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Abstract

A stability problem is considered for a family of spatially peri-
odic stationary solutions in 1-D $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}/\mathrm{s}\mathrm{k}\mathrm{e}\mathrm{w}$ -gradient systems. In
these systems, a first integral can be found for the equation for sta-
tionary solutions. Regard this integral as a functional on the set of
stationary solutions, it is shown that a stability-instability transition
occurs at extremal points of the functional, i.e., a first integral is an
index of instability property of stationary solutions. The result gives
a simple but general criterion for the Eckhaus instability in various
model equations for pattern formation such as the Ginzburg-Landau
equation, Swift-Hohenberg equation and activator-inhibitor reaction-
diffusion systems.
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1 Introduction
It is well known that various interesting patterns with spatially periodic struc-
ture are observed in the world of nature, for example, thermal convection phe-
nomena, biological morphogenesis, and vortices in the superconductivity. In
order to describe the process of spatially periodic pattern formation, various
model equations are proposed. The purpose of this paper is to study a stabil-
ity problem for a family of spatially periodic stationary solutions within the
framework of $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}/\mathrm{s}\mathrm{k}\mathrm{e}\mathrm{w}$ -gradient systems. Our main result gives a simple
but very general criterion for the instability of spatially periodic stationary
solutions. In fact, the criterion gives a transparent and unified viewpoint to
understand the Eckhaus instability of spatially periodic stationary solutions
in various model equations.

Let us consider the $n$-component system

(1.1) $\tau_{u_{t}=}Du_{xx}+f(u)$ $-\infty<X<\infty$ ,

where $u(x, t)–{}^{t}(u_{1},$ $u_{2},$ $\cdots,$
$u_{n}\mathrm{I}\in \mathrm{R}^{n}$ . We assume that $T$ is a nonnegative

diagonal matrix and $D$ is a regular matrix such that (1.1) is well posed in an
appropriate sense. In addition, we assume that $D$ satisfies the condition

(1.2) ${}^{t}DQ=QD$

for some diagonal matrix

(1.3) $Q=$ , $0\leq k\leq n$ ,

where $I_{k}$ denotes the identity matrix of order $k$ . As for the nonlinear.. term,
we assume that $f(u)$ is written as

$f(u)–Q \frac{\partial H}{\partial u}$

with some smooth function $H_{--}H(u)$ : $\mathrm{R}^{n}arrow \mathrm{R}$ . Under these assumptions,
we notice that the Jacobian matrix $f_{u}$ of $f$ satisfies

(1.4) ${}^{t}fu.(u)Q=Qfu(u)$ ,
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and there is an energy-like functional

$E[u]= \int\{\frac{1}{2}\langle Du_{x}, Qux\rangle-H(u)\}dX$ ,

where $\langle , \rangle$ stands for the usual inner product on $\mathrm{R}^{n}$ . In fact, from $Q^{2}=I_{n}$ ,
${}^{t}Q=Q,{}^{t}DQ=QD$ and ${}^{t}T=T$ , it follows (under an appropriate asymptotic
or boundary condition) that

$\frac{d}{dt}E[u(x, t)]$ $=$ $\int\{\frac{1}{2}$ $\langle$Dut, $Q$x $u_{x}\rangle$ $+ \frac{1}{2}\langle DuQx’ ut\rangle x-\langle\frac{\partial H}{\partial u}, u_{t}\rangle\}d_{X}$

$=$ $\int\{\frac{1}{2}\langle QDu_{xt}, u_{x}\rangle+\frac{1}{2}\langle Dux’ Quxt\rangle-\langle Q\frac{\partial H}{\partial u}, Qu_{t}\rangle\}dx$

$=$ $\int\{\frac{1}{2}$ $\langle {}^{t}DQu_{x}t, u\rangle x+\frac{1}{2}\langle DuQx’ u_{x}t\rangle-\langle f(u), Qut\rangle\}d_{X}$

$=$ $\int\{-\langle Du_{xx}, Qu_{t}\rangle-\langle f(u), Qu_{t}\rangle\}dX$

$=$ $- \int\langle u_{t}, TQu_{t}\rangle dX$ .

