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1. Introduction

If for a given growth model there exists a continuum of equilibrium paths departing
from the same initial condition, it is said that the model exhibits indeterminacy of
equilibria. If each equilibrium path continues to stay in a small neighborhood of a
balanced growth path, equilibrium is said to be locally indeterminate. Otherwise,
it is said to be globally indeterminate.

A number of interesting phenomena have been demonstrated by introducing
positive externalities into an endogenous growth model with infinitely-lived agents
(Lucas [5] and Romer [8, 9]). The indeterminacy of equilibria is of particular
relevance to this study. The existing literature is primarily concerned with the
case of local indeterminacy (Benhabib and Farmer [2], Benhabib and Perli [3], and
Boldrin and Rustichini [4] $)$ . As a result, the global properties of the equilibrium
paths away from a balanced growth path have not yet been fully understood.

In the present study, we construct a simple, aggregate, endogenous growth
model with a positive externality and develop a method of characterizing the
global equilibrium dynamics for the case in which equilibrium paths do not, in
general, converge to a balanced growth path. By using this method, we show
that positive externalities can cause (i) an equilibrium to be globally indetermi-
nate for any given initial capital stock and (ii) the growth rate along a particular
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equilibrium path to fluctuate chaotically. These results demonstrate that in mod-
els in which unbounded accumulation is possible and production externalities are
important, trend and cycles in aggregate national output can be simultaneously
generated by the same endogenous economic mechanism.

We achieve this by showing that an Euler path, which satisfies (1) the transver-
sality condition and (2) the summability of the objective function, is an equilib-
rium path. We focus on chaotic equilibria such that (3) average growth rates are
positive. When equilibria are locally indeterminate, there are relatively simple
inequality constraints against which the conditions (1) to (3) can be tested along
the balanced growth path. However, when we treat the global indeterminacy
of equilibria, we do not necessarily have such simple inequality constraints. In
this paper, we present a systematic method to overcome the analytical difficulties
created by the simultaneous presence of chaotic solutions and unbounded state
variables.

2. The Model

Our model is based on the two-sector model with externality that was developed in
Boldrin and Rustichini [4]. There are two goods produced in two different sectors:
the consumption good and the investment good. Let $c_{t}$ and $I_{t}$ be the amount of
the consumption good and that of the investment good that are produced in
period $t$ . The consumption good is produced from both capital $K_{1t}$ and labor $L$ .
The investment good is produced from capital $K_{2t}$ alone. Let $k_{t}$ be the amount
of the capital good that is available at time $t$ . Then

$K_{1t}+K_{2t}=k_{t}$ . (2.1)

The initial amount of capital input is given by $k_{0}=\overline{k}>0$ . The economy is also
endowed with a fixed amount of labor $L=1$ .

Externalities are at work in the production of the consumption good. Denote
by $e_{t}$ the source of this externality. The production function of the consumption
good sector (sector 1) is

$c_{t}=e_{t1t}^{\overline{\eta}}K\overline{\alpha}_{L^{1\overline{\alpha}}}-$ , (2.2)

where $0<\overline{\alpha}<1$ and $\overline{\eta}>0$ . The production function of the investment good
sector (sector 2) is

$I_{t}=bK_{2t}$ . (2.3)
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Let $\mu$ be the rate of depreciation of the capital good. Assume $0<\mu\leq 1$ . Then

$k_{\iota+1}=I_{t}+(1-\mu)kt$ . (2.4)

Let $\theta=b+1-\mu$ , and assume $\theta>1$ , which is necessary for sustained growth to
be feasible.

Let $u(c_{t})$ be the utility function of the representative consumer. Denote by $\delta$ ,
$0<\delta<$

.
$1$ , the discount factor of future utilities. Then, the representative agent’s

behavior is described by the following optimization problem. Given a sequence of
externalities $e_{t},$ $t=1,2,$ $\ldots$ ,

{
$c_{t},k_{t},K,K \max_{1t2tIt\}t\geq 0}$,

$\sum_{t=0}^{\infty}\delta tu(_{C_{b}})$ (2.5)

$\mathrm{s}.\mathrm{t}$ . $c_{t}=e_{t}K_{1t}\overline{\eta}\overline{\alpha}$

$I_{t}=bK_{2t}$

$K_{1t}+K_{2t}=k_{t}$

$k_{t+1}=I_{t}+(1-\mu)k_{t}$

$k_{0}=\overline{k}$ .

The level of the externality generated in period $t$ is equal to the amount of the
capital good employed in that period by the two sectors, i.e.,

$e_{t}=k_{t}$ . (2.6)

The general properties of this model have already been studied in Boldrin and
Rustichini [4]. In particular, it was shown there that the model has a continuum
of equilibria with unbounded growth for certain ranges of parameter values.

In this study, we will focus on.the dynamic properties of this set of equilibria.
To this end, we adopt the following utility function.

