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Interface Equations with Nonlocal Effects

R ERFEAGER Kot B2 (Kunimochi Sakamoto)
Graduate School of Science, Hiroshima University

1. INTRODUCTION

1.1. Interface Equation. Let Q C RY (N > 2) be a smooth bounded domain.
An interface in this article is meant to be an N — 1 dimensional closed hypersuface
I' C Q which separates 2 into two components Q5 and Qf:

Q=0 UTUOf.

There are varieties of ways for an interface to separate the domain {2 into two parts.
For the ease of presentation, we always assume that T' stays away from 02 and that
the following situation is realized (cf. Figure 1): '

(1.1 i) Q=Q-uTUuUQf, (i) 9QF =T, (i) 90F =T U Q.
T T T

The subject matter of this article is to describe the motion of interfaces evolving in
time (denoted by t) according to certain laws. To be more precise, let {I'(t)}i>0 be,a
family of interfaces parameterized by time ¢, with each I'(t) satisfying the conditions
in (1.1). We always assume that T'(¢) for each t > 0 is sufficiently smooth, say, of

C*-class with & > 2. Then our concern is to find a solution of
(1.2) Virn(a) =S I(1)) (xeT(t), t> O) ['(0) = Ty,

where V() is the normal speed of T'(t) at a2 € I'(t) and S(a;T(t)) is a scalar
function depending on a and the interface I'(¢). When we measure the normal speed,
we always do so along the unit normal v(x,t) of I'(#) which points into Q;r( 1) a8 in
Figure 1. Equations like (1.2) are called an interface equation.

1.2. Examples. Before we describe the interface equation which we are concerned
with, let us first list some examples that share some common features with our
problem. In these examples, we emphasize on wherther the flow preserves the volume
of Qp,, or not, and on whether it decreases the arca (N — 1-dimensional volume) of
['(t) or not.

ExAMPLE 1 (Mean Curvature Flow).

'Partially supported by the Grant-in-Aid for Scieqtiﬁc Research (C)(2) No. 11640204, The
Ministry of Education, Science, Sports and Culture of Japan.
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A well-known and extensively studied example of an interface equation is the

mean curvature flow described by
(MC) Vi () = =H(a; T(t)),

where H(a;T(t)) is the sum of the principal curvatures of [(t) at « € T(t). Ow
convention for the sign of H(a; T(#)) is such that it is positive when T'(#) is a sphere

and Q) is the interior of I'(¢).
This problem is derived as a singular limit of the Allen-Cahn equation [3]:
du 1, : Ju
(1.3) 5; =Au+ F_z-f(“') in Q, —al—rll =0 on 09

as € — 0, where f(u) = u — u® for example, and n stands for the outward unit
normal. In general, a solution T'(t) of (MC) evolves in such a way that the surface
area |['(t)| decreases. To show this, let dS T be the surface element on I' C €, induced
from the standard metric in 2. Then we compute

%lmn = | H(@;T(8) Vi (@)dST)

JT(1)
= — H(x; T(t))2dSE <.
JT)
It is known [12, 9, 11] that if the initial interface I'g is convex, then the solution I'(#)
of (MC) shrinks to a point in finite time. Naturally, as long as ['(t) remains convex
(or H(x;T(t)) > 0, in general), the volume

d
dt

QT([)I is also (1(3(31'()‘(1511ng

Q;(,)l = [ Ve (2)dSTO = — [ H(a:T(t))dSI" < 0.
JT() T)

EXAMPLE 2 (Averaged Mean Curvature Flow).
This is a conservation-version of EXAMPLE 1.

(AMC) Vig(r) = =H(w:T(1) + H(1)

where H(t) is the average of the mearn curvature

1
H(t) = —/ H(:T(t))dSTW.
()] . T ( ()ds,
(AMC) is derived in [2] as a singular limit of (1.3) with f(u) being replaced by
1
() — — (u(x.t))da.
) = gar [ stato)

The flow generated by (AMC) enjoys two properties.

e Volume Preserving. The volume enclosed by I'(t) is preserved:

d Q’Fu)t N /r(:) (ﬁ(t) B H) 45,1 =0,

dt



e Area Decreasing. The area of the interface decreases in time:

N — 2
)| = - | /r ., (Fte) - #) ast® <.

dt

It is shown [13] that if the initial interface I’ is uniformly convex, then the solution
I'(t) of (AMC) exists globally for ¢ € [0, oc) and it converges (as t — oc) to a round
sphere.

The cquation (AMC) has a slight nonlocal effect due to the average H(t). How-
ever, the average is determined solely by ['(t) and, in this sense, (AMC) is still of
local type. The equations (MC) and (AMC), in fact, do not feel the presence of the
boundary 9. This is why (MC) and (AMC), as they stand, are often posed in the
entire space RY.