The system (1.1) is said to be a gradient system when $TQ$ is nonnegative,
and skew-gradient system otherwise [13].

Let $u=\phi(x;s)$ be a family of spatially periodic stationary solutions of
(1.1) parametrized by $s$ with its minimal spatial period $\ell(s)$ , that is, $\phi(x,\cdot S)$

satisfies
$D\phi_{xx}(_{X};S)+f(\emptyset(x;s))=0$ ,

(1.5)
$\phi(_{X;}s)=\emptyset(X+\ell(s);s)$ .

The aim of this paper is to investigate the stability of $\phi(x;s)$ in the space of
uniformly bounded functions on $\mathrm{R}$, which is denoted by $BC(\mathrm{R})^{n}$ . Namely,
we consider the linearized eigenvalue problem

(1.6) $\lambda TW=DW_{xx}+f_{u}(\phi(X;S))W$, $-\infty<x<\infty$ ,

which is a system of linear ODEs with $\ell(s)$-periodic coefficients $f_{u}(\phi(\chi,\cdot S))$ .
We denote the spectrum of (1.6) by $\Lambda(s)$ . Differentiating (1.5) with respect
to $x$ , we immediately find that $\lambda=0$ is an eigenvalue of (1.6) with an eigen-
function $\phi_{x}(x, S)$ . As is well-known, the spectrum near zero often determines
the $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}/\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ of stationary solutions in dissipative systems.
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Setting

(1.7) $\mathrm{Y}=$ ,

we can rewrite (1.6) as a system of first order linear ODEs

(1.8) $\frac{d}{dx}Y=(B(x;s)+\lambda K)Y$,

where $B(x;s)$ and $K$ are $2n\mathrm{x}2n$-matrices given by

(1.9) $B(x;s)=$
and

(1.10) $K=$ ,

respectively. Clearly, $B(x;s)$ is an $\ell(s)$ -periodic function of $x$ . We will con-
sider conditions so that (1.8) has a uniformly bounded solution for some
$\Re\{\lambda\}>0$ . To do so, it suflices to consider the monodromy matrix $\Phi(\ell(s);\lambda, S)$

$\mathrm{C}^{2n}arrow \mathrm{C}^{2n}$ of (1.8), where $\Phi(x;\lambda, S)$ is the fundamental matrix of (1.8) de-
fined by

(1.11) $\frac{d}{dx}\Phi(x;\lambda, s)=(B(x;s)+\lambda K)\Phi(x;\lambda, S)$ , $\Phi(0;\lambda, s)=I_{2n}$ .

Then, A becomes an eigenvalue of (1.8) if and only if $\Phi(l(S);\lambda, S)$ has an
eigenvalue whose absolute value is equal to one. $\phi$

Differentiating (1.5) with respect to $x$ and $s$ , we find that $\Phi(\ell(s);0, s)$

has a degenerate eigenvalue 1 (see [5, Lemma 3.1]). Moreover, we can show
that if $\mu$ is an eigenvalue of $\Phi(\ell(s);\lambda, S)$ , then $1/\mu$ is also an eigenvalue of
$\Phi(\ell(s);\lambda, S)$ (see [5, Lemma 3.3]). Noting these facts, we consider conditions
such that the degenerate eigenvalue 1 of $\Phi(\ell(s);\lambda, S)$ splits into two simple
eigenvalues with the absolute value equal to one when $\lambda$ moves from the origin
into the right-half plane. In this case, the stationary solution is unstable with
some spatially modulating unstable mode, and such instability is called the
Eckhaus instability [2].
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Here we introduce a functional that will play an important role in our
stability analysis. Multiplying (1.5) by $Q\phi_{x}$ and integrating it, we see that

$J[ \emptyset]:=\frac{1}{2}\langle D\phi x’ Q\phi_{x}\rangle+H(\emptyset)$

is constant in $x$ . In other words, $J[\phi]\equiv$ Const. is a first integral for the
equation in (1.5). Thus we can define a functional $J(s)$ by

(1.12) $J(s):=J[ \phi(\cdot;s)]=\frac{1}{2}\langle D\phi x(x;S), Q\phi x(x;s)\rangle+H(\phi(x;s))$

on the one-parameter family of stationary solutions $\phi(x;s)$ of (1.1). We note
that $dJ(s)/ds$ is computed as

$\underline{d}J(s)$
$=$ $\langle D\phi_{x}(_{X;)}s, Q\phi_{xs}(_{Xs)};\rangle-\langle D\phi_{xx}(x;S), Q\phi_{S}(_{X};s)\rangle$

(1.13) $ds$

$=$ $\langle D\phi_{x}(0;s), Q\phi_{xS}(\mathrm{o}_{;s)\rangle-\langle}D\emptyset xx(0;s), Q\phi_{S}(\mathrm{o};s)\rangle$ .

