are disjoint and (relatively) open
in $D_{f}$ and the followings hold:

(1) (Dynamics) $v_{t}\in L^{\infty}(D)$ and $v_{t}=G^{\pm}(v)$ in $Q^{\pm}f$

(2) (Nucleation) $\{(x, t)\in D|\pm v>1\}\subset Q^{\mp}$ ;
(3) (Propagation) If $B(x_{0}, r_{0})\cross\{t_{0}\}\subset Q^{\pm}and\pm v<1$ in $\overline{B}(x_{0}, r_{0}+M\delta)\cross[t_{0},$ $t_{0}+$

$\delta]\subset D$ for some $\delta>0$ , then $B(x_{0}, r_{0}+c^{\pm}\delta)\cross\{t_{0}+\delta\}\subset Q^{\pm}\mathrm{z}$ where $c^{\pm}=$

$\min\{\mp W(v(x,t))|x\in\overline{B}(x_{0},r_{0}+M\delta), t\in[t_{0}, t_{0}+\delta]\}$ ;
(4) (No Fattening) $\mathrm{m}(\Gamma)=0$ , where $\Gamma=D\backslash (Q^{+}\cup Q^{-})$ and $\mathrm{m}$ denotes the Lebesgue

measure in $\mathbb{R}^{2}$ .

Remark 2.1. The nucleation criterion $\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\pm v\leq 1$ in $Q^{\pm}$ . Suppose that $G^{\pm}(\pm 1)\neq$

$0$ . Then since $Q^{\pm}$ is open, we obtain from the dynamics criterion $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\pm v<1$ in $Q^{\pm}\backslash \partial D$

and that any point $(x, t)\in D\backslash \partial D$ where $v=\pm 1$ cannot be an interior point $\mathrm{o}\mathrm{f}\overline{Q^{\pm}}$ . Thus,

the no fattening criterion implies that $\{(x, t)\in D\backslash \partial D|v(x, t)=\pm 1\}\subset\overline{Q\mp}$ .
On the other hand, if one of $G^{\pm}(\pm 1)$ , say $G^{+}(1)$ vanishes, then interior points in

$\{(x,t)|v(x,t)=1\}$ can have choices of being in $Q^{+}$ or $Q^{-}$ , thereby creating non-
uniqueness. To avoid this situation, in the sequel we shall always assume that $G^{\pm}(\pm 1)\neq 0$ .
Also, we shall work only on “compatible” initial conditions; namely, $\pm v(\cdot, 0)<1$ in
$\partial D\cap Q^{\pm}$ . The generation of interface indicates that initial conditions to (P) should
always be compatible.

In the sequel, we need only the dynamics, propagation, and the following criteria
(to replace the nucleation and no fattening criteria): $\{(x, t)\in D\backslash \partial D|\pm v(x,t)\geq$

$1\}\subset\overline{Q\mp}$.

Remark 2.2. To understand better the propagation criterion, we first note that if
$(x_{0}, t_{0})\in Q^{\pm}$ , then $\pm v(x_{0},t_{0})<1$ and consequently, $\pm v<1$ in some neighborhood of
$(x_{0}, t_{0})$ . Hence, letting $\delta$ approach zero we see that $Q^{\pm}\mathrm{s}\mathrm{h}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{k}\mathrm{s}/\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{s}$ with a velocity

at $\mathrm{m}\mathrm{o}\mathrm{s}\mathrm{t}/\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{t}W(v)$ . The (necessary) introduction of $M,$ $\delta,$
$c^{\pm}$ , etc. enables us to let

$(x_{0}, t_{0})$ approach the boundary of $Q^{\pm}$ and thus to conclude that the boundary of $Q^{\pm}$ will
$\mathrm{s}\mathrm{h}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{k}/\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}$ with a speed no $\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{e}/\mathrm{l}\mathrm{e}\mathrm{s}\mathrm{s}$ than $W(v)$ . In particular, if $Q^{+}$ and $Q^{-}$ share

a common boundary, then it moves with a speed $W(v)$ , in the direction from the “-,,

phase region to $”+$” phase region. Thus, in the case of classical solutions, this condition

is compatible with the equation $\Gamma_{t}=W(v)$ . We remark that, due to the nucleation
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criterion and the assumption that $G^{\pm}(\pm 1)\neq 0$ , the value of $W(v)$ for $|v|>1$ and the
value $G^{\pm}(v)\mathrm{f}\mathrm{o}\mathrm{r}\pm v\geq 1$ are not needed. Nevertheless, for $c^{\pm}$ to have a clear meaning, in
the sequel, we assume that $W(v)$ has been extended for all $v\in \mathbb{R}$ .

Throughout this paper, we always assume the followings:
(A1) $W\in C^{1}((-1,1)),$ $W(0)=0,$ $W’(v)>0$ for all $v\in(-1,1)f$ and $M$ $:=$

$\sup\{|W(v)||v\in(-1,1)\}<\infty$ ;
(A2) $G^{+}\in C^{0}((-\infty, 1]),$ $G^{-}\in C^{0}([-1, \infty)),$ $G^{\pm}(.\pm 1)\neq 0$ , and $\pm G^{\pm}(v)>0$ if

$..\pm W(v)\leq 0$ .
The condition $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\pm G^{\pm}(v)>0\mathrm{i}\mathrm{f}\pm W(v)\leq 0$ (i.e., $\mathrm{i}\mathrm{f}\pm v\leq 0$ ) is crucial in our sub-

sequent analysis. It implies that any interface will propagate without changing direction,
until it annihilates with another approaching interface or meets a nucleation point.

In the sequel, we say that a (not necessarily bounded) function $T(\cdot)$ on $\mathbb{R}$ is Lipschitz if
there exists a constant $L>0$ such that $|T(x_{1})-T(x_{2})|\leq L|x_{1}-x_{2}|$ for any $x_{1},$ $x_{2}\in \mathbb{R}$ ,
we write

$|T’(x)|:= \lim_{yarrow}\sup_{x}|\frac{T(y)-T(x)}{y-x}|$ .

Also, $\{(x, t)|x\in \mathbb{R}, t\geq T(x)\}$ is abbreviated as $\{t\geq T\}$ . Our main result is as follows.

Theorem 1. (Existence and Uniqueness of Initial Value Problem)
Let $\Omega_{\pm}\subset \mathbb{R}$ and $v_{0}(x)$ : $\mathbb{R}arrow \mathbb{R}$ be given. Assume that $\Omega_{+}$ and $\Omegaarrow are$ disjoint and $open_{f}$

that $\partial\Omega_{+}=\partial\Omega_{-}=:\Gamma_{0}$ has finitely many $points_{1}$ and that $\Omega_{+}\cup\Omega_{-}\cup\Gamma_{0}=\mathbb{R}$. Also assume
that $v_{0}(x)$ is bounded and Lipschitz continuous in $\mathbb{R},$ $\pm v_{0}<1$ in $\Omega^{\pm}f$ and $W(v_{0})\neq 0$ on
$\Gamma_{0}.$ T.hen problem (P) has a unique weak solution $(v, Q^{+}, Q^{-})$ in $\mathbb{R}\cross[0, \infty)$ satisfying
$v(x, 0)=v_{0}(x)$ on $\mathbb{R}$ and $\{x|(x, 0)\in Q^{\pm}\}=\Omega_{\pm}$ .

In order to prove Theorem 1, we consider a more general problem, the Cauchy problem,
where the initial value of $v$ and the location of the phase regions are specified on a curve
in the space-time domain.