EXAMPLE 3 (Mullins-Sekerka Problem).
The problem is decribed by

(VL) vmcr):—((H;m+Ha,))H<-;r<t>>)<x> (z €T(t), t>0).

where H% are Dirichlet-to-Neumann oprators associated with the boundary value

problems:
~Aut = 0 (x € QF)
(1.4) ut(z) = g(a) (xel)
dut/omn = 0 (x € 09).
Namely. they are respectively defined by

(m¥q) () = :Fa“;f” (x €T),

with u£ being unique solutions of (1.4) on QF, respectively. It is known that I
are first order elliptic operators whose principal part is the square root of —AT:

I ~ v/ —AT.

These operators are apparently of nonlocal type and depend strongly on the ge-
ometries of T' and €. The existence and uniqueness of time local classical solutions
for (M-S) were established by Chen, Hong and Yi [3]. Pego [20] derived (M-S) as
a singular limit of the Cahn-Hilliard equation and Chen [4] established the conver-
gence of the solutions of the Cahn-Hilliard equation to those of (M-5) as the singular
perturbation parameter tends to 0. v

The flow generated by (M-S) also enjoys the two properties, volume preserving and
area decreasing. In fact. denoting by u* the solutions of (1.4) with ¢(x) = H(x; T'(2)).
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one obtains the following:

@) — : I'()
dt‘Qr( )] = [, Vrwds:? = /r m(IIm)+Hr(,)>H(1“(t))clSI

:/ out lSr(” / ou~ ISFU)
I v T(t) v

+ out _
= - AuTdr + —— Audx =0,
of sn On =

(1) @)

(note that v is pointing into Qf)
and

d B}
%lF(t)‘z HVpdSTW = — / Mg, + I, ) HdsE®
(1) I'(t)

=/ u+§-£d5£(’)—/ ,uf@;:dgl_“(t)
r v rg O 7

=— / |Vut|2de — / |Vu~|?dx < 0.
of o,

(1) NG

ExaMPLE 4 (Morphology Equation).
This is an inhomogeneous version of the previous example (M-S) and was derived
by Nishiura and Ohnishi [16] (see also [19]) as a singular limit of a nonlocal reaction-

diffusion equation. The motion law is given by
(Mor) V() = ((nm+nm)u( F(t)))(m) (x € T(t), t>0),

in which ﬁlik are Dirichlet-to-Neumann operators associated with the following n-
homogeneous boundary value problems.
C_avt = - (90 - 197D/ (@ € 9F)
(1.5) ut(z) = q(a) (xeT)
dut/on = 0 (v € 092).
The existence of time local solutions of (Mor) was established by Ohnishi and Imai

[18]. The flow generated by (Mor) also enjoys the volume preserving property.

4 Q;(,)‘ - QﬂdS{“’—/ Qu jsto
dt ray v iy OV
out
=- / Autdr + —C—)I—l— - / Au~dx
% oo 90 Jog,

|Q+| L 1] = 19251 +IQ l _1__|Q;ru)_|—|QFu)| 0
r() BTeY r(1) 0] :
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However, it is not necessarily area decreasing.

1.3. Interface driven by mean curvature and shape effects. Interfaces gov-
erned by (1.2) may (and often do) develop singularities in finite time and change
their topology. In this article, we do not deal with such singularity formation.

The interface equation we study in this article is the following:

(a) Vrp(z) = =H(a:T(t)) + cov(a; F(t)), (z €eT(t), t>0)
(0) = Ty
(1.6) —Av(wiT() = PaT(t)) (z € Q\I'(2). t>0)
s | % =0 (z € 0Q, t>0)
v(a;T(0)) = wo(x) (r €Q)
v(5T() € CHO\T@H)NCYQ) (t>0)

where ¢. > 0 is a constant,

| 4 G~/D x€Qp
P(a;T) :{ G+/D e Q;

with G~ < 0 < G*,D > 0 being constants. In problem (1.6), the normal speed
Vi (2) of the interface is given as a sum of the mean curvature and the value of
the function v(a;T). The latter function, in turn, is uniquely determined by the
shape and relative positions of the interface and the domain. Non-local effects are
thus encoded in the values of v(a; T).

The system (1.6) is derived as a ysinguleu' limit of the following reaction-diffusion
system (cf. [17, 25, 21, 22]).

Eu, = EAu+ f(u,v) (r e, t>0),

v, = DAv+ eg(u,v) (v e, t>0),
(RD) ’

ou, v)
c?n’

=0 (v € 09, t > 0),

with (f.g) being, for example, f(u,v) = u — u?