$u(c)=c^{1}-\sigma,$ $0<\sigma<1$ . (2.7)

Since $c_{t}=e_{t}^{\overline{\eta}}[(\theta k_{t}-k_{t1}+)/b]^{\overline{\alpha}}$ , the above optimization problem, (2.5), gives rise to

$\{k_{t}\}_{t\geq}\max_{0t}\sum_{=0}^{\infty}\delta tet(\eta\theta kt-kt+1)\alpha \mathrm{s}.\mathrm{t}$ . $k_{0}=\overline{k}$ and $(1-\mu)k_{t}\leq k_{t+1}\leq\theta k_{t}$ , (2.8)
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where $\eta=(1-\sigma)\overline{\eta}$ and $\alpha=(1-\sigma)\overline{\alpha}$ . We may treat a path of accumulation
$\{k_{t}\}_{t\geq 0}$ as an equilibrium path if (i) it solves the optimization problem (2.8) and
(ii) $e_{t}=k_{t}$ for $t=0,1,2,$ $\ldots$ .

We call a path $\{k_{\iota}\}t\geq 0$ satisfying $k_{0}=\overline{k}$ and $(1-\mu)k_{t}\leq k_{t+1}\leq\theta k_{t}$ a feasible
path (from $k_{0}=\overline{k}$ ). We call $\{k_{t}\}_{t\geq 0}$ a balanced growth path if it is in equilibrium
and $k_{t+1}/k_{t}=\lambda$ for $t=0,1,$ $\ldots$ .

3. Equilibrium Dynamics

3.1. Characterization of Equilibria

In order to characterize the equilibrium in our model, we will first characterize
the solution to the maximization problem (2.8).

Lemma 1. Let $\{k_{\iota}\}t\geq 0$ be a feasible $p\mathrm{a}$ th from $k_{0}=\overline{k}$ . Then, it solves the maxi-
mization problem (2.8) if the following th$\mathrm{r}eecon$ditions are satisfied.

Euler Equation: $-e_{t}^{\eta}(\theta k_{t}-k_{t+1})\alpha-1+\delta\theta e_{t+1}^{\eta}(\theta k_{t+1}-k_{t+2})^{\alpha-1}=0$ , (3.1)

Transversality Condition: $\lim_{tarrow\infty}\delta^{t}e^{\eta}t(\theta kt-kt+1)\alpha-1k_{t+1}=0$; (3.2)

Summability $Con$dition: $\sum_{t=0}^{\infty}\delta te_{t}^{\eta}(\theta k_{t}-kt+1)^{\alpha}<\infty$ . (3.3)

Proof: We will demonstrate that if $\{k_{t}\}_{t\geq 0}$ satisfies (3.1), (3.2) and (3.3), then it
solves the optimization problem (2.8). Define

$p_{t+1}=\alpha\delta^{t}e_{t}^{\eta}(\theta kt-kt+1)^{\alpha}-1$ . (3.4)

Since, by (3.1), $p_{i}=\alpha\delta^{t\eta}\theta e_{t}(\theta k_{t}-k_{t+1})^{\alpha-1},$ $(p_{t}, -p_{t+1})$ is the vector of partial
derivatives of $\delta te_{t}(\eta\theta k_{t}-kt+1)\alpha$ . Therefore, it holds that

$\delta te_{t}(\eta\theta k_{t}-kt+1)\alpha+p_{t+}1kt+1-ptkt$

$\geq\delta^{t}e_{t}^{\eta}(\theta x_{t\iota 1}-x+)^{\alpha}+pt+1xt+1^{-pt^{X}t}$

for any feasible $\{x_{t}\}_{t\geq 0}$ . Adding up this inequality over $t$ , by (3.2) and (3.3),

$\sum_{t=0}^{\infty}\delta^{i\eta}et(\theta k_{i}-kt+1)^{\alpha}\geq\lim\sup_{Tarrow\infty}\sum^{T}t=0\delta\iota e_{t}^{\eta}(\theta_{X}t-Xt+1)^{\alpha}$
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for any feasible $\{x_{t}\}$ such that $x_{0}=k_{0}$ . This implies that $\{k_{t}\}$ solves (2.8).
Q.E.D.

Corollary 1. $S\mathrm{u}$ppose that a $pa$th $\{k_{t}\}$ satisfies (3.1), (3.2) and (3.3). Then $\{k_{t}\}$

is an equilibrium if and only if $e_{t}=k_{t}$ for $t=0,1,$ $\ldots$ .

Define $\lambda_{t}--k_{t+1}/k_{t}$ . By the feasibility condition $(1-\mu)k_{t}\leq k_{t+1}\leq\theta k_{t}$ , it
holds that $(1-\mu)\leq\lambda_{t}\leq\theta$ . Note that $\log\lambda_{t}$ is the growth rate of capital. By
(2.6), the Euler equation associated with externality path $\{e_{t}\}=\{k_{t}\}$ can be
transformed into a recursive system in a single variable, $\lambda_{t}$ , as follows.