Definition 2. Let $T:\mathbb{R}arrow[0, \infty)$ and $\psi$ : $\mathbb{R}arrow \mathbb{R}$ be functions and $\Omega_{+},$ $\Omega_{-}$ be sets in $\mathbb{R}$ .
We say that $(v, Q^{+}, Q^{-})$ has Cauchy data $(T, \psi, \Omega_{+}, \Omega_{-})$ if $v(x, T(x))=\psi(x)$ $\forall x\in \mathbb{R}$

and $\{x|(x,T(x))\in Q^{\pm}\}=\Omega_{\pm}$ .

To ensure the existence of a unique solution for the Cauchy problem, we provide, for
the Cauchy data, a sufficient condition, which we call property $\mathrm{S}$ , defined as follows:

Definition 3. A quadruple $(T, \psi, \Omega_{+},\Omega_{-})$ is said to have property $\mathrm{S}$ (solvable) and write
$(T, \psi,\Omega_{+}, \Omega_{-})\in \mathrm{S}$ if the followings hold:
(S1) $\Omega_{+},$ $\Omega_{-}\subset \mathbb{R}$ are open and disjoint, $\partial\Omega_{+}=\partial\Omega_{-}=:\Gamma_{0}$ consists of a finite number of

$points_{f}$ and $\Omega_{+}\cup\Omega_{-}\cup\Gamma_{0}=\mathbb{R}_{i}$

(S2) $\psi$ : $\mathbb{R}arrow \mathbb{R}$ is bounded, Lipschitz continuous, $and\pm\psi<1$ in $\Omega_{\pm;}$

(S3) The function $T$ : $\mathbb{R}arrow[0, \infty)$ is Lipschitz continuous and satisfies $\pm lV(\psi)|T’|<$

$1$ on $\overline{\Omega}_{\pm;}$

132



WELL-POSEDNESS OF A FREE BOUNDARY PROBLEM

(S4) $W(\psi)\neq 0$ on $\Gamma_{0}$ .

Theorem 2. Let $(T, \psi, \Omega_{+}, \Omega_{-})\in$ S. Then (P) has a unique solution on $\{t\geq T\}$ with
Cauchy data $(T, \psi, \Omega_{+}, \Omega-)$ .

Note that Theorem 1 is just a special case of Theorem 2 with $T\equiv 0$ .

Remark 2.3. 1. The condition (S1) (except the finiteness of $\Gamma_{0}$ ) is necessary to ensure
the uniqueness of a solution. Here for simplicity, we assume that $\Gamma_{0}$ consists of finitely
many points. We expect that this is general enough in real applications, and in the special
case when $\Gamma_{0}$ does consist of infinitely many points, a unique solution can be obtained by
taking the limit of the unique solution with $\Gamma_{0}$ finite.

2. As mentioned earlier, condition (S2) is only a compatibility condition for the exis-
tence of a solution.

3. Condition (S3) is simply a non-characteristic condition on the curve where Cauchy
data is given for the pde $\Gamma_{t}=W(v)$ (regarding $\Gamma$ as the zero level set of $\phi$ which solves
$\phi_{t}=|\nabla\phi|W(v))$ .

4. Finally condition (S4) is one of the keys in our uniqueness proof. Indeed, as can be
seen from a non-uniqueness example given in \S 3.4, if (S4) does not hold, there exist, in
general, infinitely many. solutions.

The rest of the paper is organized as follows. In \S 3, we give several examples to
illustrate the generic behavior of solutions to (P). Also, we give a non-uniqueness example
demonstrating the necessity of (S4) for the uniqueness. \S \S 4-5 are dedicated to the proof
of Theorem 2.

3. EXAMPLES OF SOLUTIONS

There are three distinguished cases according to the combination of the si.gns of $G^{\pm}(\pm 1)$

[6, Chapter 4].

(1) $G^{+}(1)<0$ and $G^{-}(-1)>0$ . This is referred to as a Bistable case, since there
exists an equilibrium in each of the $”\pm$” phase. Also $G^{\pm}(1)<0<G^{\pm}(-1)$ and
the equation $v_{t}=G^{\pm}(v)$ imply that $v$ cannot $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}\pm 1$ , so that nucleation will not
occur.

(2) $G^{+}>0$ in $(-\infty, 1]$ and $G^{-}<0$ in $[-1, \infty)$ . This case is called Oscillatory since the
phase at any point switches between $”+$ ” and “-,, phases infinitely many $\mathrm{t}\dot{\mathrm{i}}\mathrm{m}\mathrm{e}\mathrm{s}$ .

(3) Neither (1) nor (2). We call this case Excitable since nucleation can occur, and at
any fixed point $x$ , the phase changes only finitely many times and $v$ eventually rests
at one of the zeros of $G^{\pm}$ .

For convenience, we use $\Phi^{\pm}(\alpha, t)$ to denote the solution of the following ode

(3.1) $\{$

$\Phi_{t}^{\pm}$ $=$
$G^{\pm}(\Phi^{\pm}.)-$

,
$\Leftrightarrow$

$t= \int_{\alpha}^{\Phi^{\pm}(\alpha,t)}\frac{ds}{G^{\pm}(s)}$ .
$\Phi^{\pm}|_{t=0}$ $=$ $\alpha$

.
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3.1. The Oscillatory Case. For simplicity, we assume $W(v)=v,$ $G^{+}\equiv 1$ , and $G^{-}\equiv$

$-1$ . Then $\Phi^{\pm}(\alpha, t)=\alpha\pm t$ . We consider the initial value $v(x, 0)= \frac{1}{2}\cos(\omega x),$ $\Omega_{+}=\mathbb{R}$

and $\Omega_{-}=\emptyset$ , where $\omega$ is a parameter.
When $\omega=1$ , the solution is also periodic in time, and is given by

$v(x, t)=(-1)^{j}(1-T_{j+1}(x)+t)$ , $\forall x\in \mathbb{R},$ $t\in[T_{j}(x), T_{j+1}(x)],$ $j=0,1,$ $,$

$\cdots$ ,

$Q^{+}=\{(x,t)|x\in \mathbb{R}, T_{2k}(x)<t<T_{2k+1}(x), k\geq 0\}\cup \mathbb{R}\cross\{0\}$ ,

$Q^{-}=\{(x,t)|x\in \mathbb{R}, T_{2k+1}(x)<t<T_{2k+2}(x), k\geq 0\}$ ,

where $T_{0}\equiv 0$ and $T_{j}(x)=2j-1- \frac{1}{2}\cos x$ for all integer $j\geq 1$ .
Notice that initially the system is uniformly in $”+$ ” phase state. At each $x\in \mathbb{R}$ , the

phase switches between the $”+$ ” phase and the “-,, phase at time $t=T_{j}(x),$ $j=1,2,$ $\cdots$ ;
all of these phase changes are due to nucleation. In this particular example, the effect
of propagation of interface is totally suppressed by nucleation. Indeed, the speed of
propagation of interface is $|W(v)||_{\Gamma}=1$ , whereas the “speed” due to nucleation is
$| \frac{dx}{dt}|=|\frac{dx}{dT_{j}(x)}|=|\frac{2}{\sin(x\rangle}|$ .

