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1. INTRODUCTION

We consider problems of the form

$u_{t}=u_{xx}$ , $0<x<1$ , $0<t<T$,

$u_{x}(0, t)=0$ , $0<t<T$ ,

$u_{x}(1, t)=f(u(1, t))$ , $0<t<T$ ,

$u(x, 0)=u_{0}(x)>0$ , $0\leq.x\leq 1$ ,

where $f(u)=-u^{-p},$ $p>0$ , or $f(u)=u^{p},$ $p>1$ . We shall call them Problem (Q)
and Problem (B), respectively. We discuss them separately.

1.1. Problem (Q) $(f(u)=-u^{-p})$ . This problem was studied before by Fila&
Levine(1993) where it was shown that that every solution quenches in a finite time
$T=T(u_{0})$ in the sense that $u>0$ in $[0,1]\cross[0, T)$ and $u(1, t)arrow \mathrm{O}$ as $tarrow T$ . The
behavior of $u$ near $(1, T)$ for $t\leq T$ was also studied.

The question whether it is possible to continue the solution beyond $t=T$ (in
some suitable sense) was raised by Levine(1993). Since $u(\cdot, T)\in C([0,1])$ and
$u(1, T)=0$ , an obvious possibility of continuing the solution is to extend it for
$t>T$ by $\tilde{u}$ which solves

$\tilde{u}_{t}=\tilde{u}_{xx}$ , $0<x<1$ , $t>T$,

$\tilde{u}_{x}(0, t)=0$ , $t>T$ ,

$\tilde{u}(1, t)=0$ , $t>T$,
$\tilde{u}(x, T)=u(x, T)$ , $0\leq x\leq 1$ .

We show that this continuation is natural since it can be obtained as a limit
of a sequence of solutions of regularized problems. More precisely, if $\epsilon>0$ and
$f_{\epsilon}\in C^{1}([0, \infty))$ is such that $f_{\epsilon}(\mathrm{O})=0$ and

$f_{\epsilon}(s)=-s^{-p}$ for $s\geq\epsilon$ ,
$f(s)\leq f_{\in_{1}}(s)\leq f_{\epsilon_{2}}(s)$ for $s>0$ and $\epsilon_{1}<\epsilon_{2}$ ,

Typeset by $A_{k}\beta^{r}- \mathrm{I}\mathrm{p}\mathfrak{c}$

数理解析研究所講究録
1178巻 2000年 162-166 162



then the solutions of $(\mathrm{Q}_{\epsilon})$ :

$\{$

$u_{t}^{\epsilon}=u_{xx}^{\epsilon}$ , $0<x<1$ , $0<t<\infty$ ,
$u_{x}^{\epsilon}(0, t)=0$ , $0<t<\infty$ ,
$u_{x}^{\epsilon}(1, t)=f_{\epsilon}(u^{6}(1, t))$ , $0<t<\infty$ ,
$u^{\epsilon}(x, 0)=u_{0}(x)$ , $0\leq x\leq 1$ ,

converge to the extension of $u$ by $\tilde{u}$ .
The fact that solutions of Problem (Q) can be continued beyond $t=T$ for

all $p>0$ is in contrast with the situation when quenching occurs in the interior.
Namely, for the problem

$u_{t}=u_{xx}-u^{-p}$ , $0<x<1$ , $0<t<T$,
$u_{x}(0, t)=0$ , $0<t<T$,
$u(1, t)=1$ , $0<t<T$,
$u(x, 0)=u_{0}(x)$ , $0\leq x\leq 1$ ,

solutions can be continued beyond quenching if and only if $0<p<1$ (cf. Phillips(1987),
Galaktionov&Vazquez(1995) $)$ .

Let us also mention here that a similar phenomenon when the continuation
beyond gradient blow-up does not satisN the original boundary condition was ob-
served by Fila&Lieberman(1994).
1.2. Problem (B) $(f(u)=u^{p})$ . The study of blow-up of solutions of the heat
equation with a nonlinear boundary condition was initiated by Levine&Payne(1974)
and it has attracted considerable attention (see a survey paper of Fila&Filo(1996)).
It was shown by Fila(1989) that every solution of Problem (B) blows up in a finite
time $T=T(u_{0})$ and it is also known (cf. L\’opez G\’omez, M\’arquez, &Wolan-
ski $(1991))$ that the only blow-up point is $x=1$ .

(By a blow-up point we mean a point $a\in[0,1]$ such that there are $\{x_{n}\}\subset[0,1]$

and $t_{n}arrow T$ such that.$x_{n}arrow a$ and $u(x_{n}, t_{n})arrow\infty$ as $narrow\infty.$ )

We show that for Problem (B) blow-up is always complete in the following sense.
If

$f^{n}(s)= \min\{s^{p}, n^{p}\}$ , $s\geq 0$ , $n\in \mathbb{N}$ , . . (1.1)

and $u^{n}$ is the solution of $(\mathrm{B}^{n})$ :

then $u^{n}(x, t)arrow\infty$ for $(x, t)\in[0,1]\cross(T, \infty)$ .
For results on complete blow-up for the problem when the nonlinearity oc-

curs in the equation we refer to the papers of $\mathrm{B}$ \‘aras &Cohen(1987), Lacey &
Tzanetis(1988), Galaktionov&Vazquez$(1995, 1997)$ , Marte1(1998), etc.