$\lambda_{t+1}=\theta-(\delta\theta)^{\frac{1}{1-\alpha}}\cdot(\theta-\lambda_{t})(\lambda t)\overline{1}^{B}-\overline{\alpha}-1$ . (3.5)

Let $z_{t}=\theta-\lambda_{t}$ and $\beta=\overline{1}-\overline{\alpha}\Delta-1$ . It is more convenient to write the difference
equation (3.5) in terms of $z_{t}$ . Assume $\beta\geq 0$ , and define a function $f$ : $[0, \theta]arrow R_{+}$

as
$f(z)=(\delta\theta)^{\frac{1}{1-\alpha}}\cdot z(\theta-z)^{\beta}$ . (3.6)

Then, the difference equation (3.5) can be expressed as

$z_{t+1}=f(z_{t})$ . (3.7)

The function $f$ maps $[0, \theta]$ into the set of non-negative real numbers, $R_{+}$ . If
$\beta>0$ , then $f$ is unimodal and satisfies $f(\mathrm{O})=f(\theta)=0$ . We focus on this case
by assuming

$\beta>0$ . (3.8)

The function $f$ achieves its maximum at

$\hat{z}=\frac{\theta}{\beta+1}$ . (3.9)

The maximum value is

$f^{\max}=f( \hat{z})=(\delta\theta)^{\frac{1}{1-\alpha}\beta^{\beta}}(\frac{\theta}{\beta+1})^{\beta+1}$

If this value does not exceed $\theta$ , the function $f$ maps the interval $[$.0, $\theta]$ into itself.
Also, note that
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$f’(z)=(\delta\theta)^{\frac{1}{1-\alpha}(\theta-Z})^{\beta 1}-(\theta-(1+\beta)z)$ . (3.10)

We guarantee that $f^{\max}<\theta$ and that $f’(0)>1$ by assuming

Condition 1: $1<( \delta\theta)^{\frac{1}{1-\alpha}\theta^{\beta}}<\frac{(\beta+1)^{\beta+1}}{\beta^{\beta}}$ .

Let $\underline{\mu}$ be defined as $\underline{\mu}=\max\{0,1-(\theta-f^{\max})\}$ . We choose $\mu$ from $(\underline{\mu}, 1]$ so that
$f^{\max}<\theta-(1-\mu)$ . Let $J=[0, \theta-(1-\mu)]$ . $f$ maps $J$ into itself and $(J, f)$

constitutes a dynamical system.

Lemma 2. Suppose $Co\mathrm{n}$dition 1 holds. Let $z_{0}$ belong to $(0, \theta-(1-\mu))$ , and let
$\{z_{t}\}$ be the sequence generated by iterates of $f$ , starting with $z_{0}$ . Define $k_{0}=\overline{k}$ ,
and $k_{t+1}=(\theta-z_{t})k_{t}$ for $t\geq 0$ . Then $\{k_{t}\}$ is an equilibrium path from $\overline{k}$ if
$\Sigma_{t=0}^{\infty}\delta^{t}k^{\eta+\alpha}t<\infty$.

Proof: By Lemma 1, it suffices to demonstrate that $\{k_{t}\}$ satisfies the transver-
sality and summability conditions. The value of the objective function is

$\sum_{t=0}^{\infty}\delta^{\iota_{e_{t}}}\eta(\theta kt-kt+1)^{\alpha}\leq\sum_{t=0}^{\infty}\delta^{\iota_{k^{\eta}}}t(\theta k_{t})^{\alpha}=\theta^{\alpha}\sum_{t=0}^{\infty}\delta tk_{t}^{\eta}+\alpha$ , (3.11)

since $(1-\mu)k_{t}\leq k_{t+1}\leq\theta k_{t}$ . Therefore, the summability condition is satisfied.
Note that $z_{t}>\xi$ for some $\epsilon>0$ , since $z_{0}>0,$ $f(f^{\max})>0$ , and $f’(\mathrm{O})>1$ .

$\delta^{t}k_{t}^{\eta}(\theta k_{b}-kt+1)^{\alpha-}1k_{t+1}\leq\delta^{t}k_{t}^{\eta}(\theta kt-(\theta-\mathit{6})k_{t})^{\alpha}-1\theta k_{t}=\delta t\theta\epsilon\alpha-1k_{t}\eta+\alpha$ . (3.12)

Since $\delta^{t}k_{t}^{\eta+\alpha}$ is summable, $\delta^{t}k_{t}^{\eta}(\theta k_{b}-kt+1)^{\alpha-}\mathrm{i}k_{t+1}arrow 0$ which implies the transver-
sality condition is also satisfied. $\mathrm{Q}.\mathrm{E}$ .D.