If $\omega>2$ , then both nucleation and propagation play roles in the evolution of the
interface. Consider a half period interval $[0, \pi/\omega]$ . Let $x^{*}= \frac{1}{\omega}\arcsin(2/\omega)$ . Then at each
$x\in[0, x^{*}]$ , the phase switches due to nucleation from $”+$ ” to “-,, at time $T=1-v_{0}(x)$

at which $v=1$ . At each $x\in(x^{*}, \pi/\omega]$ , the phase can change either by nucleation which
occurs at time 1 $-v_{0}(x)$ , or by the propagation of interface from neighboring points,
depending on which occurs earlier. Indeed, solving equation, for $t=\hat{T}(z)$ ,

$\{$

$\frac{dz}{d\hat{T}(z)}=\hat{T}+v_{0}(z)=\hat{T}+\frac{1}{2}\cos(\omega z)$ , $z>x^{*}$

$\hat{T}(x^{*})=1-v_{0}(x^{*})$ ,

we see that $\hat{T}(x)<1-v_{0}(x)$ for $x\in(x^{*}, x^{**})$ where $x^{**}>x^{*}$ is the point $\hat{T}(x^{**})=1-$

$v(x^{**})$ . Hence, the first layer of interface (in $x\in[0,$ $\pi/\omega]$ ) is given by $t=1-v_{0}(x)$ for $x\in$

$[0,x^{*}],$ $t=\hat{T}(x)$ for $x \in[x^{*}, \min\{\pi/\omega, x^{**}\}]$ and $t=1-v_{0}(x)$ for $x \in(\min\{\pi/\omega, x^{**}\},$ $\pi/\omega]$

(if it is not empty).
For other layers of the interface, the idea is similar, but the computation is much more

involved.

3.2. The Bistable Case. We assume that $\mathrm{M}^{\gamma}(v)=v,$ $G^{+}(v)= \frac{1}{2}-v$ , and $G^{-}(v)=$

$- \frac{1}{2}-v$ . Solving (3.1) gives $\Phi^{\pm}(\alpha, t)=\pm\frac{1}{2}(1-e^{-t})+\alpha e^{-t}$ .
We consider initial value given by $\Omega_{+}=(1,2)\cup(3,4)\cup(5, \infty),$ $\Omega_{-}=\mathrm{R}\backslash \overline{\Omega}_{+}$ and

$v(x, 0)=-1/2$ for $x\leq 4$ , and $= \frac{1}{2}$ for $x>5,$ $=- \frac{1}{2}+(x-4)$ for $x\in(4,5]$ . We denote
the interface curve starting from $x=i,$ $i=1,2,$ $\ldots,$

$5$ as $s_{i}$ . We further assume that all
the interface curves retain their initial directions. That is, $s_{1},$ $s_{3}$ are decreasing and the
remaining ones are increasing. In addition, $s_{2}$ and $s_{3}$ intersect at some time $t>0$ . Then
we can obtain the regions $Q^{+},$ $Q^{-}$ and the interface of the solution as follows.
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FIGURE 1. Interfaces for the excitable case example

Below and on $x=s_{1}(t),$ $v(x, t)= \Phi^{-}(v_{0}(x), t)=-\frac{1}{2}$ . Hence solving $s_{1}’=W(v(s_{1}, t))=$

$- \frac{1}{2}$ gives $s_{1}(t)=- \frac{t}{2}+1$ for all $t\geq 0$ . Similarly, $v(x, t)= \Phi^{+}(v_{0}(x), t)=\frac{1}{2}$ for $x\geq s_{5}(t)=$

$5+ \frac{1}{2}t,$ $t\geq 0-$ .
Below and on $s_{2}$ and $s_{3},$ $v(x,t)= \Phi^{-}(v_{0}(x), t)=-\frac{1}{2}$ , so that $s_{2}(t)=2+ \frac{1}{2}t$ and

$s_{3}(t)=3- \frac{1}{2}t$ for $0\leq t\leq 1$ . At $t=1,$ $s_{2}=s_{3}= \frac{5}{2}$ and the two interfaces annihilate.
Below $x=s_{4}(t)$ and above $x=s_{5}(t),$ $v(x, t)=\Phi^{-}(v_{0}(x), t)$ for $x\in(4,5)$ and $v(x, t)=$

$\Phi^{-}(v(x, T_{5}(x)),$ $t-T_{5}(x))$ for $x>5$ where $t=T_{5}(x)=2(x-5)$ is the inverse of $x=$

$s_{5}(t)=5+ \frac{1}{2}t$ . Hence, the inverse $t=T_{4}(x)$ of $x=s_{4}(t)$ solves $\frac{dx}{dT_{4}(x)}=-\Phi^{-}(v_{0}, T_{4})$ for
$x\in[4,5]$ and $\frac{dx}{dT_{4}(x)}=-\Phi^{-}(\Phi^{+}(v_{0}, T_{5}),$ $T_{4}-T_{5})= \frac{1}{2}-e^{-T_{4}+2(x-5\rangle}$ for $x>5$ . This equation
has a unique monotonic solution $T_{4}(x)$ for all $x\geq 4$ and it satisfies $T_{4}(x)>T_{5}(x)$ for all
$x>5$ .

Finally, the region above the curves $x=s_{1},$ $s_{2},$ $s_{3}$ , and $s_{4}$ belongs to $Q^{+}$ and $v$ can be
obtained by solving $v_{t}=G^{+}(v)$ together with known “initial” values on $x=s_{1},$ $s_{2},$ $s_{3},$ $s_{4}$ .

It is easy to verify that such obtained $(v, Q^{+}, Q^{-})$ is a solution to the given initial value
problem, and is the only solution by Theorem 1.

3.3. The Excitable Case. We take $W(v)=v,$ $G^{+}\equiv 1$ , and $G^{-}(v)=- \frac{1}{2}-v$ . Then
$\Phi^{+}(\alpha, t)=\alpha+t$ and $\phi^{-}(\alpha, t)=-\frac{1}{2}+(\alpha+\frac{1}{2})e^{-t}$ . We consider an initial data given by
$\Omega_{-}=(-\infty, 1)\cup(3,4),$ $\Omega_{+}=\mathrm{R}\backslash \overline{\Omega}_{-}$ , and $v(x, 0)=- \frac{1}{2}$ for $x\leq 3,$ $= \frac{1}{2}$ for $x>4$ , and
$=- \frac{1}{2}+(x-3)$ for $x\in(3,4)$ .

Figure 1 shows the regions $Q^{+},$ $Q^{-}$ and the interface of the solution to this initial value
problem.

Below and on $x=s_{1},$ $v(x, t)=- \frac{1}{2}$ . Consequently, $s_{1}(t)=1- \frac{1}{2}t$ .
The interface $x=s_{4}(t)=4+ \frac{1}{2}t+\frac{1}{2}t^{2}$ for $t \in[0, \frac{1}{2}]$ is due to propagation, and the

interface $t=T_{5}(x) \equiv\frac{1}{2}$ for $x>4 \frac{3}{8}$ , on which $v=1$ , is due to nucleation.
Below $x=s_{3}$ (and above $x=s_{4},$ $t=T_{5}$ ), $v$ can be calculated by $v_{t}=G^{-}(v)$ and

$s_{3}’=-W(v(s_{3}, t))$ . One can show that $s_{3}’>0$ for all $t \geq 0\mathrm{a}\mathrm{I}\mathrm{l}\mathrm{d}s_{3}’(t)arrow\frac{1}{2}$ as $tarrow\infty$ .
For $x\in[1,3],$ $v= \Phi^{+}(v_{0}, t)=-\frac{1}{2}+t$ for all $t< \frac{3}{2}$ and nucleation occurs at $t_{-arrow}T_{2}(x)\equiv$

$\frac{3}{2}$ .
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For $s_{1}<x<1$ the interface at $\{x=1, t=\frac{3}{2}\}$ will propagate, while nucleation may
take a role. Calculation under the assumption of nucleation and propagation respectively
tell us that only propagation takes a role. Hence below $x=s_{12}$ and above $x=s_{1}$ ,
$v=\Phi^{+}(v(x, T_{1}(x)),$ $t-T_{1}(x))=- \frac{1}{2}+t-T_{1}(x)$ where $T_{1}(x)=2(1-x)$ is the inverse of
$x=s_{1}(t)$ . Solving $s_{12}’=-W(v(s_{12}, t))$ with initial value $s_{12}( \frac{3}{2})=1$ then gives $s_{12}(t)=$

$\frac{3}{2}-\frac{1}{2}t+\frac{1}{4}e^{3-2t}$ for all $t \geq\frac{3}{2}$ . Now we can check that on $x=s_{12},$ $v= \frac{1}{2}(1+e^{3-2t})<1$ for
all $t> \frac{3}{2}$ , and hence the interface $x=s_{12}$ is indeed due to propagation. Similarly we can
calculate $s_{23}$ .