C. = 3/\/§

— v, g(u,v) = u — v, in which case

1.4. Reformulation. We will now transform (1.6) into a form of (1.2).
The Neumann boundary value problem

—Av = f in Q
(17) S c ov

= 9 on 09,



for a given pair of data (f,g) € C(Q) x C(89) has a solution in C 1(€)) if and only
if the compatiblity condition

(1.8) /Qf(:z:)(l:v = — 'AQ g(a)dS,

is satisfied. In our case (1.6)-(b), ¢ = 0. and hence we have to impose the condition

/ P(a;T(t))da =0,
Q

which is equivalent to |Q7,)[G™ + 1 ,|G* = 0, where | is the N dimensional

Lebesgue measure of a set €. This condition, together with [Qr | + 1,1 = 19,
implies

19)  jm =S op, = -Sial (with [6] =G - G-

(1.9)  [2ryl= @| 195l = _[—G_]—' Y o (with [G]:=GT - G7).

Let N(2;2") be the Neumann function associated with the problem (1.7) (cf. [14]).

Namely, the unique solution ¢ of (1.7) under the condition f(‘m vdS, = 0 is given by
(1.10) v(a) = [ N(a;a!)f(a)da' + | N(asa)g(a')dSy
Q Joq
when (1.8) is satisfied. Therefore our problem (1.6) is recast as
(1.11) Vin(a) = —H(a;T(t)) + e [ N(a;a")P(a';D(t))da’ + k.
Ja

Note that the right hand side of (1.11) is well-defined only when the condition (1.9)
is satisfied. The constant & on the right hand side of (1.11) is to be determined in
such a way that the interfacr I'(t) keeps the condition (1.9) satisfied. If the initial
interface satisfies (1.9) with ¢ = 0, then I'(¢) continues to satisfy it if and only if

d
0=—I05,| = VvV 2)dST)
(HI F(t)' /[‘(/) F({)(l)( x

= |T(t)|k — H(a; T(t))dSEY
JT(1)

+ Cx/ /N(:‘I:;;’U')P(:lf'; T(t))da’dST",
() Jo

where |['(t)| is the N — 1 dimensional Lebesgue measure of I'(t) and dS:" is the
surface element on I'(t) at « € I'(¢). Therefore the constant k is uniquely determined,
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and hence so is S in (1.2) for our problem (1.6). The problem (1.6) is now recast as
1 ,
(1.12) Vig(e) = =H(@;T(t) + = [ H(a;T(t))dS[
1T Jr

—|—c,‘LN(x;:v')P(:r’;I"(t))dx'

_ (’_" o z' 2 d [‘(,).
D) /r(n/QN(’ 1) P(as D(t))do'dS,

On the right hand side of (1.12), the first line is the averaged mean curvature, while
the second and third lines express nonlocal effects.

The main result of this article is:

THEOREM 1. Let I'y be an initial interface of class C*t* (0 < a < 1). Suppose
that the condition (1.9) is satisfied with t = 0. Then the interface equation (1.12)
has a unique solution of class C*T*1+/2 on q time interval [0, T) for some T > 0.

THEOREM 1 will be proven in §2, after trasforming the equation (1.12) into a quasi-
linear parabolic equation. In §3, dynamics of spherical interfaces governed by (1.12)
will be discussed. In particular, we will study stability properties of equilibrium

interfaces and their possible bifurcations.

2. PROOF

To be more precise in the regularity statement of THEOREM 1, and to prepare the

stage for the proof, let us first introduce some geometric tools.

2.1. Geometric Preliminaries. Let M be a manifold of class C* which is C?**-
diffeomorphic to the initial interface I'y. We choose and fix a C*>° embedding ¢ :
M — Q and denote by y a generic point on M (cf. Figure 2). Let v(y) € RY be

the unit normal vector of (M) at ¢(y), pointing into Q:;(M )» Where
_ 0O~ , +
1= Qs-:(M) Up(M)U Qs&(M)

is a decomposition as in (1.1). We also choose the map ¢ so that Qi»:(M) satisfy the
volume constraint (1.9). For sufficiently small ry > 0, the map

(2.1) O M X (=79, 79) — £ Dy, r) = (y) +rv(y)

is a C* embedding. Let U,, = ®(M.(—r¢,19)). We denote by (Y (z), R(z)) €
M X (—rg,19) the inverse of the embedding ®. Namely, it holds that

x = p(Y(2)) + R(x)v(Y(x)) for v € U,,.

