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ABSTRACT. In this short note, we give some preliminary materials
and huristic descriptions of our recent results [HT] on two-phase
field model.

Let $\Omega\subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary, $n\geq 2$ , and
suppose that $\Omega$ is filled with some fluid which has two stable phases, say,
phase $A$ and phase $B$ . Let $W$ : $\mathbb{R}arrow \mathbb{R}^{+}$ be a certain potential function
with zeros $\mathrm{a}\mathrm{t}\pm 1$ and one local maximum on the interval $(-1, +1)$ . One
may regard $W$ as a kind of $(\mathrm{p}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{i}_{\mathrm{C}}\mathrm{a}\mathrm{i})$ Ginzburg-Landau free
energy, or Helmholtz free energy in the classical thermodynamics. To
describe the local macroscopic state of the fluid, we introduce the order
parameter function $u$ : $\Omegaarrow \mathbb{R}$ . We interprete $u$ as the indication of
local ratio of the two phases: i.e. if at $x\in\Omega,$ $u(x)\approx 1$ , it indicates that
phase $A$ occupies mostly around $x$ and similarly for $u(x)\approx-1$ , and if
$u(x)\approx 0$ , that phase $A$ and phase $B$ coexist locally at the same ratio
around $x$ . Given a suitable constraint such as $\int_{\Omega}u=m$ , we consider
the variational problem of minimizing

$E(u)= \int_{\Omega}W(u(X))$

with the given constraint. Here, the minimum of $E$ ma.y be obtained
(and $=0$) for a suitable $u$ taking $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}\mathrm{s}\pm 1$ only and having a suitable
volume ratio so that $\int_{\Omega}u=m$ . What is determined by this minimiza-
tion is simply the volume ratio of the two phases, and the configuration
of how they separate is completely arbitrary as far as $E$ is concerned.
This is caused by ignoring the surface tension energy of the phase
boundary, which would have the effect of avoiding unnecessary inter-
face as desirable configurations. Thus we instead consider a normalized
free energy

$E_{\epsilon}(u)-- \int_{\Omega}\epsilon\frac{|\nabla u|^{2}}{2}+\frac{W(u)}{\epsilon \mathrm{i}}$ .
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To get some insight into this energy, let’s conside..r $.$

$\mathrm{t}.\mathrm{h}.\mathrm{e}$ one-dimensional
case with $\Omega=\mathbb{R}$ ,

$E_{\epsilon}(u)= \int_{-\infty}^{\infty}\epsilon\frac{(u’)^{2}}{2}+\frac{W(u)}{\epsilon}$ .

The (unconstraint) Euler-Lagrange equation for $E_{\epsilon}$ is

$- \in u’’+\frac{W’(u)}{\epsilon}=^{\mathrm{o}}$ .

By the change of variable $x=\epsilon\tilde{x}$ , the equation is
$-u”+W’(u)=0$ ,

where $u”= \frac{d^{2}u}{d\tilde{x}^{2}}$ . Multiply the equation by $u’$ and integrate from $\tilde{x}=a$

to $\tilde{x}=b$ , then

$0= \int_{a}^{b}\frac{d}{d\tilde{x}}\{W(u)-\frac{(u’)^{2}}{2}\}=W(u)-\frac{(u’)^{2}}{2}|_{a}^{b}$

Thus we have $\frac{(u’)^{2}}{2}\equiv W(u)$ on $\mathbb{R}$ for the solution. Furthermore, this
leads to $u’=\sqrt{2W(u)}$ , which is a first-order ODE. It is not difficult
to find a travelling wave solution with $u(-\infty)=-1$ and $u(+\infty)=1$ ,
with $u’>0$ on R. By rescaling back $\tilde{x}=x/\epsilon$ , we see that this travelling
wave solution satisfies

$\in\frac{(u’)^{2}}{2}\equiv\frac{W(u)}{\epsilon}$

on $\mathbb{R}$ and the transition from-l $\mathrm{t}\mathrm{o}+1_{\mathrm{o}\mathrm{C}\mathrm{C}\mathrm{u}}..\mathrm{r}\mathrm{s}$ within the $\epsilon$-order length.
The energy of the solution is

$E_{\epsilon}(u)= \int_{-\infty}^{\infty}2\sqrt{\frac{W}{\epsilon}}\sqrt{\frac{\epsilon:}{2}}u’--\int_{-1}^{1}\sqrt{2W(s)}ds\equiv 2\sigma$,

where we changed the variable by $s=u(x)$ . The constant $2\sigma$ may be
considered as a unit surface energy contribution.