3.2. Balanced Growth Path and Invariant Set

Given $\beta>0$ , the dynamical system $(J, f)$ has at most two fixed points. One is
$z=0$ . The other is $z^{*}=\theta-(\delta\theta)^{\frac{-1}{\beta(1-\alpha)}}$ , if it is positive. We call $\lambda^{*}=(\delta\theta)^{\frac{-1}{\beta(1-\alpha)}}$

a balanced growth factor and $\log\lambda^{*}$ a balanced growth rate. By Condition 1, we
have:
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Lemma 3. The dynamical system $(J, f)$ induces a unique balan$ced$ growth factor,

$\lambda^{*}=(\delta\theta)^{\frac{-1}{\beta(1-\alpha)}}$ . (3.13)

Note that Condition 1 implies $\delta(\delta\theta)^{-(}1+\frac{1}{(1-\alpha)\beta})<1$ which is equivalent to
$\delta\lambda^{*\alpha+\eta}<1$ . Therefore, both the transversality and the summability conditions
are satisfied on a balanced growth path. From the viewpoint of economics, of
particular interest is the case in which $\log\lambda^{*}$ is positive so that the capital stock
grows indefinitely when the economy is on the balanced growth path. Since $\lambda^{*}=$

$-1$

$\theta-z^{*}=(\delta\theta)^{\overline{\beta()}}1-\alpha$ , this condition is equivalent to

Condition 2: $\theta<\delta^{-1}$ .

Persistent fluctuations are possible, when the steady state is locally unstable.
By (3.10), local instability of the steady state can be obtained by strenghtening
the left-hand side of Condition 1,

Condition 3: $1< \frac{(\beta+2)^{\beta}}{\beta^{\beta}}<(\delta\theta)^{\frac{1}{1-\alpha}\theta^{\beta}}$ .

Conditions 1-3 force the graph of $f$ to be unimodal over the segment $[0, \theta]$ .
To bound the invariant set of $f$ (i.e., the interval $I$ such that $f(I)=I$) away
from the origin, we assume that the image of the maximum value of $f,$ $f(f^{\max})$ ,
is smaller than the value of its pre-image, $\hat{z}$ . This is equivalent to

Condition 4: $( \delta\theta)^{\frac{2}{1-\alpha}}(\frac{\beta\theta}{\beta+1})^{\beta}(\theta-(\delta\theta)^{\frac{1}{1-\alpha}}(\frac{\theta}{\beta+1})(\frac{\beta\theta}{\beta+1})^{\beta})\beta<1$ .

Lemma 4. Let $I=[f(f^{\max}), f^{\max}]$ . Then, under Conditions 1 through 4, $f$ is
smooth and onto I. Moreover, $f$ also satisfies:

$Pl$ : At $\hat{z}=\frac{\theta}{1+\beta},$ $f’(\hat{z})=0$ and $f”(\hat{z})<0$ . Furthermore $f’(z)>0$ for $z\in(0,\hat{z})$

and $f’(z)<0$ for $z\in(\hat{z}, \theta)$ .
$P\mathit{2}:f(z)>Z$ for $z\in(0,\hat{z})$ .
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Proof: Given $\beta>0,$ $f(z)$ is monotone increasing over $J’=[0,\hat{z}]$ and mono-
tone decreasing over $I”=[\hat{z}, f^{\max}]$ . Moreover, since $f’(z^{*})<-1$ , it holds that,
under Condition 4, $f(f^{\max})<\hat{z}<f^{\max}$ . Let $I’=[f(f^{\max}),\hat{z}]\subset J’$ . Then,
$f(I’)=[f(f(f^{\max})), f^{\max}]$ and $f(I”)=[f(f^{\max}), f^{\max}]$ . Since $f’(\mathrm{O})>1$ , and
since $f(f^{\max})<\hat{z}<z^{*}$ by $f’(Z^{*})<-1,$ $f(f^{\max})<f(f(f\mathrm{m}\mathrm{a}\mathrm{x}))$ . This implies
$f(I”)\supset f(I’)$ , which implies $f(I)=I$ . The remaining properties are straightfor-
ward. Q.E.D.

3.3. Topological Chaos

The concept of chaos that we discuss first is topological chaos. Consider a dynam-
ical system generated by a continuous map $h$ : $Xarrow X$ , where $X$ is a bounded
closed interval. The dynamical system (X, $h$ ) is said to be topologically chaotic if
it has positive topological entropy.1 We say that $x$ is a period-n point of $h$ if $x$

is a fixed point of the n-th iterate of $h$ , i.e., $x=h^{n}(x)$ but not a fixed point of
the iterate of any order lower than $n,$ $i.e.,$ $x\neq h^{i}(x)$ for $i=1,2\ldots,$ $n-1$ . If $x$ is a
period-n point, we call the path $X,$ $h(x),$

$\ldots,$
$h^{n-}1(X)$ , a period-n orbit or a period-n

cycle. We have the following result (Theorem 4.4.19 in Alsed\‘a et al. [1]):

Theorem 3.1. Suppose that $X$ is one-dimensional. Then the dynamical system
(X, $h$ ) has positive topological entropy, if and only if it has a cycle of a period
that is not a power of 2.