By choosing the embedding ¢ so that ;2(M) is sufficiently C***-close to the initial
interface T'y, one can express ['(¢) as the graph of a function A(y.t) on ¢(M). That
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is to say, ['(t) is parametrically expressed as

L(t) = {z = ¢(y) + Ay, )v(y) [y € M }.
We will show that the equation (1.12) is written as

0A

5 = FWAVADM)  (yeM, t>0)

(2.2)
A(y,0) =Ao(y) (yeM),

where F(y, A, VA, D2A) is a quasi-linear elliptic operator. The form of F is rather
involved. The complication comes from the expresseion of the mean curvature
H(-;T4) in terms of A, where

Ta={z=p(y) + Ay |y e M}
~Let g;;(r) be the Riemannian metric tensor on M induced from the Euclidian one
on U,, by the embedding ®(-,r). Namely,

gi;(r)(y) = < aq}ég‘i T), 6@6(;/ r) >

We also use below the symbols in the following list.

(L1) (¢(r)) = (gs5(r))™' : contravariant metric tensor.
(L2) x,(y) : the principal curvatures of (M) C Qatz = o(y) (j=1,... . N-1).
(L3) dV; : the volume element on M induced from the surface element on ‘I>(M ,T)
at © = ®(y,r) by the embedding ®(-,7). Then we have the following expres-
sions.
AV = 51 + rr;(y))dV,)
N-1

Y5 (1 +rey(9) = Y 7 Hi(y)
j=0

with Hy = 1 and Hy(y) = H(y; 7D(J\/l)) In a local coordinate system y on M,

dvg = \/det(gij(())(y)) dy.

(L4) (IVFA : the volume element on M at y induced from the surface element on
1"4 at @ = p(y) + A(y)v ( ) by the embedding

M3y o(y) + Ayr(y).

Note that dV;rA is different from dV, with r = A(y).
(L3) Define

i,7=1 J

D(y A, VA) \Jl + Z g (A( J))a—A%‘i
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then we have

dV[* = D(y, A, VAV,

lrs|—/ dVrA —/ 'D(y,¢4/VA)(lVZU/l(y)
M M

= Z / Dy, A, VAYAW)) Hy(y)dv].

(L6) A®t) . the Laplace-Beltrami operator on M induced from that on ®(M, r) C

(LT) T*(y,7) = Hess(Y*(2))|e=ayy (k=1,... ,N=1).

(L8) n*(y,r) = V. Y*()|pmowy (R=1,....N=1).

(L9) S(3.7) = Hess(R(x)) ooty |

(L10) H(y.r) = ZJ\:"]I 1-:;3()11) : the sum of principal curvatures of O(M;r) at

x=®(y.r).

With these geometric tools at our disposal, we can now give the precise form of the

operator F(y, A. VA, D2?A) as follows.

(2.3) F(y, A, VA D?A)
AVA) [ A, AY), VAY), D*AW)) o r
_ Ay A.VA,D*4) — 2 dvTa
4V A DA - Tl m Dy, 4 ), VA(Y))

+e.D(y. A, VA) N(@(y-,A(y)) o) P2 T ) da’

Dy, A|(ry)1 vl (%)) / N(®(y . AY)); 2/ )P(a's T y)da' dVE4,
1 Q '

with A(y, A, VA, D?>A) being given by:

(2.4) Ay, A, VA, D*A) = A®W)A(y) — H(y, A(y))

N— N—-1 .
0A 0A\ 9*A
+D(y, A, VA)~ rl ¢'(A C—
&4 { ;(;1 o4 )Oyk 'c?yz)t?.z/»;c’?yj
CY s QA0A L Z ity OA0A 04
dy; Oy; el E)Ji Oy dy; |’
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where ', 7/, T! and S are evaluated at (y,r) = (y, A(y)). The expression in (2.3) is
obtained from (1.12) by expressing Vr(2) and H(a;T) in terms of A as follows [6]:

Ay, f)

Vi (r) = D(y. A(y. 1), VA(y. 1))

Aly. A(y.t), VA(y.t). D*A(y. 1))
D(y. A(y.t). VA(y.t))

H(x; T(t)) = —

with @ = ®(y, A(y)).

Note that the elliptic operator F is not necessarily defined for an arbitrary function

A. There is a constraint to be imposed on A, which comes from the condition (1.9):

\(y)
0= / dv — / dx —-/ / Y1+ rej(y))drdV,)
e oF, 0

We emphasize this fact:

The non-local elliptic operator F(y. A, VA, D?A) is defined only for those A that
satisfy

4 J+l
(l/ l/)(lV

J+1

(2.3) C(A) =0, / Z ; + - H;(y)dvy.

=0

Then the differential equation (2.2) has to be such that the semi-flow generated by

it preserves the constraint (2.3). The next proposition guarantees this property.
PROPOSITION 2. The identities
0 o) = [ Awn;
JMm
(i)  94C(A)F(-, A, VA ,D*A)) =0
hold true, where 0, stands for the derivative with respect to A.