We remark that in a general situation, the calculation of $s_{12},$ $T_{2}$ , and $s_{23}$ is much more
involved, and should be proceeded as follows:

(i) Pretend that $v_{t}=G^{+}(v)$ for the rest of the domain and find a curve $t=T^{*}(x)$ on
which $v=1$ . Nucleation occurs only at points on the curve $t=T^{*}(x)$ .

(ii) At every point $(y, T^{*}(y))$ , calculate an interface $t=h(y, T^{*}(y);\cdot)$ based solely on
propagation.

(iii) Take the infimum of $h(y, T^{*}(y);\cdot)$ for all $y$ . This infimum is then the required
interface.

3.4. A Non-uniqueness Example. We consider a bistable case where $W(v)=v$ and
$G^{\pm}(v)= \pm\frac{1}{2}-v$ . Then $\Phi^{\pm}(\alpha, t)=\pm\frac{1}{2}(1-e^{-t})+\alpha e^{-t}$. We consider the initial value
$\Omega_{+}=(0, \infty),$ $\Omega_{-}=(-\infty, 0)$ , and $v(x, 0)=v_{0}(x)\equiv 0$ . Note that $W(v(x, 0))=0$ on
$\Gamma_{0}=\{0\}$ so that Theorem 1 cannot be applied.

This initial value problem has infinitely many solutions. We next construct explicitly
two of them.

The first solution we are going to give has only one interface, which is given by $x=$

$s_{1}(t):=- \frac{1}{2}(t+e^{-t}-1),$ $Q^{\pm}=\{\pm(x-s_{1})>0\},$ $v= \Phi^{-}(v_{0}(x), t)=\frac{1}{2}(e^{-t}-1)$ for $x<s_{1}$ ,
$= \Phi^{+}(v_{0},t)=\frac{1}{2}(1-e^{-t})$ for $x\geq 0$ , and $=\Phi^{+}(v(x, T_{1}(x)),$ $t-T_{1}(x))= \frac{1}{2}(e^{-t}+1-2e^{T_{1}(x)-t})$

for $s_{1}<x<0$ , where $t=T_{1}(x)$ is the inverse function of $x=s_{1}(t)$ . It is easy to verify
that $s_{1}’(t)=W(v(s_{1}, t))$ and that $(v, Q^{+}, Q^{-})$ is a solution.

This solution can be obtained as the limit of unique solutions to a sequence of initial
value problems of (P). Indeed, for any small positive $\epsilon$ , let $(v_{\epsilon}, Q_{\epsilon}^{+}, Q_{\epsilon}^{-})$ be solution to
(P) with initial data $\Omega^{-}=(-\infty, 0),$ $\Omega_{+}=(0, \infty)$ and $v_{\epsilon}(x, 0)=-\epsilon$ . By Theorem 1,
$(v_{\epsilon}, Q_{\epsilon}^{+}, Q_{\epsilon}^{+})$ exists and is unique, and $Q^{\pm}$ is given by $Q_{\epsilon}^{\pm}=\{\pm(x-s^{\epsilon}(t))>0\}$ where
$s^{\epsilon}(t)=s_{1}(t)+\epsilon(e^{-t}-1)$ . Hence, as $\epsilon\searrow 0,$ $(v^{\epsilon}, Q_{\epsilon}^{+}, Q_{\epsilon}^{-})arrow(v, Q^{+}, Q^{-})$ .

The second solution we shall present here has three interfaces, which are given by
$t=T_{1}(x),$ $T_{2}(x)$ , and $T_{1*}(x)$ , where $T_{1*}(x)=T_{1}(-x)$ for $x\geq 0$ , and $T_{2}(x)$ solves

(3.2) $\frac{dx}{dT_{2}(x)}=-\frac{1}{2}(e^{-T_{2}}+1-2e^{T_{1}-T_{2}})$ and $T_{2}(x)>T_{1}(x)$ $\forall x<0$ , $\lim_{x\nearrow 0}T_{2}(x)=0$ .

By considering $T_{1}$ as the independent variable and writing $\frac{dT_{2}}{dT_{1}}=\frac{dT_{2}}{dx}\frac{dx}{dT_{1}}=\frac{1-\epsilon^{-T_{1}}}{1+\mathrm{e}^{-T_{2}}-2e^{T_{1}-T_{2}}}$,
we can show that (3.2) has a unique solution $T_{2}$ for all $x<0$ ; we omit the details.

This solution, again, can be obtained as a limit of unique solutions of a sequence of
initial value problems. Consider, for every small positive $\epsilon$ , the initial value $(v_{0}^{\epsilon}, \Omega_{+}^{\epsilon}, \Omega_{-}^{\epsilon})$
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given by $\Omega_{-}^{\epsilon}=(-\infty, -\epsilon)\cup(0, \epsilon),$ $\Omega_{+}^{\epsilon}--\mathbb{R}\backslash \Omega_{-}^{-_{\epsilon}}$ , and $v_{0}^{\epsilon}(x)=-\epsilon$ for $x<-\epsilon,$ $=\epsilon+2x$

for $x\in(-\epsilon, 0]$ , and $=\epsilon$ for $x>0$ . Since $W(v_{0}^{\epsilon})\neq 0$ on $\Gamma_{0}^{\epsilon}:=\{-\epsilon, 0, \epsilon\}$ , by Theorem 1,
this initial value problem has a unique solution $(v_{\epsilon}, Q_{\epsilon}^{+}, Q_{\epsilon}^{\mathrm{L}})$ . Simple calculation shows
that this solution has three interfaces, given by $t=T_{1}^{\epsilon}(x),$ $T_{2}^{\epsilon}(x)$ and $T_{1}^{\epsilon*}$ , where $t=T_{1}^{\epsilon}(x)$

is the inverse of $x=s^{\epsilon}(t):=- \frac{1}{2}(t+e^{-t}-1)+\epsilon(e^{-t}-1),$ $T_{1}^{\epsilon*}(x)=T_{1}^{\epsilon}(-x)$ and $T_{2}^{\epsilon}(x)$

solves a differential equation analogous to (3.2) for $x\leq-\epsilon$ whereas for $x\in(-\epsilon, 0],$ $T_{2}$

is monotonically decreasing and $T_{2}(-\epsilon)=O(\sqrt\epsilon\gamma$ . Sending $\epsilon\searrow 0$ , we can show that
$(v_{\epsilon}, Q_{\epsilon}^{+}, Q_{\epsilon}^{-})$ approaches the second solution we gave.

In a similar manner, we can obtain solutions with arbitrary odd number of interfaces.
All these solutions are classical for $t>0$ .