If we turn to the multi-dimensional problem, one may, by analogy,
make various conjectures on the geometry of the interface for the crit-
ical points of the energy $E_{\epsilon}$ as well as how the energy may be deter-
mined. For example, it is natural to guess that, for $\epsilon$ small,

$E_{\overline{\mathrm{c}}}(u)\approx$ area of interface $\cross 2\sigma$

if $u$ is a critical point of $E_{\epsilon}$ . One would wonder if $\frac{\epsilon|\nabla u|^{2}}{2}\approx\frac{W(u)}{\xi \mathrm{i}}$ in
some appropriate sense. Also, since $E_{\mathcal{E}}$ is expected to measure the
area of interface, it may be expected that critical points of $E_{\epsilon}$ may
have interfaces which are critical points of area energy: namely, the
interfaces may be close to constant mean curvature hypersurfaces in
some appropriate sense. These issues are first considered and answered
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for energy minimizing solutions by Modica [M1], Sternberg [S] and
Luckhaus-Modica [LM]. With some technical assumptions on $W$ ,

Theorem Suppose $\{u_{\epsilon}\}_{\epsilon>0}$ minimize $E_{\epsilon}$ with a given volume con-
straint, $i.e.$ ,

$E_{\epsilon}(u_{\epsilon})= \int\min_{v=m}E(\in v)$
.

Then there exists a subsequence $\{u_{\epsilon_{\mathfrak{i}}}\}_{i=1}^{\infty}$ with $\epsilon_{i}arrow 0$ and $u_{0}\in BV(\Omega)$

such that
(i) $u_{0}=\pm 1L^{n}$ a. $e$ . on $\Omega$ ,
(ii) $u_{\epsilon_{i}}arrow u_{0}$ in $L^{1}(\Omega)$ ,
(iii) $2\sigma\cdot Per(\partial\{u_{0=}1\}\cap\Omega)=\mathrm{l}\mathrm{i}\mathrm{m}arrow\infty E(\in_{i})u_{\epsilon_{i}})$

(iv) $\lim_{iarrow\infty}\int_{\Omega}|\frac{\epsilon_{i}}{2}|\nabla u\epsilon_{i}|^{2}-\frac{W(u_{\epsilon_{i}})}{\epsilon_{\mathfrak{i}}}|=0$,

(v) Per $( \partial\{u_{0}=1\}\cap\Omega)=\min_{v=\pm 1}a.e$ . $, \int {}_{v=m}Per(\partial\{v=1\}\cap\Omega)j$

(vi) the mean curvature of $\partial\{u_{0}=1\}$ is $\frac{\lambda}{\sigma}\rangle$ where $\lambda=\lim_{x}arrow\infty\lambda_{i}$ and
$\lambda_{i}$ satisfies

$- \epsilon_{i}\triangle u_{\mathcal{E}_{i^{+}}}\frac{W’(u_{\mathcal{E}_{i}})}{\epsilon_{i}}=\lambda_{i}$ , $i=1,2,$ $\cdots$

The meaning of the above statements is: (iii) says that the energy
$E_{6}$ approximates the area of interface times $2\sigma$ , and (v) says that the
boundary of $\{u_{0}=1\}$ in $\Omega$ minimizes the area with the given volume
constraint. By the well known regularity theory, $\partial\{u_{0}=1\}\cap\Omega$ is a
regular hypersurface (with a possible closed singular set of Hausdorff
dimension less than or equal to $n-8$). The mean curvature of the limit
interface is constant, and is given as the limit of Lagrange multipliers
for $u_{\epsilon_{i}}$ . The important observation is that, by defining