Now, our main result is roughly stated as follows (a precise statement of
the result will be given in [5, Theorem 3.11] $)$ .

Theorem 1.1 The Eckhaus instability occurs if and only if

$dJ/dl:= \frac{dJ(s)}{ds}/\frac{d\ell(s)}{ds}$

and
$I(s):= \int_{0}^{\ell(_{S})}\langle\tau\phi_{x}(_{X,S),Q}.\phi x(X;s)\rangle d_{X}$

have the same sign.

It should be noted that $\phi(x;s)$ is not required to be small in this theo-
rem. For gradient systems, $I(s)$ is necessarily positive so that the positivity
of $dJ/d\ell$ implies the instability. Therefore, a stability-instability transition
must occur at extremal points of $J(s)$ when $\ell(s)$ is strictly monotone in $s$ .
Thus, a first integral $J(s)$ is an index of instability property of stationary
solutions.
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Remark 1.1 In [5], we find that the phase diffusion constant, which deter-

mine the Eckhaus instability, in the theoretical $\mathrm{p}\mathrm{h}\mathrm{y}\mathrm{s}\mathrm{i}\mathrm{c}\mathrm{S}[4,6]$ is given by

$D_{||}=- \ell(s)^{2}\frac{dJ}{d\ell}I(_{S)^{-1}}$ .

Therefore, we see that the sign of phase diffusion constant is determined by

the sign of $dJ/d\ell$ . The above formula is also obtained by the perturbative
$\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{i}_{\mathrm{Z}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ group approach to the study of the phase diffusion equation

[11]. Recalling the definition of $dJ/d\ell$ , this formula also implies that a first

integral $J(s)$ is an index of instability property of stationary solutions when
$\ell(s)$ is strictly monotone in $s$ .

Our method for the proof of Theorem 1.1 is based on a careful analysis of

the linearized eigenvalue problem (1.6) when $\lambda$ varies around $\lambda=0$ . One of

the advantages to introduce the $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}/\mathrm{S}\mathrm{k}\mathrm{e}\mathrm{w}$ -gradient structure is that the

analysis of an adjoint system for (1.6) becomes easier than that for systems

without $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}/\mathrm{S}\mathrm{k}\mathrm{e}\mathrm{w}$ -gradient structure. In fact, we can express solutions

of the adjoint system for (1.8) by using $\mathrm{s}\mathrm{o}\mathrm{I}\mathrm{u}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}$ of (1.8). This advantage en-

ables us to derive a rather explicit description for the behavior of eigenvalues

of the monodromy matrix $\Phi(\ell(S);\lambda, s)$ . For more details, see [5].

In the next section, we apply Theorem 1.1 to various systems such as
a generalized Ginzburg-Landau equation, Swift-Hohenberg equation, and

reaction-diffusion systems of activator-inhibitor type. They should be helpful

for us to understand a mathematical implication of Theorem 1.1.

2 Applications
In this section, we give several applications of Theorem 1.1 to demonstrate

its usefulness.

Application 1. (Ginzburg-Landau equation)

Consider the 1-D Ginzburg-Landau equation

(2.1) $wt=w_{xx}+\mu w-|w|^{2}w$ , $-\infty<X<\infty$ ,
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or equivalently,

(2.2)
$u_{t}=u_{xx}+u(\mu-u-v)22$ ,

$v_{t}=v_{xx}+v(\mu-u-v^{2})2$ ,

where $w=u+iv\in \mathrm{C}$ and $\mu>0$ is a real parameter. It is known that (2.1)
has a family of spatially periodic stationary solutions given by

(2.3) $\phi(x;s)=\sqrt{\mu-s^{2}}$ , $0<s^{2}<\mu$ .