Remark 3.1. We believe that every weak solution in our definition is “physical” in the
sense that it can be obtained as a limit of a sequence of solutions of (1.1) as $\epsilonarrow 0$ . For
example, consider the second solution $(v, Q^{+}, Q^{-})$ we constructed, and also the solution
$(v_{\epsilon}, Q_{\epsilon}^{+}, Q_{\epsilon}^{-})$ we mentioned. Since for every fixed $\epsilon>0,$ $(v_{\epsilon}, Q_{\epsilon}^{+}, Q_{\epsilon}^{-})$ is unique, one can
show, by the analysis in [1, 2, 3], that there exists a sequence $\{(u_{\epsilon}^{\epsilon}(x, 0), v_{\epsilon}^{\epsilon}(x, 0))\}_{\epsilon>0}$ of
initial values to (1.1) such that, as $\epsilonarrow 0$ , the solutions $(u_{\epsilon}^{\epsilon}, v_{\epsilon}^{\epsilon})$ to (1.1) with these initial
values have the limit $(v_{\epsilon}, Q_{\epsilon}^{+}, Q_{\epsilon}^{-})$ (namely, $v_{\epsilon}^{\epsilon}arrow v_{\epsilon}$ in $\mathbb{R}\cross[0,$ $\infty$ ) and $u_{\epsilon}^{\epsilon}arrow h^{\pm}(v_{\epsilon})$ in
$Q_{\epsilon}^{\pm})$ . Upon selecting a subsequence from the double indexes $(\epsilon, \epsilon)$ , we then can conclude
that the second solution can be obtained as a limit of the solutions of (1.1) as $\epsilonarrow 0$ .

4. DYNAMICS OF INTERFACES

In this section, we study the evolution of the interface according to the motion equation
$\Gamma_{t}=W(v)$ and the nucleation mechanics. We investigate the shrinkage of the $”+$”

phase region and the expansion of the “-,, phase region. (The opposite phase change is
analogous.)

4.1. Shrinkage of the $”+$” phase region. We denote by $\Phi^{\pm}(\alpha, t)$ the solution to (3.1).
For convenience, we extend $G^{\pm}(v)$ by zero $\mathrm{f}\mathrm{o}\mathrm{r}\pm v\geq 2$ and by a linear interpolation for
$\pm v\in(1,2)$ . Also, we extend $W(v)$ by the constant $W(\pm 1)$ for all $\pm v>1$ . Since the
values of $G^{+}(v)$ for $v>1,$ $G^{-}(v)$ for $v<-1$ , and $W(v)$ for $|v|\geq 1$ are not used for any
solution to (P), these extensions will not affect our final result.

Consider (P) with Cauchy data $(T, \psi, \Omega_{+}, \Omega_{-})$ in the domain $\{t\geq T(x)\}:=\{(x, t)|x\in$

$\mathbb{R},t\geq T(x)\}$ . Let $(a, b)\subset\Omega_{+}$ be an interval such that $a,$ $b\not\in\Omega_{+},$ $W(v(a, T(a)))>0$ , and
$W(v(b, T(b)))>0$ , so that “initially” (i.e., $t=T$) the $”+$ ” phase region is shrinking.

Propagation and annihilation of interfaces. Let’s $\mathrm{a}_{}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{n}\mathrm{l}\mathrm{e}$ , for the moment, that there
is no nucleatiop. Then interfaces started at $(a, T(a))$ and $(b, T(b))$ can be written as
$x=s^{\mathrm{R}}(t)$ and $x=s^{\mathrm{L}}(t)$ respectively, where

(4.1) $\frac{ds^{\mathrm{R}}}{dt}=W(v(s^{\mathrm{f}\{},t))$ , $- \frac{ds^{\mathrm{L}}}{dt}=W(v(s^{\mathrm{L}}, t))$ .
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The curve $t=T(\cdot)$ , on which the Cauchy data is given, is “characteristic” to equations in
(4.1) at points where $| \frac{dx}{dT}|=W(\psi)$ . For this reason, we impose the “non-characteristic”
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\pm W(\psi)|T’|<1$ on $\overline{\Omega}_{\pm}$ .

Suppose we know a priori that $s^{\mathrm{R}}$ and $s^{\mathrm{L}}$ are monotonic. Then the region below $x=s^{\mathrm{R}}$

and $x=s^{\mathrm{L}}$ is in $Q^{+}$ (since nucleation is ignored). Hence, solving $v_{t}=G^{+}(v)$ in this region
gives $v(x, t)=\Phi^{+}(\psi(x), t-T(x))$ . Consequently, (4.1) can be solved uniquely in terms
of $(T, \psi, a, b)$ . As a part of a $\mathrm{g}\mathrm{u}\mathrm{e}\mathrm{s}\mathrm{s}-\mathrm{a}\mathrm{n}\mathrm{d}$-check process, we shall show below in Lemma
4.1 that such uniquely obtained functions $s^{\mathrm{R}}$ and $s^{\mathrm{L}}$ are indeed strictly monotonic. For
this we need the condition $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\pm G^{\pm}(v)>0\mathrm{f}\mathrm{o}\mathrm{r}\mp v\geq 0$ . In such a manner, we obtain a
whole component of the interface being the union of the curve $x=s^{\mathrm{R}}(t)$ for $t\in[T(a),t^{*}]$

and the curve $x=s^{\mathrm{L}}(t)$ for $t\in[T(b), t^{*}]$ , where $t^{*}$ is the time such that $s^{\mathrm{R}}(t^{*})=s^{\mathrm{L}}(t^{*})$ ,
i.e., the time of annihilation of the two interfaces starting from $(a, T(a))$ and $(b, T(b))$

respectively.
Note that the union of the two curves $x=s^{\mathrm{R}}(t)$ and $x=s^{\mathrm{L}}(t)$ for $t\leq t^{*}$ is a graph in $x$ .

Hence, it is convenient to use the inverse function of $x=s^{\mathrm{R},\mathrm{L}}$ . We denote by $t=h(y, \mu;x)$

the inverse of $x=s^{\mathrm{R}}(y, \mu;t)$ for $x\geq y$ and $x=s^{\mathrm{L}}(y, \mu;t)$ for $x\leq y$ , where $s^{\mathrm{R},\mathrm{L}}(y, \mu;t)$

are solutions to (4.1) with initial data $s^{\mathrm{R},\mathrm{L}}(y, \mu;\mu)=y$ . Then $h(y, \mu;\cdot)$ solves

(4.2) $\mathrm{s}\mathrm{g}\mathrm{n}(x-y)\frac{dx}{dh(y,\mu\cdot x)},--W(\Phi^{+}(\psi(x), h-T(x)))$ for $x\in \mathbb{R}\backslash \{y\},$ $h(y, \mu;y)=\mu$ ,

where $\mathrm{s}\mathrm{g}\mathrm{n}(z)=1$ if $z>0$ and $\mathrm{s}\mathrm{g}\mathrm{n}(z)=-1$ if $z<0$ . The whole component of
the interface mentioned earlier then can be written as $t=H(x)$ for $x\in(a, b)$ , where
$H(x)= \min\{h(a, T(a);x), h(b, T(b);x)\}$ . The lens shape region $\{T(x)\leq t<H(x)\}$ is
one component of $Q^{+}$ .