Our method is different and it is restricted to one space dimension since we are
using an intersection-comparison (or zero number $(\mathrm{c}\mathrm{f}$. $[14])$ ) argument.
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2. INCOMPLETE QUENCHING

In this section we show that if $u(x, t)$ is the solution of the problem

$\{$

$u_{t}=u_{xx}$ , $0<x<1$ , $0<t<T$,

$u_{x}(0, t)=0$ , $0<t<T$,

$u_{x}(1, t)=-u^{-p}(1, t)$ , $0<t<T$,

$u(x, 0)=u_{0}(x)>0$ , $0\leq x\leq 1$ ,

(Q)

where $p>0$ and $T$ is the quenching time for $u$ then there is a natural continuation of
$u$ beyond $T$ . We shall assume that $u_{0}\in C^{1}([0,1])$ and the compatibility conditions

$u_{0}’(0)=0$ , $u_{0}’(1)=-u_{0}^{-p}(1)$

are satisfied.
Assume that $0<\epsilon<u_{0}(1)$ . Then there exists a unique global (in time) solution

$u^{\epsilon}$ of $(\mathrm{Q}_{\epsilon})$ such that $u^{\epsilon}\in C^{2,1}([0,1]\cross[0, \tau])$ for any $\tau>0$ and
(i) $u^{\epsilon}>0$ for $(x, t)\in[0,1]\cross[0, \infty)$ ,
(ii) $u^{61}\leq u^{\epsilon_{2}}$ for $0<\epsilon_{1}<\epsilon_{2}$ and $(x, t)\in[0,1]\cross[0, \infty)$ ,
(iii) $u^{\epsilon}\geq u$ for $(x, t)\in[0,1]\cross[0, T)$ .

Also, by the maximum principle, it is clear that

$u^{\epsilon} \leq K\equiv 0\leq x\leq 1\max u_{0}(.x)$

for all $\epsilon>0$ .
Now, let

$v(x, t)= \lim_{\epsilonarrow 0}u^{\epsilon}(x, t)$ , $(x, t)\in[0,1]\cross[0, \infty)$ . (2.1)

Then $v$ is well-defined and $0\leq v\leq K$ in $[0,1]\cross[0, \infty)$ . It follows ffom the regularity
theory for parabolic equations that $v$ satisfies the heat equation in $(0,1)\cross(0, \infty)$ .
By the maximum principle, $v>0$ in $(0,1)\cross(0, \infty)$ . Also, it is clear that $v_{x}(0, t)=0$

for $t>0$ . Furthermore, if $t\in(0, T)$ , then

$v_{x}(1, t)=-v^{-p}(1, t)$ .

It follows that $v$ is a solution of (Q). By uniqueness, $v=u$ in $[0,1]\cross[0, T)$ . For the
boundary condition for $v$ on $\{x=1, t>T\}$ , it can be shown that $v(1, t)=0$ for
$t\geq T$ .

We summarize the above results as follows:

Theorem $2.1[15]$ . The function $v$ deffied by (2.1) satisfies

$v_{t}=v_{xx}$ , $0<x<1$ , $t>0$ ,
$v_{x}(0, t)=0$ , $t>0$ ,

$v_{x}(1, t)=-v^{-\rho}(1, t)$ , $0<t<T$ ,

$v(1, t)=0_{\mathrm{J}}$ $t\geq T$,

$v(x, 0)=u_{0}(x)$ , $0\leq x\leq 1$ .

It coincides with th$esol\mathrm{u}$tion $u$ of Problem (Q) for $t\leq T$ .
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3. COMPLETE BLOW-UP

Consider the problem

$\{$

$u_{t}=- u_{xx}$ , $0<x<1$ , $0<t<T$,
$u_{x}(0, t)=0$ , $0<t<T$,
$u_{x}(1, t)=u^{p}(1, t)$ , $0<t<T$,

$u(x, 0)=u_{0}(x)>0$ , $0\leq x\leq 1$ ,

(B)

where $p>1$ , and $T$ is th.$\mathrm{e}$ blow-up time for $u$ . We assume further that $u_{0}’(0)=0$

and $u_{0}’(1)=u_{0}^{p}(1)$ .
Let $K= \max_{0\leq x\leq 1}u_{0}(.x).$ For any $n>K,$ $n\in\dot{\mathbb{N}}$ , we define $f^{n}$ as in (1.1). Note

that $f^{n}$ is Lipschitz and $u_{0}’(1)=f^{n}(u_{0}(1))$ if $n>K$ . Hence, the solution of $(\mathrm{B}^{n})$

is $C^{1}$ up to the boundary. We show that there exists a unique global (in time)
solution $u^{n}$ of $(\mathrm{B}^{n})$ such that

(i) $u^{n}>0$ for $(x, t)\in[0,1]\cross[0, \infty)$ ,
(ii) $u^{n}\leq u^{n+1}$ for $(x, t)\in[0,1]\cross[0, \infty)$ ,
(iii) $u^{n}\leq u$ for $(x, t)\in[0,1]\cross[0, T)$ .
Define

$v(x, t)= \lim_{narrow\infty}u^{n}(.x, t)$ , $0\leq.x\leq 1$ , $t\geq 0$ . (3.1)

Similarly, one can show that $v_{x}(1, t)=v^{p}(1, t)$ for $t\in(0, T)$ . Then it is clear that
$v(x, t)=u(x, t)$ for $0<t<T$ . Note that $v(1, T)=\infty$ . Furthermore, there holds
$v(1, t)=\infty$ for $t\geq T$ .

This proves the following:

Theorem 3.1 [15]. The function $v$ defin$ed$ in (3.1) coincides with the $sol$ution $u$ of
Problem (B) for $t\leq T$ and $v(x, t)=\infty$ for $(x, t)\in[0,1]\cross(T, \infty)$ .
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