). we have

Ot

Proof. (1) By using the definition in (2.

[

0. = [ A E vy

-.‘\4]'

= / A(y)dv,'w
JM

in which the identities in item (L3) above are used to obtain the second equality.

Il
=
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(ii) From (i) we have

OACANF(- A VA D) = [ Fly. Aw). VAQ). D AGy)av; "
M “
- / y '{;@‘%ﬁf (v. A(y). VA(y), D*A(y))dV, * = 0,

where the first identity in item (L3) is used to obtain the second equality, and the
expression in (2.3) to obtain the third one. ' , O

PROPOSITION 2-(ii) says that the differential equation (2.2) is compatible with
the constraint (2.3). One can now rephrase THEOREM 1 as follows.

THEOREM 3. Let Ay € C*T*(M) satisfy (2.5) and such that | Ao|c2tar) 15 suffi-
ciently small. Then there exist T > 0 and a unique solution A(y.t) of (2.2) on [0, T
such that

A € CHelte2(M x [0,T)).
From the arguments above, we find that it suffices to prove THEOREM 3 in order to
establish THEOREM 1. ' | k

2.2. Proof of Theorem 3. We now proceed to the probf of THEOREM 3. It consists

of two steps.
S1 : To reduce the problem (2.2) with the non-linear constraint to a problem with
a linear constraint. ;
S2 : To apply the general results on quasi-linear (or fully nonlinear) parabolic
equations presented in [13] to the problem with the linear constraint in Step 1.
Step S1: Let AT40 be the Laplace-Beltrami operator on I',, or more precisely, it
is the Laplacian on M induced from the Euclidian one by the embedding ®(, Ao())
The null space of A4 is the set of constant functions. The space X := C?T*(M)
is decomposed as the direct sum ' o

(2.6) X = ker(AT%0) @ ker(AT40)*,

where the superscript L stands for the orthogonal complement. We denote by M

the set of functions A that satisfy (2.3):
M={4eX|C(A) =0}

Since ker(AT40) is not contained in the tangent space T4,M of M at Ay, one can
express points A on M near Ay uniquely as a sum

A= AO +B+p(B)
where B € ker(AT40)L, p(B) € ker(AT40) and
p i ker(AT40)t — Ler(AT40)
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is an analytic function satisfying p(0) = 0. The analyticity of the function p comes
from that of C in (2.5). The problem (2.2) is now recast as:

B, = ATB+QG(y,B) yeM, t>0,
(2.7) ' B(y,0) =0 yEM,
B = (I-QG(B)  t>0,

with G(y, B) being defined by
G(y. B) := F(y, Ao+ B+ p(B), V(4o + B), D*(4 + B)) - A'% B,

where (I — Q)B = 1/|Ty| T B(y)dVyrA0 is the projection onto ker(Al4o) associated
with the decomposition (2.6). Note that the equation for p(B) in (2.7) is not a
differential equation. Once B is found, p(B) is automatically determined.

Step S2: It is now easy to prove the local in time existence of solutions to (2.7)
by exploiting the general results by Lunardi [15], Chapter 8, Section 5.3. The idea
is to use the contraction mapping principle. For each B € Y with

Y 1= C?tel2 (M x [0, T]) N C([0,T), range(AT)),

let B = A(B) be the solution of

B, = ATB+QG(y,B) yeM, t>0,
B(y,0)=0 y € M.

Lunardi then proves that for sufficiently small T > 0, A : ¥ — Y is a contraction
mapping in a neighborhood of 0 € Y. Although the presentation in [15] is done
for equations with local terms, the arguments there work equally well for equations
with nonlocal lower order terms. Since nonlocal effects appear only as lower order
terms in our problem, the proof by Lunardi applies without any modification. This
completes the proof of THEOREM 3.

3. DYNAMICS OF SPHERICAL INTERFACES

It is not easy to see how the solutions of (1.12) evolve. In this section. we describe
the dynamics of spherical interfaces driven by (1.12), when the domain {2 is the unit
ball in R¥.

Let T'(¢) be the union of k concentric spheres:

T(t) = Ty (t) U...UT(t)

with T;(t) = {z e RY] Ja] < pi(t) } (0 < pr <... < < 1).
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THEOREM 4. We assume, for the sake of presentation, that the interior of I'i(t)
~ belongs to Q). Then the interface equation (1.12) is recast as:

IR LY jN-l_ - Zf:l(—l)ip?r—?
(3.1) (=117 p; =(=1) Py (N-1) SawE

; ko N-1
L (v( ps) Zizlkpi \L_(lp))
: ' Zi:‘] Pi

in which v(p;) (J =1,...,k) are given by

L | G~ .
(for 3=1)  v(pm)= —mpf
. R AV (G S VR
. > a1 ) = — -
(for 522 o) = (5—% - 5) Dx > (1)
1 [6] & p\Y G e
— 2 it “N(E J N >3,
”1[2—.\’ w2 )(pj) topy, W A2
or
G] -
=£Dl (—1)’/)?(10gpz—f)
=1
j—1
2 [G] i P 2 ; Gj1 i N —
/)j[QD ,z:;( Y (Pj) g2+ 75 (#f N =2),

where

G = G- (7 : even)
T G (5t odd).