It was shown in $[4, 6]$ by using the formal perturbation method that the
stationary solution is unstable if $\mu/3<s^{2}<\mu$ . To prove this fact in a
mathematically rigorous manner, routine and tiresome arguments [2] based
on usual functional analysis approach wer.e needed.

Here we will apply Theorem 1.1 to a generalized Ginzburg-Landau equa-
tion

$w_{t}=w_{x}+xg(|w|^{2})w$ , $-\infty<X<\infty$ ,

or equivalently,
$u_{tx}=u_{x}+_{\mathit{9}(u+}2v)2u$ ,

(2.4)
$v_{t}=v_{xx}+g(u+2v)2v$ ,

where $w=u+iv\in \mathrm{C}$ and $g$ is a smooth function. We immediately find that
(2.4) is a gradient system with respect. to the energy

$E[w]:= \frac{1}{2}\int\{u_{x}^{2}+v_{x}-2c(u2+v^{2})\}d_{X}$ ,

where
$G(z):= \int g(z)dz$ .

We also see that
$J[w]:= \frac{1}{2}\{u_{x}^{2}+v_{x}2+G(u2+v^{2})\}$

is constant in $x$ if $w=(u, v)$ is a stationary solution of (2.4).
Suppose that (2.4) has a stationary solution of the form

(2.5) $w=\phi(x;s)=a(S)$ ,
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where $a(s)$ must satisfy
(2.6) $-s^{2}+g(a^{2}(_{S}))=0$ .

Then, we have

$J(s)=J[ \emptyset(X;s)]=\frac{1}{2}\{Sa(2G(_{S)^{2})}\}s)^{2}+(a$ .

By using (2.6) and its differentiation with respect to $s$ , we have

$\frac{d}{ds}J(s)$ $=$ $sa(s)2+(s^{2}+g(a(_{S})^{2}))a(s)a’(\mathit{8})$

$=$ $s\{a(_{S)+\frac{2g(a(_{S})2)}{g’(a(S)^{2})}}2\}$ .

Hence, by $\ell(s)=2\pi/s$ , we have

$dJ/d \ell=-\frac{s^{3}}{2\pi}\{a(s)^{2}+\frac{2g(a(_{S})2)}{g’(a(S)^{2})}\}$ .

On the other hand, we have

$\int_{0}^{\ell(_{S})}\langle\tau\phi_{x}(X,\cdot S), Q\phi_{x}(x;S)\rangle dx=2\pi Sa(_{S})^{2}$.

Thus we obtain the following result by applying Theorem 1.1.

Theorem 2.1 Let $w=\phi(x;s)$ be a stationary soiution of (2.4) given by
(2.5). If

$a(s)^{2}+, \frac{2g(a(_{S})2)}{g(a(S)^{2})}<0$ ,

then $\phi(x;s)$ is unstable.

In the 1-D Ginzburg-Landau equation (2.2), taking $a(s)^{2}=\mu-s^{2}$ and
$g(z)=\mu-z$ , and applying the above theorem, we see easily that $\phi(x;s)$ is
unstable provided $\mu/3<s^{2}<\mu$ .

Application 2. (Swift-Hohenberg equation)
Let us consider the 1-D Swift-Hohenberg equation

(2.7) $u_{t}=\alpha u-(1+\partial_{xx})^{2}u-u^{3}$ , $-\infty<X<\infty$ .
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Putting
(2.8)
(2.7) is rewritten as

$v=u+u_{xx}$ ,

$u_{t}=-v_{xx}+\alpha u-u^{3}-v$ ,
(2.9)

$0=u_{xx}+u-v$ .
It is easy to see that the Swift-Hohenberg equation (2.9) is a gradient system
with

$T=$ , $D=$ , $Q=$ ,

$H=H(u, v)= \frac{1}{2}\alpha u^{2}-\frac{1}{4}u^{4}-uv+\frac{1}{2}v2$ ,

and $TQ$ is positive semi-definite.
The existence of a family of spatially periodic stationary solutions for