$\Phi(t)=\int_{0}^{t}\sqrt{W(S)/2}ds$

and $v_{\epsilon}=\Phi(u_{\epsilon})$ , one has

$\int_{\Omega}|\nabla v_{\mathrm{g}}|=\int_{\Omega}\sqrt{W(u_{\epsilon})/2}|\nabla u_{\mathcal{E}}|\leq\frac{1}{2}\int\frac{\epsilon}{2}|\nabla u_{\mathcal{E}}|^{2}+\frac{W(u_{\epsilon:})}{\epsilon}$.

Note that the right-hand side is uniformly bounded for the minimiza-
tion problem. Thus, (with appropriate assumptions on $W$ which give
$L^{\infty}$ uniform bound on $u_{\epsilon}$ ) $BV$-norm of $\{v_{\epsilon}\}$ is uniformly bounded. The
standard compactness theorem shows that there exist a $L^{1}$ converging
subsequence $\{v_{\epsilon_{i}}\}$ and the limit $v_{0}$ which is also $\mathrm{a}.\mathrm{e}$ . pointwise limit.
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Define $u_{0}=\Phi^{-1}(v_{0})$ . The sequence $\{u_{\epsilon_{i}}\}$ converges to $u_{0}\mathrm{a}.\mathrm{e}$ . point-
wise, hence by Fatou’s lemma,

$\int_{\Omega}W(u0)=\int_{\Omega}\lim$ inf $W(u_{\epsilon_{i}}) \leq\lim\inf\int_{\Omega}W(u_{\mathcal{E}_{i}})arrow 0$ .

This shows that $u_{0}=\pm 1\mathrm{a}.\mathrm{e}$ . on $\Omega$ , and $u_{0}\in BV(\Omega)$ as well. To show
that $\partial\{u_{0}=1\}\cap\Omega$ minimizes area with the given volume constraint,
one constructs a sequence of functions which have phase boundaries of
some area-minimizing boundary. Here, one shows that, if

Per $(\partial\{u_{0}=1\}\cap\Omega)>$ $\min$ Per $(\partial\{v=1\}\cap\Omega)$ ,
$v=\pm 1$ $\mathrm{a}$ . $\mathrm{e}.,\int v=m$

then one would reach a contradiction due to such construction. The
energy minimality is an essential point of the argument.

To understand general critical points of the energy functional with
finite energy which may not be energy minimizing, we use the Euler-
Lagrange equation. The approach is through the famous monotonicity
formula which holds in a number of variational problems and which
originated in the study of minimal surfaces via measure-theoretic ap-
proach: define, for $r>0$ ,

$f(r)= \frac{1}{r^{n-1}}\mathcal{H}^{n-1}(M\cap Br(x))$ ,

where $M\subset \mathbb{R}^{n}$ is a minimal hypersurface, $H^{n-1}$ the (n-l)-dimentional
Hausdorff measure and $x\in M$ . It is well-known that $f(r)$ is a non-
decreasing function of $r$ . Since the interface of the critical points of $E_{\epsilon}$

should behave like a minimal hypersurface (or constant mean curvature
hypersurface, to be more precise), and since the energy $( \frac{\epsilon}{2}|\nabla u|^{2}+\frac{W}{\epsilon})dx$

as a measure concentrates only around the interface, it is naturally ex-
pected that, via analogy,

$f(r)= \frac{1}{r^{n-1}}\int_{B_{r}(x)}(\frac{\epsilon}{2}|\nabla u|^{2}+\frac{W}{\epsilon})$

may be non-decreasing for all sufficiently small $\epsilon$ for the critical point
of $E_{\epsilon}$ . By using the Euler-Lagrange equation (see [HT, Section 3]) one
computes