Along a chaotic path, the equilibrium growth factor $\lambda_{t}$ exceeds $\delta^{-1/(\eta)}\alpha+$ in-
finitely often, and it also becomes less than $\delta^{-1/(\eta)}\alpha+$ infinitely often. Conse-
quently, in expressing the summability condition in terms of the growth factors $\lambda_{t}$

along any given path, we need to take into account explicitly the relative frequency
with which $\delta\lambda_{t}^{\alpha+\eta}>1$ and $\delta\lambda_{t}^{\alpha+\eta}<1$ . To this end, define

$s_{t}=\log\delta+(\eta+\alpha)\log\lambda_{\iota}$

and
$S \tau=\log\delta+\frac{1}{T}(\eta+\alpha)\sum^{1}\log\lambda_{t}=\frac{1}{T}\sum^{\tau_{-1}}Tt=0-t=0st$ .

Lemma 5. Let $z_{t+1}=f(z_{t})$ for $t=0,1,2,$ $\ldots$ with $z_{0}\in I.$ Then $\lim\sup_{Tarrow\infty}ST$

exists. If, in particular, $\lim\sup_{Tarrow\infty}ST<0$ , then the path $\{k_{t}\},$ $k_{t+1}=(\theta-z_{t})k_{t}$ ,
is an equilibrium.

1See Alsed\‘a et al. [1] for the concept of topological entropy.
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Proof: Since the objective function can be transformed into

$\sum_{t=0}^{\infty}\delta^{\iota}e_{t}(\eta\theta k_{t}-k_{t}+1’)^{\alpha}=\sum_{t=0}^{\infty}\delta tk_{t}^{\eta\alpha}+(\theta-\lambda_{t})^{\alpha}$,

in order to demonstrate that its value is finite, it suffices to show that $\delta^{t}k_{t}^{\eta+\alpha}$ is
summable. To this end, note that

$\delta^{\tau}k_{\tau}^{\eta+\alpha}$ $=$ $\delta^{\mathcal{T}}k_{0^{+}}^{\eta\alpha}(\prod_{t}\mathcal{T}-1=0\lambda_{t})\eta+\alpha k_{0^{+}}=e(\eta\alpha\log(\delta\tau)t\prod_{=0}^{\mathcal{T}-1}e^{(\eta+)\mathrm{o}\mathrm{g}\lambda})\alpha \mathrm{l}t$

$=$ $k_{0}^{\eta+\alpha} \exp\{\sum_{t=}\mathcal{T}-10(\log\delta+(\eta+\alpha)\log\lambda_{t})\}=k_{0}^{\eta+\alpha}\exp\{\tau s_{\mathcal{T}}\}$.

Since $z_{t}\in I,$ $0<\theta-f^{\max}\leq\lambda_{t}\leq\theta-f(f^{\max})$ . Therefore, there exist $a$ and $b$ , both
finite, such that $a\leq s_{t}\leq b$ . This implies that $a\leq S_{T}\leq b$ . Hence, $\lim\sup_{T\infty^{S}}arrow T$

exists. If $S^{*}= \lim\sup_{Tarrow\infty}ST<0$ , then there exist a sufficiently large $\tau’$ and a
sufficiently small $\mathcal{U}>0$ such that $S_{\tau}<S^{*}+\nu<0$ for all $\tau>\tau’$ . Hence,

$\delta^{\tau}k_{\tau}^{\eta+\alpha}=k_{0}^{\eta+\alpha}\exp\{\mathcal{T}S_{\tau}\}\leq k_{0}^{\eta+\alpha}\exp\{\mathcal{T}(s^{*}+\nu)\}$.

This implies that $\delta^{\tau}k_{\tau}^{\eta+\alpha}$ is summable. Let $\overline{\epsilon}=f(f^{\max})$ . The transversality
condition is given by

$\lim_{tarrow\infty}\delta^{t}k^{\eta}t(\theta k_{t}-k_{t+1})\alpha-1k_{\iota+1}=\lim_{tarrow\infty}\delta^{t}k^{\eta}t(+\alpha\theta-\lambda_{t})\alpha-1\lambda_{t}\leq\lim_{tarrow\infty}\delta^{t}k_{\iota^{+\alpha-1}}\eta\alpha\overline{\mathit{6}}\theta=0$ ,

which holds, since $\delta^{\tau}k^{\eta+\alpha}\tau$ is summable. $\mathrm{Q}.\mathrm{E}$ .D.

Example 1: Here, we fix parameters $\alpha,$
$\beta$ and $\delta$ at $(\alpha, \beta, \delta)=(0.5,5,0.6)$

and allow the parameter $\theta$ to vary in the closed interval [1.56, 1.66]. This choice
of parameters satisfies Conditions 1 through 4. In order to make explicit the
dependence of the dynamical system on the varying parameter $\theta$ , we write $f(z)=$
$f(z;\theta),$ $z_{t}=z_{t}(\theta),$ $s_{t}(\theta)=\log\delta+((1-\alpha)\beta+1)\log(\theta-z_{t}(\theta))$, and $S_{T}(\theta)=$

$\frac{1}{T}\Sigma_{t0}^{T-1}=st(\theta)$ . For each value of $\theta=1.56+0.0005m,$ $m=0,1,2\ldots$ , a series of the