(2.10) was studied in [2]. Suppose that $(1-s^{2})^{2}<\alpha$ and $2/5<s^{2}<2$ .
Then, for sufficiently small $\epsilon,$ $(2.7)$ has a solution of the form

(2.10) $u(x;s)=2\epsilon\cos(sX)+O(\epsilon^{3})$ ,

Noting (2.8) and (2.10), the system (2.9) has a periodic stationary solution
of the form

(2.11) $\phi(x;S)=2\sqrt{\frac{\alpha-(1-s^{2})^{2}}{3}}\cos(sx)+h.\mathit{0}.t$.

with the period $l(s)=2\pi/s$ . Then, neglecting the higher order terms and
using the second equation of (1.13), we have

$\frac{d}{ds}J(s)--\frac{8s^{3}}{3}$ (a–3 $(1-S^{2})^{2}$),

which yields
$dJ/d \ell=-\frac{4s^{5}}{3\pi}(\alpha-3(1-s^{2})^{2})$ .

Moreover, direct calculation yields

$\int_{0}^{\ell(_{S})}\langle\tau\phi x(_{X;}S), Q\phi_{x}(_{X;}S)\rangle dx=\frac{2\pi s}{3}(\alpha-(1-s)22)>0$.

Thus we have the following result by applying Theorem 1.1.
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Theorem 2.2 Let $(u, v)=\phi(x;s)$ be a stationary solution of (2.9) of the
form (2.11). If $\alpha/3<(1-S^{2})^{2}<\alpha$ , then $\emptyset(X, S)$ is unstable.

Figure 1 shows relations between the functional $J(s)$ and the existence
and instability of stationary solutions from a view point of bifurcation theory.
Notice that the Eckhaus instability criterion is given by $dJ(s)/ds=0$ .

The above approach may be applicable to the study of spatially periodic
stationary solutions of the extended Fisher-Kolmogorov equation [10]

(2.12) $u_{t}---\gamma u_{xxx}x+u_{xx}+u-u^{3}$ .

In fact, by putt.ing
$v= \gamma u_{xx}-\frac{1}{2}u$ ,

(2.12) is rewritten as (1.1) with

$T=$ , $D–$ , $Q=$ ,

$H=H(u, v)– \frac{1}{8}(1+4\gamma)u^{2}+\frac{1}{2}v^{2}-\frac{1}{4}u+\frac{1}{2}uv4$ .

Notice that the extended Fisher-Kolmogorov equation is a gradient system.

Application 3. (Activator-inhibitor systems)
Let us consider the following reaction-diffusion system of activator-inhibitor

type [8]
$\tau_{1}u_{t}=d_{1}u_{x}x+\alpha u-u-3v$ ,

(2.13)
$\tau_{2}v_{t}=d_{2}vxx+u-\gamma v$ ,

where $\tau_{1},$ $\mathcal{T}_{2},$ $d1,$ $d2,$ $\alpha,$ $\gamma>0$ . We find that the activator-inhibitor system
(2.13) is a skew-gradient system with

$T=$ , $D=$ , $Q=$ ,

$H=H(u, v)= \frac{1}{2}\alpha u^{2}-\frac{1}{4}u^{4}-uv+\frac{1}{2}\gamma v2$.
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Applying standard arguments based on the Liapunov-Schmidt method $[7, 8]$ ,
we can construct a family of spatialy periodic stationary solutions of (2.13)
when $0<\alpha<\gamma$ and $\alpha\gamma<1$ as follows: Let us define

(2.14) $\hat{d}_{2}(s^{2})=\frac{1}{s^{2}(\alpha-d_{1}s^{2})}-\frac{\gamma}{s^{2}}$ .

Let $0<s^{2}<\alpha/d_{1}$ and $\hat{d}_{2}(s^{2})<d_{2}$ . Then, for $(s^{2}, d_{2})$ near $(s^{2},\hat{d}_{2}(s)2)$ , we
have

(2.15) $\phi(X,\cdot s)=2\sqrt\frac{(d_{2}-\hat{d}2(_{\mathit{8}^{2}}))S^{2}}{3}\cos(Sx)+h.\mathit{0}.t$. $-$

where $c(s):=\alpha-d_{1}s^{2}$ . Neglecting higher order terms and noting $\ell(s)=2\pi/s$ ,
direct calculation yields

$\int_{0}^{\ell(_{S)}}\langle\tau\phi x(X;s), Q\phi_{x}(X;S)\rangle d_{X}=\frac{4\pi s^{3}}{3}(d2-\hat{d}2)C(s)2(_{\mathcal{T}_{1^{-}}}\mathcal{T}_{2}c(S)^{2})$ .