$f’(r)= \frac{1}{r^{n}}\int_{B_{r}}(\frac{W}{\epsilon}-\frac{\epsilon}{2}|\nabla u|2)+\frac{\epsilon}{r^{n+1}}\int_{\partial B_{r}}(X\cdot\nabla u)2$,

where $B_{r}=B_{r}(0)$ . The second term is non-negative, while the first
term does not have a definite sign. Intuitively, the first term arises due
to the scaling difference of the two terms under consideration: without
$\epsilon,$

$|\nabla u|^{2}dX$ scales like $r^{n-2},$ $Wdx$ like $r^{n}$ , while we are scaling them
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by $r^{n-1}$ which is the middle of the two. The fact that there exist a
constant $c=c(n,\tilde{U}, W)$ independent of $\epsilon$ with

$\sup_{\overline{U}}(\frac{\epsilon}{2}|\nabla u|2-\frac{W}{\epsilon})\leq c$

( $[\mathrm{H}\mathrm{T}$ , Proposition 3.3]) is the key point which shows that $f’\geq-C$ . In
all purposes this is good enough to controll the local behavior of the
measure concentration. The above estimate is motivated by the earlier
work of Modica [M2]: if $u\in C^{2}(\mathbb{R}^{n})\cap L^{\infty}(\mathbb{R}^{n})$ satisfies

$\triangle u=W’(u)$ on $\mathbb{R}^{n}$

(where $W$ may not be double-well function at all), then

$\frac{1}{2}|\nabla u|^{2}-W(u)\leq 0$ on $\mathbb{R}^{n}$ .

Our problem, after rescaling by $\tilde{x}=x/\epsilon$ , becomes
$-\triangle u+W’(u)=\lambda\in$ on $\epsilon^{-1}\Omega$ ,

where $\epsilon^{-1}\Omegaarrow \mathbb{R}^{n}$ as $\epsilonarrow 0$ . Thus, our result may be considered as
a certain $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{u}\mathrm{r}\dot{\mathrm{b}}$ ation result from the entire solution case. On the
other hand, the proof crucially depends on the fact that $W$ has the
double-well shape: so far we do not see how to prove the similar es-
timate for wider class of functions $W$ . Once the monotonicity of the
energy is established, the rectifiability of the.limit interface and the
equi-distribution of the energy

$\int_{U}|\frac{\epsilon \mathrm{i}}{2}|\nabla u|^{2}-\frac{W}{\epsilon}|arrow 0$

follows via some measure theoretic argument as well as some known
results from Allard’s paper [A] on varifolds. Thus, the limit interface
measure $||V||= \lim\frac{\epsilon}{2}|\nabla u|^{2}d_{X}$ has a weak tangent plane $\mathrm{a}.\mathrm{e}$ . $\mathcal{H}^{n-1}$ on
the support of $||V||$ in particular. One expects that, at around (not
necessarily unit density) points where a weak tangent plane exists, the
converging phase boundary looks like a multi-layered one-dimensional
travelling wave solution discussed at the beginning. Using in an es-
sential manner the varifold convergence (rather than the convergence
of measure in $\mathbb{R}^{n}$ ), we show that the density of $||V||$ are $\mathrm{a}.\mathrm{e}$ . integer
multiples of a. Our analysis also shows that, at around the regular
unit density point, the convergence of interfaces is in fact $C^{1,\alpha}$ : that
is, the indivisual level sets $\{u_{\xi}=t\},$ $|t|<1$ , converge to the support of
$||V||$ as a graph in the $C^{1,\alpha}$ norm for any $\alpha<1$ . It is a standard habit
of PDE specialists to bootstrap at this point and obtain $C^{k}$ estimates
for any $k$ . But here, it seems to us that it is difficult to obtain $C^{2}$
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estimate due to a certain degeneracy of the equation that one must
consider. This begs somewhat subtle but interesting question about
the phase field theory: how close is it to the limiting sharp interface
model? The formal asymptotic analysis often assumes that the level
set of the phase boundary to be smooth. Of course, it often gives sat-
isfactory answers when higher regularity is not a issue. It can be an
important issue in the analysis of certain related dynamical problems
such as the Cahn-H..illiard equation.
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