Nucleation of phase regions. Next we take into account the nucleation. Let $y\in$

$(a, b)$ be an arbitrary fixed point. If the phase at $y$ is not affected by the expansion of
neighboring “-,, phase regions, then, due to the nucleation mechanics, it will change from
the $”+$ ” phase to the “-,, phase at time $T^{*}(y)$ at which $v=1$ . Once the phase at $y$ is
changed, the new “-,, phase region $\{y\}$ will expand to change the phase of its neighboring
points. Hence, at any point $x\in(a, b)$ , the phase will be changed at a time no later than
$h(y, T^{*}(y);x)$ , or more precisely, no later than $H(T, \psi, a, b;x)$ defined by

(4.3) $H(T, \psi, a, b;x):=\{$

$\inf\{h(y, T^{*}(y);x)|y\in[a, b]\cap \mathbb{R}\}$ if $x\in(a, b)$ ,

$T(x)$ if $x\not\in(a, b)$ ,

(4.4) $T^{*}(y):=\{$

$\sup\{t\geq T(y)|\Phi^{+}(\psi(y), \tau-T(y))<1\forall\tau\in[T(y), t)\}$ if $y\in(a, b)$ ,

$T(y)$ if $y\not\in(a, b)$ .

Here we have used the obvious notation $[a, b]\cap \mathbb{R}$ to include cases where $a=-\infty \mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$

$b=\infty$ . We also use the extension $h(y, T^{*}(y);\cdot)\equiv\infty$ if $T^{*}(y)=\infty$ . As it turns out,
$t=H(T, \psi,a, b;x)$ is precisely the first time of phase change from $”+$” to “-,, at point
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$x\in(a, b)$ . Here we state without proof the well-definedness and a few properties of
$H(x)=H(T, \psi, a, b;x)$ .

Lemma 4.1. Let $\psi\in L^{\infty}(\mathbb{R}arrow \mathbb{R})$ and $T:\mathbb{R}arrow[0, \infty)$ be $Lipschitz_{f}$ and $(a, b)\subseteqq \mathbb{R}$ be
an interval such that

(4.5) $\psi<1$ in $(a, b)$ , $W(\psi)|T’|<1$ on $[a, b]\cap \mathbb{R}$.

(1) For any $y\in[a, b]\cap \mathbb{R}$ and $\mu\in[T(y),$ $\infty)$ satisfying $W(\Phi^{+}(\psi(y), \mu-T(y)))>0_{f}$

problem $(\mathit{4}\cdot \mathit{2})$ admits a unique solution $h(y, \mu;x)$ for all $x\in[a, b]\cap \mathbb{R}$, and the solution
satisfies

(4.6) $T<h<\infty$ , $\frac{\mathrm{s}\mathrm{g}\mathrm{n}(x-y)}{h’}=W(\Phi^{+}(\psi, h-T))>0$ on $([a, b]\backslash \{y\})\cap \mathbb{R}$.

(2) Assume in addition to $(\mathit{4}\cdot \mathit{5})$ that

(4.7) $W(\psi(a))>0$ if $a\in \mathbb{R}$ , $W(\psi(b))>0$ if $b\in \mathbb{R}$ .

Define $\tau*$ as in $(\mathit{4}\cdot \mathit{4})$ and $H$ as in $(\mathit{4}\cdot \mathit{3})$ . Then either $\{(a, b)=\mathbb{R}, T^{*}\equiv\infty, H\equiv\infty\}$ or
$H<\infty$ on $\mathbb{R}$ and the followings hold:
(a) For each $x\in[a, b]\cap \mathbb{R}_{f}$ there exists $y^{x}\in[a, b]\cap \mathbb{R}$ such that $H(\cdot)--h(y^{x}, T^{*}(y^{x});\cdot)$

on the closed interval with end points $x$ and $y^{x}$ ;
(b) $H>T$ on $(a, b),$ $W(\Phi^{+}(\psi, H-T))>0$ on $[a, b]\cap \mathbb{R}$ , and $\Phi^{+}(\psi, t-T)<1$ on

$\{(x,t)|x\in(a, b), T(x)\leq t<H(x)\}_{f}$.
(c) For any $x_{1}\in(a, b)$ , there exists $\delta_{0}=\delta_{0}(x_{1})>0$ such that for all $\delta\in(0, \delta_{0})_{f}$

$H(x_{2})\geq H(x_{1})-\delta$ $\forall x_{2}\in B(x_{1}, c(\delta)\delta)$ ,

where $c( \delta)=\min_{\overline{B}(x_{1},M\delta)\cross[H\langle x_{1})-\delta,H(x_{1})]}\{W(\Phi^{+}(\psi,t-T))\}>0_{j}$

(d) $H$ is Lipschitz continuous on $\mathbb{R}$ .

4.2. Expansion of the “-,, phase region. For any point $(x_{0}, t_{0})\in Q^{-}$ , there are two
driving forces that may change the phase at $x_{0}$ . The first is an external force coming from
the neighboring points on the $”+$” phase, but it will not be large enough to change the
phase at $x_{0}$ if $v$ at $x_{0}$ is positive. The other is an internal force due to nucleation, yet it
will not change the phase at $x_{0}$ if $v>-1$ . Thus, as long as $v>0$ at $x_{0}$ , the “-,, phase at
$x_{0}$ will not change. Consequently, $v(x_{0}, t)=\Phi^{-}(v(x_{0}, t_{0}),$ $t-t_{0})$ is valid at least up to the
time $v$ becomes zero. Based on this idea, we can prove the following lemma concerning
the expansion of the “-,, phase region.

Lemma 4.2. Let $(v, Q^{+}, Q^{-})$ be a solution to (P) and $(x_{0}, t_{0})\in\overline{Q^{-}}be$ a point such that
$W(v(x_{0}, t_{0}))>0$ . Let $[A, B]$ be a finite interval such that $x_{0}\in(A, B)$ and $the..equ$

,
ation,

for $h(\cdot)$ ,

(4.8) $\mathrm{s}\mathrm{g}\mathrm{n}(x-x_{0})\frac{dx}{dh(x)}=W(v(x, h(x)))>0$ $\forall x\in[A, B]\backslash \{x_{0}\}$ , $h(x_{0})=t_{0}$
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has a solution on $[A, B]$ . Then for all $x\in[A, B]$ and $t \in(h(x), h(x)+\int_{v(x,h(x))}^{0}\frac{ds}{G^{-}(s)})$ ,

$(x,t)\in Q^{-}$ and $v(x, t)=\Phi^{-}(v(x, h(x)),t-h(x))$ .

We omit the proof here.

4.3. A local existence and uniqueness result. The following theorem shows that the
curve $t=H(T, \psi, a, b;x)$ defined in (4.3) is actually a component of the interface, and the
solution can be uniquely solved below and near $t=H$ .

Theorem 3. Let $(T, \psi, \Omega_{+}, \Omega_{-})\in \mathrm{S}$ and $(a, b)\subset\Omega_{+}$ be an interval such that $a\not\in\Omega_{+}$ ,
$b\not\in\Omega_{+}$ , and $(\mathit{4}\cdot 7)$ holds. Let $H(x)=H(T, \psi, a, b;\cdot)$ be defined as in Lemma 4.1. Set

$D=\{(x,t)|x\in(a, b), T(x)\leq t<H(x)\}$ ,

$\hat{T}=H$ , $\hat{\psi}=\Phi^{+}(\psi, H-T)$ , $\hat{\Omega}_{-}=(\Omega_{-}\cup[a, b])\cap \mathbb{R}$ , $\hat{\Omega}_{+}=\Omega_{+}\backslash (a, b)$ ,

$E_{\eta}=\{(x, t)|x\in(a-\eta, b+\eta),$ $H(x)<t<H(x)+ \int_{\hat{\psi}(x)}^{0}\frac{ds}{c-\langle_{S})}\}$ .