Proof. Since the normal velocity of T;(#) is given by (—1)7*!p; and its curvature
by (=1) —\/)—:—1 the interface equation (1.12) gives rise to the system of ordinary
differential equations (3.1) in which ¢(r) is the solution of the problem (3.2) below.
Note that (3.1) does not change even if we add an arbitrary constant to v(r). So,
let us normalize it by ©(0) = 0. Let us use the symbols py = 0, ppy1 = 1. Then v(r)

is the solution of

, —.(?'N*’I»'-r)rv _ rNIG5ID o (py <1 < pig),
(3.2) 0,(0)= 0 =u(1),
| () € CN[o,1]).



In order for (3.2) to have a solution, the volume constraint (1.9) has to be fulfilled;

Gt 105, | TZmCAT (kodd)

[C

(3.3)
- Z;‘f:](—l)jp}y +1 (k:even).

Therefore, in the system (3.1) there are only A — 1 independent equations. For cach
j=0,1.... .k, the equation in (3.2) is casily integrated as

N— N- Gj n N
(3.4) rN e () — p}-\ Lo (p;) = —D&, (7' - p}\) (p; <r < pjp1)

which gives rise to

- AN G 1 N 7 G; 1—G.' N
(3.5) P}'\+11 [’Ur(ﬂj+1) + D]—;;PJH] - P}-\ 1[‘“7-(/)1) + ﬁl);] = —LDAT-_—J_/)]'\—%—I-

Adding the equations (3.5) on both sides, using v.(0) = 0 = ¢,(1), one obtains

k k
Gir = G) Y (=1Vp = =[G (o (-1)n) + (-1)*).

j=0 j=1
which is nothing but (3.3). Morcover, if the equations in (3.5) are added up to j—1,
then one also obtains
(3.6) P} 1[(,,_,.(,)_,') + _DR;,)].] - [Z;(_l)z o =
which also gives an explicit formula for v.(p;):

- G, d;

(3.7) vlps) = =gl T /)}\']_1 :

Integrating (3.4) once more, we obtain the values v(p;).

Gy .
(38) e(pr) = 0(0) = = 5o
2-N 2N
p" -——p—i Gi“l - AT
(3.9) v(p) = v(pjm) =dj = 5 \J - Qlj)N(P]?* -pin) (N 23),
. Pj G"—l 2 2 AT <
=d;_, l()g(pjil) - 25.:\‘,(;)]- —pi_1) (N =2),
(j=2.....k+1).

Since ©(0) = 0 is known, one can easily determine the values v(p;) successively
for j = 1.... .k, which gives the expressions in THEOREM 4. This completes the
proof. 0
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3.1. Motion of Spherical Interface. We will now investigate more closely the
dynamics of spherical interfaces governed by (3.1) for k = 1,2.

: In this case there is no dynamics. In fact (3.1) reduces to p; = 0. So, the
single spherical interface is in equilibrium state and it is uniquely given by

oy = (%)1/:\7 g

which comes from the volume constraint (3.3). We also record here

[G]

1G] 16
2ND

olB) = ND

(1-EVE®,  u(E)=+5(1-EY)E,

which will be used later in stability analysis. The stability property of the equilib-
rium p; = FE relative to non-radial perturbations will be discussed in §3.2 below.
Note that there is no room for radial perturbations in the present situation, again,

due to the volume constraint (3.3).

: Let us first deal with the case where N > 3.
The equation for p; is

S E 1 N-2 _ HN-2 'v‘ —v N-1
(3.10) p=—(N - ]_)<__ + pQ—pl\l) + Cx( (pl) (02\))62 ’
poopy T PNt pd
in which p, is dictated by p; as follows:
(3.11) oy =p) +1-EV.

Moreover, from (3.9) we have

| ooy LGl Gy, 1 [G] W
(3.12) vlpn) ~ vlp)) =5 (g + ) L (oF +1-B )
1 Gty :37
“———m‘Q—<P‘1\+1—E‘) )

Substituting (3.11)-(3.12) into (3.10), we obtain the differential equation for p;,

which we write as
(3.13) - p1=hxy(p. D), 0<p <E.