On the other hand, we can calculate $dJ/ds$ in a manner similar to the Swift-
Hohenberg equation, but it is extremely complicated. According to the com-
puter algebra, the result turns out to be

$\frac{d}{ds}J(s)=-\frac{4}{3}S^{3}K(_{S,d_{2})}2$ ,

where $K(S^{2}, d_{2})$ is a polynomial of degree four in $s^{2}$ and quadratic degree in
$d_{2}$ . Hence we obtain

$dJ/dP= \frac{2s^{5}}{3\pi}K(S, d_{2}2)$ .

Thus we have the following result.

Theorem 2.3 Let $(u, v)=\phi(x;s)$ be a stationary solution of (2.13) of the
form (2.15). Suppose that $K(S^{2}, d_{2})>0$ (resp. $K(S^{2},$ $d_{2})<0$ ). If $\tau_{1}>\tau_{2}c(S)^{2}$

$($ resp. $\tau_{1}<\tau_{2}c(s)2)_{y}$ then $(u, v)=\emptyset(x;s)$ is unstable.

We can draw the null cline defined by $K(S^{2}, d_{2})=0$ on the $(s^{2}, d_{2})$ -plane
by the help of computer algebra, and obtain a diagram as in Figure 1 when
$\tau_{1}>c(s)^{2}\tau_{2}$ . Although our results does not necessarily guarantee the stability
of bifurcating stationary solutions in the region $\{(S^{2}, d_{2})|K(S^{2}, d_{2})<0\}$ ,
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numerical simulations suggest that these stationary solutions are stable when
$\tau_{1}>c(s)^{2}\tau_{2}$ . Since the sign of $K(S^{2}, d_{2})$ is independent of $\tau_{1}$ and $\tau_{2}$ , this result
implies the following by the aid of numerical simulations: the bifurcating
stationary solutions are stable in the region $\{(S^{2}, d_{2})|K(S^{2}, d_{2})<0\}$ when
the ratio of time constant coefficients of activator and inhibitor $\tau_{1}/\tau_{2}$ is large,
whereas these stationary solutions become unstable and various complicated
behavior of solutions can be observed when $\tau_{1}/\tau_{2}$ is small. For example, when
$d_{1}$ is small, the stationary solutions lose their stability, and there appear
metastable patterns which can be constructed by the singular perturbation
method $[1, 9]$ . On the other hand, when $d_{1}$ is large, there appear oscillatory
patterns which cannot be observed in gradient systems.

Finally, we briefly mention another example known as the Gierer-Meinhardt
system [3]

$u_{txx}= \epsilon^{2}u-\alpha u+\frac{u^{p}}{v^{q}}+\sigma$,
(2.16)

$\tau v_{t}=dvxx-v+^{\underline{u}}r$

$v^{s}$
’

where the parameters are assumed to satisfy $p>1,$ $q,$ $r>0,$ $s,$ $\sigma\geq 0$ and

$\frac{p-1}{q}<\frac{r}{s+1}$ .

Then there exists a unique positive spatially homogeneous stationary solu-
tion.

We inlmediately find that the Gierer-Meinhardt system is a skew-gradient
system when $p+1=r$ and $q+1=s$ . In fact, (2.16) is rewritten as (1.1)
with

$T=$ , $D=$ , $Q=$ ,

$H=H(u, v)=- \frac{\alpha r}{2}u^{2}+\frac{q}{2}v^{2}+\frac{u^{r}}{v^{q}}+\gamma\sigma u$.

Recalling [12], in a manner similar to (2.13), we can construct bifurcating sta-
tionary solutions with spatially periodic structure around the unique positive
spatially homogeneous stationary solution. In a similar manner to the above,
we can also obtain a criterion for the Eckhaus instability as in Theorem 2.3.
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