$\mathrm{W}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}z(\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}1\mathrm{e}\mathrm{a}_{0}\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{g}\theta)=\mathrm{e}\{ST\}^{5000}.\tau=4001\mathrm{p}\mathrm{e}\mathrm{S}\mathrm{e}\mathrm{r}f^{N}(\frac{(\theta)\theta}{1+\beta},\theta)\mathrm{a}\mathrm{n}\mathrm{d}N=500.\mathrm{L}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{S}\mathrm{b}\mathrm{e}\mathrm{e}\mathrm{n}_{0}\mathrm{c}\mathrm{a}1\mathrm{c}\mathrm{u}1\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}\mathrm{f}_{\Gamma}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{s}_{2}\mathrm{m}1\mathrm{i}\mathrm{e}\mathrm{S}\{z_{t}\underline{s}(\theta,\tau \mathrm{l}, \tau^{\mathrm{a}})=\min\{s_{\tau}(\theta)(\}_{T\tau_{1+1}^{2}}\theta)\tau_{1=}\}+^{t}49\overline{\overline{\tau}}^{0^{9}}9$

,

and $\overline{S}(\theta, T1, T2)=\max\{S_{T}(\theta)\}_{T}\tau_{1}+=\tau 1+1T_{2}$ . In Figure 1, the horizontal axis measures
the value of $\theta$ , and for a given $\theta,$ $\underline{S}(\theta, \tau_{1}, T_{2})$ and $\overline{S}(\theta, T1, T2)$ are plotted along
the vertical direction, where $T_{1}=4000$ and $T_{2}=1000$ . Although the figure looks

53



like a function of $\theta$ , it is a correspondence of $\theta$ , because two points are plotted for
each value of $\theta$ . For a given $\theta$ , the time series $\{S_{\tau}(\theta)\}_{T^{1}}^{\tau}=T_{1+}+T_{2}1$ looks like a negative
constant series, and is uniformly bounded away from $0$ . For each $\theta$ in [1.56, 1.66],
we can safely conclude that $\lim\sup_{Tarrow\infty}S_{T}(\theta)<0$ on the path starting from
$z_{0}=f^{N}( \frac{\theta}{1+\beta};\theta)$ . Each of these paths is an equilibrium. The average growth rate
is strictly positive on each path.

Example 2: Set $(\alpha, \beta, \delta, \theta)=(0.5,5,0.6, 1.599586)$ . This choice of parameters
satisfies Conditions 1 through 4 so that $f$ has all the properties listed in Lemma
4. The graph of $f^{5}$ : $Iarrow I$ has 11 fixed points which implies that the dy-
namical system (I, $f$ ) has a single steady state and two cyclical orbits of period
5. Therefore, by Theorem 3.1, (I, $f$ ) is topologically chaotic, and the same is
true for the stock of capital defined as $k_{t+1}=(\theta-z_{t})k_{t}$ . If $\lim\sup_{Tarrow\infty^{S_{T}}}<0$

on a chaotic path, then the path constitutes an equilibrium. Since topological
chaos is not necessarily observable, we might not be able to check the condition
$\lim\sup_{T\infty}arrow ST<0$ on a chaotic path by means of numerical methods. Mitra
[7] has devised an analytical method that overcomes this difficulty. He derives
sufficient conditions under which $\lim\sup_{Tarrow\infty}ST<0$ holds for all initial values $z_{0}$

in $I^{2}$. This example satisfies E.l and E.2 in Mitra [7], hence topological chaos is
an equilibrium.

If the system exhibits strong nonlinearity, then the condition E.l in Mitra [7] is
not satisfied, and one can not appeal to his method. For $(\alpha, \beta, \delta)=(0.5,5,0.6)$ ,
E.l does not hold for $\theta_{E}<\theta\leq 1.66$ , where $\theta_{E}=1.600097368\ldots$ . In contrast, our
statistical method developed below is applicable to each $\theta$ in [1.56, 1.66].

3.4. Ergodic Dynamical System and Ergodic Chaos

Consider a continuous map $h$ : $Xarrow X$ , where $X$ is a bounded closed interval. Let
$B_{X}$ be the set of all Lebesgue measurable subsets of $X$ . Let $\nu$ be a measure defined
on the measurable space (X, $B_{X}$ ) with $\nu(X)=1$ . Then, $[(X, B_{\mathrm{x}}, \nu), h]$ constitutes
a measurable dynamical system, and the mapping $h$ is said to be ergodic relative

2Let $z’$ be a unique point in $(\hat{z}, f(\hat{z}))$ such that $f(z’)=f^{3}(\hat{z})$ . The conditions derived by
Mitra [7] are as follows.

(E. 1) $\delta^{\frac{1}{1-\alpha}}(\theta-f^{3}(\hat{Z}))^{\frac{1}{1-\alpha}+\beta}<1$ .
(E.2) $\delta^{\frac{2}{1-\alpha}}(\theta-y)^{\frac{1}{1-\alpha}+}\beta(\theta-f(y))^{\frac{1}{1-\alpha}+\beta}<1$, for all $y$ in $[Z^{J}, f(\hat{z})]$ .
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to $v,$ (1) if it is measure-preserving and (2) if it is indecomposable. If $h$ is ergodic,
then $\nu$ is said to be an ergodic invariant measure. The dynamical system (X, $h$)
is often said to be ergodically chaic if it has a unique ergodic invariant measure
that is absolutely continuous with respect to the Lebesgue measure.