One can verify the following facts by elementary calculation:

e The principal term of hy(py. D) as p; — 01is —(N —1)/p;.
o v(p1) — v(pa) > 0 for p; near 0 and this is the only positive contribution to
hx(x. D).



196

Based upon these observations, one can in fact show the existence of D3 > 0 such
that (cf. Figure 3):

for D> Dy : hy( )

for D= Dy : hx(p1.Dy

for D < D% : hx(p1, D) =0 has two solutions p; (D) < pf (D) < E such that
Ry (pr (D), D) >0 and hiy(p{(D), D) <0.

p1,D) <0 (0< p < E);
)=

= 0 has a unique solutionp] € (0, F);

That is to say, the solution of (3.13) converges to 0 in finite time for D > D., giving
rise to a single interface, and a saddle-node bifurcation takes place at D = D.. The
bifurcated equilibria pf (D) and py (D) are, respectively, stable and unstable relative
to radially symmetric perturbations. The stability property of pi (D), relative to
non-radial perturbations, will be discussed in §3.2.

When N = 2, the same statements as above for N > 3 are still valid. The

equation for p; in this case is given by
(3.14) p1 = hao(p1, D)

with

A (e RV EQ(/}? log(1

L) — (1 - B?)E?)
h D)= —— — - .
2(p1, D) ) 4D PR 2

It is of interest to compare the dynamics of our equation with that of (Mor)
in EXAMPLE 4. As noted earlier, the semi-flow generated by (Mor) preserves the
volume of Qr,). According to the ratio |Qp, O)I/IQF(O)[ of initial volumes, the first
equation in (1.5) has different inhomogeneous terms. For the sake of comparison, let
us choose the ratio to be equal to 1. Moreover, we replace 1 in the first equation
of (1.5) by #£1/D with D > 0 being a parameter. The equation of p; for (Mor) is
then given by (N > 3) |

201 (N = 1)(N =2) pi3(p2 + p1)
DN P Py =

(N-2) pm-p
::k/-' .D
D\p1 p\ SR ~(p1. D)

where py =pY +1— EV.

(3.15) b= —

The profile of k3(p;, D) is depicted in Figure 4 for several values of D, which shows
that the qualitative dynamics of spherical interface for (Mor) is similar to that of
(1.12).
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3.2. Stability of Equilibria. We consider the equilibrium problem assqciated with
(1.6):

cv(;T) = H(x;T), B (xel)

(3.16) g —A"v’(il-'?ar) = P(x;T) (x € O\I")
e
In 0 B B (x € 09)
e(+T) € C)(O\I)NCHQ).

The resolution of the problem (3.16) for a general domain  is much harder than
that of (1.6). When € is the unit ball, one can easily obtain radially symmetric
solutions of (3.16). Let us, however, start with a general setting.

Let us assume that (3.16) has a smooth solution (I', v). We choose the embedding
o M — Qso that (M) = T'. We now linearize (1.12) around A = 0 and consider
the associated eigenvalue problem. It is given by

N-1 N-1
(317) A =ATA+ (DAY A—m O~ mi()HAY)AVY
j=l1 j=1

+(ng/ Py)ial )Pl m,)A

m/ ( o, P )i ><-'v’;f'>dw') A(y)avy)
“'*[g] / N(2(y); 2y ) A(Y )dVy

m [g]/ /N' 2y )AY)AVpdvy.

Note that the first line on the right hand side of (3.17) is the averaged Jacobi

operator on I', which is the linecarization of the first line on the right hand side
of (1.12). When one tries to lincarize [, N(p(y):2’)P(2/;T)da’ in T, the jump
discontinuity of P(a/;T) at T introduces a delta function supported on I', which is
expressed in the fourth line of (3.17).

To determine the stability of the equilibrium solution (I, ¢), we will study the
cigenvalues of (3.17). Before we treat the problem, let us first present a useful result
related to one of the nonlocal terms in (3.17).

By using the Dirichlet-to-Neumann operators H]jf associated with (1.4), let us
define IT% by

(f4) () = (A0 v ) (2ly) A€ CPo(M),
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PROPOSITION 5. A right inverse of I~ + [ has an explicit expression:
(I~ + IT7) ' A(y) = / N(2(y); (¥ ) Ay )(Il + constant.
If we impose the normailzation
/ (H_ + fI‘L)“lA(y)dV;!O =0
M i
on the right inverse, it is uniquely detemined as
(3.18) ' A(y) :=(I117 + IT7) 7" A(y)