Then the followings hold:

(I) $(\hat{T},\hat{\psi},\hat{\Omega}_{+},\hat{\Omega}_{-})\in \mathrm{S}_{f}\hat{\tau}>\tau_{y}\neq$ and $\hat{\Gamma}_{0}=\Gamma_{0}\backslash \{a, b\}$ where $\hat{\Gamma}_{0}:=\partial\hat{\Omega}_{\pm}$ and $\Gamma_{0}:=\partial\Omega_{\pm;}$

$(\Pi)$ If $(v, Q^{+}, Q^{-})$ is a solution to (P) on $\{t\geq T(x)\}$ with Cauchy data $(T, \psi, \Omega_{+}, \Omega_{-})$ ,
then
(a) $D\subset Q^{+}$ and $v(x,t)=\Phi^{+}(\psi(x),t-T(x))$ on $\overline{D}$ ,
(b) $E_{\eta}\subset Q^{-}$ and $v(x, t)=\Phi^{-}(\hat{\psi}(x), t-H(x))$ on $\overline{E}_{\eta}$ for some $\eta>0_{f}$ and
(c) the following defined $(\hat{v},\hat{Q}^{+},\hat{Q}^{-})$ solves (P) on $\{t\geq\hat{T}(x)\}$ with Cauchy data

$(\hat{T},\hat{\psi},\hat{\Omega}_{+},\hat{\Omega}_{-})$ :

$\hat{v}=v$ , $\hat{Q}^{-}=Q^{-}\cup\{(x, H(x))|x\in[a, b]\}$ , $\hat{Q}^{+}=Q^{+}\backslash D$ ;

(III) If $(\hat{v},\hat{Q}^{+},\hat{Q}^{-})$ is a solution to (P) on $\{t\geq\hat{T}(x)\}$ with Cauchy data $(\hat{T},\hat{\psi},\hat{\Omega}_{+},\hat{\Omega}_{-})$ ,
then the following defined $(v, Q^{+}, Q^{-})$ is a solution to (P) on $\{t\geq T(x)\}$ with Cauchy
data $(T, \psi, \Omega_{+}, \Omega-)$ :

$v(x, t)=\{$
$\hat{v}(x, t)$ if $t\geq T^{\delta}(x)$ ,

$\Phi^{+}(\psi(x),t-T(x))$ if $T(x)\leq t<\hat{T}(x)$ ,

$Q^{-}=\hat{Q}^{-}\backslash \{(x,\hat{T}(x))|x\in[a, b]\}$ , $Q^{+}=\hat{Q}^{+}\cup D$ ;

(IV) (P) has a unique solution on $\{t\geq T(x)\}$ with Cauchy data $(T, \psi, \Omega_{+}, \Omega_{-})$ if and
only if (P) has a unique solution on $\{t\geq\hat{T}(x)\}$ with Cauchy data $(\hat{T},\hat{\psi},\hat{\Omega}_{+},\hat{\Omega}_{-})$ .

The proof is very tedious and is omitted.
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5. PROOF OF THEOREM 2

The idea of the proof of Theorem 2 is to use repeatedly Theorem 3 (and it’s companion
for the case $(a, b)\subset\Omega_{-})$ to reduce the problem into a simple case where $\Gamma_{0}=\partial\Omega_{\pm}=\emptyset$ .
Then use again Theorem 3 for the case $(a, b)=\mathbb{R}$ to construct, layer by layer in the
space-time domain, a unique solution.

Proof of Theorem 2. Let $(T, \psi, \Omega_{+}, \Omega_{-})\in \mathrm{S}$ be given. We prove the existence of a
unique solution to (P) on $\{t\geq T(x)\}$ with Cauchy data $(T, \psi, \Omega_{+}, \Omega_{-})$ in two steps.

Step 1. We assume that $\Gamma_{0}\neq\emptyset$ ; otherwise, we go directly to Step 2.
First we find a maximal connected component $(a, b)$ , of either $\Omega_{+}$ or $\Omega_{-}$ , for which we

can apply Theorem 3 (or its companion for “ –,,) to transfer the Cauchy problem to a
simpler one.

We assign every point in the set $\Sigma:=\{-\infty\}\mathrm{U}\Gamma_{0}\mathrm{U}\{\infty\}$ a letter either “
$\mathrm{R}$

” or “
$\mathrm{L}$”,

depending on the initial direction (Right or Left) of the motion of interface at that point.
As a $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{a}\mathrm{u}\mathrm{l}\mathrm{t}_{1}$, we assign “

$\mathrm{R}$
” to $\{-\infty\}$ and “

$\mathrm{L}$
” to $\{\infty\}$ . Since $W(\psi)\neq 0$ on $\Gamma_{0}$ , the

assignment is well-defined. Now appending all the letters assigned to $\Sigma$ in the same order

as the corresponding points in $\Sigma$ appeared on the real line, we obtain a word consisting of

two letters, “
$\mathrm{R}$

” and “
$\mathrm{L}$”. By the default, this word begins with “

$\mathrm{R}$
” and ends with “

$\mathrm{L}$ ”.

Hence, there is a first place where the letter “
$\mathrm{R}$

” is followed by “
$\mathrm{L}$”. Let’s denote the

corresponding points by $a$ and $b$ respectively. Then either (i) $(a, b)\subset\Omega_{+},$ $W(\psi(a))>0$

(if $a$ is finite) and $W(\psi(b))>0$ (if $b$ is finite), or (ii) $(a, b)\subset\Omega_{-},$ $W(\psi(a))<0$ (if $a$ is
finite) and $W(\psi(b))<0$ (if $b$ is finite). Without loss of generality, we assume that (i)

happens.
Now with the given $(T, \psi, \Omega_{+}, \Omega_{-})\in \mathrm{S}$ and such (uniquely) chosen interval $(a, b)$ , we

can apply Theorem 3 to obtain a new Cauchy data $(\hat{T},\hat{\psi},\hat{\Omega}_{+},\hat{\Omega}_{-})\in \mathrm{S}$ such that (P) with
Cauchy data $(T, \psi, \Omega_{+}, \Omega_{-})$ has a unique solution if and only if (P) with Cauchy data
$(\hat{T},\hat{\psi},\hat{\Omega}_{+},\hat{\Omega}_{-})$ has a unique solution. One notices that $\hat{\Gamma}_{0}:=\partial\hat{\Omega}_{\pm}=\Gamma_{0}\backslash \{a, b\}$ has at
least one point less than $\Gamma_{0}$ does.

Applying this process finitely many times, we then find $(\tilde{T},\tilde{\psi},\tilde{\Omega}_{+},\tilde{\Omega}_{-})\in \mathrm{S}$ such that

either $\tilde{\Omega}_{-}=\mathbb{R}$ or $\tilde{\Omega}_{+}=\mathbb{R}$ , and that problem (P) on $\{t\geq T(x)\}$ with Cauchy data
$(T, \psi, \Omega_{+}, \Omega_{-})$ is equivalent to (P) on $\{t\geq\tilde{T}(x)\}$ with Cauchy data $(\tilde{T},\tilde{\psi},\tilde{\Omega}_{+},\tilde{\Omega}-)$ .