Lemma 6. If the dynamical system (I, $f$ ) has an ergodic invariant measure $v$ ,
then there exists a constant $\overline{S}$ such that $\overline{S}=\lim_{Tarrow\infty^{S}T}$ for $v$ -almost all $z_{0}$ in
I. Furthermore, if $\overline{S}<0$ , and if $\{z_{t}\}_{t>0}$ is generated by the ergodic dynamical
system $[(I, B_{I}, v), f]$ , then the path { $k_{t}\overline{\}},$ $k_{t+1}=(\theta-Z_{t})kt$ , is an $eq$uilibrium.

Proof: Let $s=s(z)$ be defined as $s(z)=\log\delta+(\alpha+\eta)\log(\theta-Z)$ . Since $f^{\max}<\theta$

by Condition 1, $s$ : $Iarrow R$ is a continuous function defined on the compact set
$I$ , and it is $v$-integrable. Let $\overline{S}$ be defined as $\overline{S}=\int_{I}s(Z)v(d_{Z)}$ . By the pointwise
ergodic theorem, $\overline{S}=\lim_{Tarrow\infty^{S_{T}}}$ for $v$-almost all $z_{0}$ in $I$ . Note that if $\lim_{Tarrow\infty^{S}\tau}$

exists, then $\lim\sup_{Tarrow\infty}ST=\lim_{Tarrow\infty^{S_{T}}}$. Therefore, if $\overline{S}<0$ , and if $\{z_{t}\}_{t\geq 0}$ is
generated by $[(I, B_{I}, v), f]$ , then the path $\{k_{t}\}$ is an equilibrium by Lemma 5.
Q.E.D.

As shown by the proof of the lemma, the sample average $S_{T}$ is a consistent
estimator of the constant $\overline{S}$ .

A period-n cycle is ergodic with $1/n$ assigned to each periodic point as the
invariant measure. If there exists a stable cycle with a short period, then we
can estimate $\overline{S}$ corresponding to the stable cycle from a sample series $\{z_{t}\}_{t\geq 0}$ by
discarding an initial data set of sufficiently large length, before taking the sample
average $S_{T}$ . In this case, the system is asymptotically ergodic. If $\overline{S}<0$ , then
both the periodic orbit and each path converging to it constitute an equilibrium.

Suppose that the dynamical system (I, $f$ ) is ergodically chaotic, and let $v^{*}$ be
an invariant measure. Since the support of $v^{*}$ has positive Lebesgue measure, there
is a positive probability with which a sample series $\{z_{t}\}_{t\geq 0}$ is ergodically chaotic,
and the sample average $S_{T}$ is a consistent estimator of $\overline{S}$ . If $S_{T}$ is negative for a
sufficiently large $T$ , then it holds, with this positive probability, that $\overline{S}$ is negative
and that ergodic chaos is an equilibrium.

This study adopts a concept of ergodic chaos based on the Schwartzian deriva-
tive. The Schwartzian derivative of $h:Xarrow X,$ $Sh(z)$ , is defined for $z\in X$ such
that $h’(z)\neq 0$ as follows:

$Sh(_{Z})= \frac{h’’’(z)}{h’(z)}-\frac{3}{2}(\frac{h’’(_{Z)}}{h’(z)})^{2}$

The following proposition is due to Misiurewicz [6].
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Proposition 1. Let $a<b$ and $X=[a, b]$ . Suppose that $h:Xarrow X$ satisfies the
following conditions.

1. $h$ is of class $C^{3}$ .

2. There is $c\in(a, b)$ such that $h’(c)=0$ and $h”(c)<0$ . Furthermore, $a<x<c$
implies $h’(x)>0$ and $c<x<b$ implies $h’(x)<0$ .

3. $h(x)>x$ for $x\in(a, c)$ .

4. $Sh(x)<0$ for $x\in(a, b),$ $x\neq c$ .

5. There is an unstable periodic point $y\in X$ such that $y=h^{n}(c)$ for some
$n\geq 2$ .

Then, $h$ has a unique ergodic invariant measure that is absolutely continuous with
respect to the Lebesgue measure.

We have shown in Lemma 4 that $f$ , when restricted to $I$ , satisfies the properties
1-3 of Proposition 1. We shall now consider the properties 4 and 5. Given the
form of $f$ derived above, we have

$Sf(z)=- \frac{\beta[(\beta+2)_{X+}22(\beta-1)\theta 2]}{2[\theta-(1+\beta)Z]^{2}(\theta-z)^{2}}$ ,

where $x=2\theta-(1+\beta)z$ . Therefore, given $f’(z)\neq 0,$ $Sf(z)<0$ if the following
condition is satisfied.

Condition 5: $\beta\geq 1$ .