_ /w N () 2y ) Ay )V

P (' -
JMJIM

Proof. The proof is essentially given in [8] (Chapter 3).
Let us define u*(2) by

/ N(a (z/)(ll
/N w;a)A(p (a"))dSL, (v € QF).
Note that u™(z) = ut(x) for 2 € T, Whm( ut(2) for @ € T is well-defined as the

limit

u®(2) = lim uE(a") (a) € QF).

al—a

Arguing as in the proof of Theorem 3.28 in [8], we obtain for x € T

out(x) 1 . TN AL r
= —QA(,, X)) +./r K(a';2)A(p™ (2))dS,.,
(3.19)
ou~(x 1 _ , _
: (=) = ZA(e () + /’C(."I.T;;I_f).rfl(;,;‘ Ya:))dsSt,,
v 2 Jr ‘
where
K(a';x) = o N( x).
Note that our Neumann function plays the role of —N (. y) in Chapter 3 of [8]. and

this is why the sign of the first terms on the right hand side of (3.19) is opposite to
that in Theorem 3.28 of [8]. Now. (3.19) immediately gives

. o (o
A(’v-,:_l(;z;)) = al'[élfl) — 011515.1) on I,




or equivalently
((HF +I) Ao )(a / N(z "NA(Y )dVO + constant,

since identities in (3.19) are valid even if we replace u®(x) by u*(2)+ constant. This
completes the proof. ‘ U

In the sequel, we always use the normalized right inverse in (3.18).

The eigenvalue problem (3.17) is now rewritten as

(3.20) AA AFA+(Zth/ 4—m/ h](y ( "V

+ <c aN(vﬁ(y) & )P(w’;F)da")A

0 v,

JO ov,

([ 2 otyanrpws e ) awyavg
IT] J s

- cx%ﬁ_lz&(y).

On the right side of (3.20), the first line is nothing but the averaged Jacobz operator
on I'. We consider the eigenvalue problem for (3.20), with T' being the equilibrium

sphere given in §3.1.

THEOREM 6 (Eigenvalues for Single Interface). LetT = {z € Q | |2| =
E } be the equilibrium interface given in §3.1. Then eigenfuctions of the associtaed
eigenvalue problem (3.20) are all spherical harmonic functions of degree j > 1.

Morecover, the corresponding eigenvalue is given by

(-1 —1+X)
E? |
L] E[l ~EY 4+ N = 2)ENN
N J(2j + N - 2)

\j=-—

Proof. Since perturbation A has to satisfy (cf. PROPOSITION 2-(i) with A =0, A =

A)
/ A(y)dvy) =
JMm )

and in the present situation the following identities hold true

2 N _ [g]

o —(2(y); 2 YP(2';T)da' = v, (E) = ‘\D( — EME.
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the eigenvalue problem (3.20) is reduced to

N-1,  ¢[G/(1-EME
g At D‘( N

The right hand side of the latter equation becomes a multiplication operator when

A = ATA + _ frl)A.

A is spherically harmonic. By using the completeness of the sysmem of spherical
harmonics of degree 7 > 0 ([8]), we conclude that the eigenfunctions are all spherical
harmonic functions of some degree.

Moreover, one can easily verify that the eigenvalue of the Jacobi operator for
spherical harmonics of degree j > 1is —(j — 1)(j — 1 + N)/E?. By recalling the
definition of 12[‘1: it is also verified by elementary computations that the eigenvalue
of the inverse II-! associated with spherical harmonics of degree j > 1 is givn by

j + (] + N - 2)E2j+N—2
i2j+N=-2)

Combining these together, we complete the proof of the theorem. O

Remark. The result in THEOREM 6 is exactly the same as Theorem
2.2 in [24] for the eigenvalue of transition layer solutions for the reaction-
diffusion system (RD). This indicates that the interface equation (1.12)
does approximate the motion of internal layers for the reaction-diffusion
system (RD).

THEOREM 6 also shows that as D > 0 gets smaller, A; crosses zero
at D = D; > 0 for all j > jo > 1. This indicates that a symmetry-
breaking static bifurcation takes place at such values of D. Indeed, one can
prove by using the equivariant bifurcation theory [10] that there exist non-
radial solutions of (3.16). The latter statement has been proven valid in
[24] for radially symmetric internal layer solutions of (RD). Applying the
equivariant bifurcation theory of [10] as in [24], we have recently estabished
in [23] that symmetry breaking bifurcations take place at D = D; for each
j=>1
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FIGURE 1. T divides Q into two parts, Q5 and Q.

I'4 as the graph of A over T’

v

<

(M)
FIGURE 2. Coordinate system near yp(M).
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FIGURE 3. Profiles of hy(p1, D) for N = 3, G* = +1, ¢, = 3/+/2 and
for various values of D. '
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FIGURE 4. Profiles of ks(p1, D) for |Q5|/|%| = 1 and for various
values of D.