Step 2. Assume either $\Omega_{-}--\mathbb{R}$ or $\Omega_{+}=\mathbb{R}$ . Without loss of generality, we assume that
$\Omega_{+}=\mathbb{R}$ . We consider separately the following three cases: (i) $G^{+}(1)<0;(\mathrm{i}\mathrm{i})G^{+}(1)>0$

and $G^{-}(-1)>0;(\mathrm{i}\mathrm{i}\mathrm{i})G^{+}(1)>0$ and $G^{-}(-1)<0$ .
$\underline{C_{}ase(\mathrm{i})}:G^{+}(1)<0$ . This case is either bistable (when $G^{-}(-1)>0$ ) or excitable

(when $C_{\tau}^{-}(-1)<0$).
.. Since $\psi<1$ on $\Omega_{+}=\mathbb{R},$

$\mathrm{t}1_{1}\mathrm{e}$ definition of $\tau*$ in (4.4) gives $T^{*}(\cdot)\equiv\infty$ , so that
$H(T, \uparrow \mathit{1},"-\infty, \infty;\cdot)\equiv\infty.$ By Theorem 3 $(\mathrm{I}\mathrm{I})(\mathrm{a})$ with $(a, b)–\mathbb{R}$ , the unique solution is

given by

(5.1) $Q^{-}=\emptyset$ , $Q^{+}=\{(x, t)|x\in \mathbb{R}, t\geq T(x)\},$ $v(x,t)=\Phi^{+}(\psi(x),t-T(x))$ in $Q^{+}$ .

141



XINFU CHEN AND CONGYU GAO

Case (ii): $G^{+}(1)>0$ and $G^{-}(-1)>0$ . This corresponds to an excitable case.
By Lemma 4.1 with $(a, b)=\mathbb{R}$ , either $H(\cdot)=H(T, \psi, -\infty, \infty;\cdot)\equiv\infty$ or $H(x)<\infty$

for all $x\in \mathbb{R}$ .
If $H\equiv\infty$ , there is a unique solution and it is given by (5.1).
If $H(x)<\infty$ for all $x\in \mathbb{R}$ , we first apply Theorem 3 to $(T, \psi, \mathbb{R}, \emptyset)$ and then apply a

companion of Theorem 3 for the “-,, phase change for $(H, \Phi^{+}(\psi, H-T), \emptyset, \mathbb{R})$ to conclude
that there is a unique solution, given by

$Q^{-}=\{t>H(x)\}$ , $Q^{+}=\{T(x)\leq t<H(x)\}$ ,

(5.2)
$v(x,t)=\{$

$\Phi^{+}(\psi(x), t-T(x))$ , $(x, t)\in\overline{Q^{+}}$ ,

$\Phi^{-}(v(x, H(x)),$ $t-H(x))$ , $(x, t)\in Q^{-}$

$\underline{Case(\mathrm{i}\mathrm{i}\mathrm{i})}$. $G^{+}(1)>0$ and $G^{-}(-1)<0$ . We consider three different situations:
$( \mathrm{i}\mathrm{i}\mathrm{i})(\mathrm{a})\max_{[-1,0]}\{G^{-}\}\geq 0$;
$(\mathrm{i}\mathrm{i}\mathrm{i})(\mathrm{b})G^{-}<0$ on $[-1, \infty)$ and $\min_{[0,1]}\{G^{+}\}\leq 0$ ;
$(\mathrm{i}\mathrm{i}\mathrm{i})(\mathrm{c})G^{-}<0$ on $[-1, \infty)$ and $G^{+}>0$ on $(-\infty, 1]$ .

As we shall see, cases $(\mathrm{i}\mathrm{i}\mathrm{i})(\mathrm{a})$ and $(\mathrm{i}\mathrm{i}\mathrm{i})(\mathrm{b})$ are excitable and $(\mathrm{i}\mathrm{i}\mathrm{i})(\mathrm{c})$ is $oscill\dot{a}tor\dot{y}$ .
Case $(\mathrm{i}\mathrm{i}\mathrm{i})(\mathrm{a})$ . If $T_{1}=H(T, \psi, -\infty, \infty;x)$ is finite, then by Lemma 4.1 (2) (b), $\psi_{1}$ $:=$

$\Phi^{+}(\psi, H-T)>0$ on $\mathbb{R}$ . It then follows $T_{1}^{*}(y)\equiv\infty$ where

(5.3) $T_{1}^{*}(y):= \sup\{t\geq T_{1}(y)|\Phi^{-}(\psi_{1}(y), \tau-T_{1}(y))>-1\forall\tau\in[T_{1}(y), t)\}$ $\forall y\in \mathbb{R}$ .

Hence, same as the case (ii), the solution is unique, given by (5.1) (when $H\equiv\infty$ ) or (5.2)
(when $H<\infty$).

Case $(\mathrm{i}\mathrm{i}\mathrm{i})(\mathrm{b})$ . If $T_{1}:=H(T, \psi, -\infty, \infty;\cdot)\equiv\infty$ . Then the unique solution is given by
(5.1).

Suppose $T_{1}(x)<\infty$ for all $x\in \mathbb{R}$ . Then $\tau_{1}*\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}$ by (5.3) is bounded, since $G^{-}<0$

on $[-1, \infty)$ . Applying the companion Theorem 3 for the “-,, case and using a similar
reasoning as above we then conclude that there is a finite $T_{2}(\cdot)>T_{1}(\cdot)$ such that the
solution is given uniquely by $Q^{+}=\{T(x)\leq t<T_{1}\}\cup\{t>T_{2}\},$ $Q^{-}=\{T_{1}(x)<t<$

$T_{2}(x)\}$ , and $v=\Phi^{+}(\psi, t-T)$ in $\{t\leq T_{1}\},$ $v=\Phi^{-}(\psi_{1}, t-T_{1})$ in $Q^{-}$ , and $v=\Phi^{+}(\psi_{2},t-T_{2})$

in $\{t\geq T_{2}\}$ where $\psi_{2}=\Phi^{-}(\psi_{1}, T_{2}-T_{1})$ .

Case $(\mathrm{i}\mathrm{i}\mathrm{i})(\mathrm{c})$ . Same as before, we first apply Theorem 3 to obtain $(T_{1}, \psi_{1}, \Omega_{+}^{1}, \Omega_{-}^{1})$ $:=$

$(H(T, \psi, -\infty, \infty;\cdot), \Phi^{+}(\psi, H-T), \emptyset, \mathbb{R})\in \mathrm{S}$. Note that $T_{1}=H\leq\tau*<\infty$ since $G^{+}>0$

on $(-\infty, 1]$ . Applying a companion of Theorem 3 for the Cauchy data $(T_{1}, \psi_{1}, \Omega_{+}^{1}, \Omega_{-}^{1})$

we then obtain $(T_{2}, \psi_{2}, \Omega_{+}^{2}, \Omega_{-}^{2})$ where $\Omega_{+}^{2}=\mathbb{R}$ and $\Omega_{-}^{2}=\emptyset$ , and $T_{2}<\infty$ since $G^{-}<0$

on $[-1, \infty)$ . Repeating this process we obtain a sequence $\{(T_{j}, \psi_{j}, \Omega_{+}^{j}, \Omega_{-}^{j})\}_{j=1}^{\infty}$ in $\mathrm{S}$ ,
where $T_{j}<T_{j+1}<\infty$ for all $j,$ $\Omega_{+}^{j}=\emptyset$ if $j$ is odd, $\Omega_{+}^{j}=\mathbb{R}$ if $j$ is even. Hence in
$\bigcup_{j=1}^{\infty}\{T(x)\leq t\leq T^{j}(x)\}$ the solution is uniquely determined.

With a considerable amount of technical effort, one can show that $\lim_{jarrow\infty}T_{j}(x)=\infty$

for any $x\in \mathbb{R}$ , and therefore complete the proof of Theorem 2. $\square$
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