To $P1$ and $P2$ in Lemma 4 we can now add that, under Conditions 1-5:

P3. $Sf(z)<0$ for $z\in I\backslash \{\hat{z}\}$ .

Lemma 7. Under Conditions 1 through 5, if there is $n\geq 2$ such that $f^{n}( \frac{\theta}{1+\beta})=$

$z^{*}=f(z^{*})$ , then the dynamical system (I, $f$ ) exhibits ergodic chaos. Let $v^{*}$ be
the invariant measure associated with ergodic chaos. There exists a $co\mathrm{n}$stant $\overline{S}$

such that $\overline{S}=\lim_{Tarrow\infty^{S}T}$ for $v^{*}$ -almost all $z_{0}$ in I. Furthermore, if $\overline{S}<0$ , an$d$

if $\{z_{t}\}_{t\geq 0}$ is generated by the ergodic dynamical system $[(I, B_{I}, v^{*}), f]$ , then the
path $\{k_{t}\},$ $k_{t+1}=(\theta-Z_{t})kt$ , is an equilibrium.
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Proof: Under Conditions 1 through 5, the unique non-trivial steady state $z^{*}$

is unstable. Therefore, $f$ : $Iarrow I$ satisfies the properties 1-5 of Proposition 1
and the dynamical system (I, $f$ ) is ergodically chaotic. The remaining properties
directly result from Lemma 6. $\mathrm{Q}.\mathrm{E}$ .D.

Example 3: As in Example 1, fix parameters $\alpha,$
$\beta$ and $\delta$ at $(\alpha, \beta, \delta)=(0.5,5,0.6)$

and allow parameter $\theta$ to vary in the closed interval [1.56, 1.66]. Note that this
choice of parameters satisfies Conditions 1-5; therefore, the properties Pl-P3
hold. To apply Lemma 7, it suffices to check that $f^{n}( \frac{\theta}{1+\beta};\theta)=z^{*}$ for some $n\geq 2$ ,
and then that $\overline{S}<0$ . To check the first condition, write $g( \theta;n)=f^{n}(\frac{\theta}{1+\beta};\theta)$

and $z^{*}(\theta)=\theta-(\delta\theta)^{\frac{-1}{\beta(1-\alpha)}}$ . Figure 2. $\mathrm{a}$ reports values of $\theta\in[1.56,1.66]$ along
the horizontal axis and the corresponding values of $g(\theta;20)$ and $z^{*}(\theta)$ along the
vertical one. $g(\theta;20)=z^{*}(\theta)$ for all those values of $\theta$ at which the two curves
intersect. For any such $\theta,$ $(I, f)$ is ergodically chaotic, and there is a positive
probability with which a sample series $\{z_{t}\}_{t\geq 0}$ is ergodic and the sample average
$S_{T}$ is a consistent estimator of $\overline{S}$ . As Example 1 demonstrates, for a given $\theta$ , the
time series $\{S_{T}\}_{T}^{5000_{0}}=401$ takes negative values, which are very close to each other,
and uniformly bounded away from $0$ . Hence, for any $\theta$ such that the hypotheses
of Lemma 7 are satisfied, $\overline{S}<0$ with positive probability and ergodic chaos is an
equilibrium.

Figure 2. $\mathrm{b}$ illustrates the bifurcation diagram of $z_{t+1}=f(z_{t}; \theta)$ . For each
value of $\theta=1.56+0.0005m,$ $m=0,1,2\ldots$ , we compute 2000 iterates of the
critical point $\theta/(1+\beta)$ and then, corresponding to any such $\theta$ , we report in the
graph the values of $f^{n}(\theta/(1+\beta);\theta)$ for $n=$ 1001, ..., 2000. For the values of $\theta$

corresponding to stable cycles, both the periodic orbit and each path converging
to it constitute an equilibrium, since the time series $\{s_{T}\}_{\tau}^{5000_{0}}=401$ takes negative
values, and is uniformly bounded away from $0$ .

Figure 2. $\mathrm{c}$ depicts the value of a sample Liapunov exponent $\frac{1}{T}\sum_{n=0}^{1}\mathrm{l}\mathrm{o}\tau-\mathrm{g}|f’(z_{n};\theta)|$

from $z_{0}=f^{N+1}( \frac{\theta}{1+\beta};\theta)$ at different values of $\theta$ , where $N=T=$ 1000. The
Liapunov exponent is a measure of the complexity of the dynamical system. A
positive Liapunov exponent implies sensitive dependence on initial conditions.
For the values of $\theta$ at which the two curves in Figure 2. $\mathrm{a}$ intersect, (I, $f$ ) is
ergodically chaotic. For $\theta$ close to such values, the Liapunov exponent in Figure
2. $\mathrm{c}$ are positive. For the values of $\theta$ at which at least one periodic point is stable,
a window appears in the bifurcation diagram, Figure 2. $\mathrm{b}$ . For any such $\theta$ , the
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Liapunov exponent is negative and the two curves in Figure 2. $\mathrm{a}$ do not intersect.
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