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1 Introduction

Diverse physical and geometrical models lead to the elliptic equation

$\triangle u+K(x)u^{p}+\mu f(x)=0$ , (1.1)

where $n\geq 3,$ $\triangle=\Sigma_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplace operator, $p>1,$ $\mu>0$ is a parameter, and
$f$ as well as $K$ is a given locally H\"older continuous function in $\mathrm{R}^{n}$ . In particular, the
homogeneous equation

$\triangle u+K(x)u^{p}=0$ (1.2)

stands for the prescribing scalar curvature problem in Riemannian geometry when $p$ is the
critical Sobolev exponent $\frac{n+2}{n-2}$ , or Lane-Emden equation in astrophysics when $K(x)=|x|^{l}$ .
One of many interesting questions is whether these equations possess multiple (or infinitely
many) positive entire solutions in $\mathrm{R}^{n}$ .

To illuminate our motivations more clearly, we need the following notations. Set

$p_{c}=p_{c}(n, l)=\{$ $\frac{(n-2)^{2}-2(l+2)(n+l)+2(l+2)\sqrt{(n+l)^{2}-(n-2)^{2}}}{(n-2)(n-10-4l),\infty}$ if $n>10+4l$ ,
if $n\leq 10+4l$

(1.3)

for some $l>-2$ . Let $m= \frac{2+l}{p-1}$ and

$\lambda_{1}=\lambda_{1}(n,p, l)=\frac{(n-2-2m)-\sqrt{(n-2-2m)^{2}-4(l+2)(n-2-m)}}{2}$, (1.4)

$\lambda_{2}=\lambda_{2}(n,p, l)=\frac{(n-2-2m)+\sqrt{(n-2-2m)^{2}-4(l+2)(n-2-m)}}{2}$. (1.5)

Observe that $\lambda_{1},$ $\lambda_{2}\in \mathrm{R}$ if and only if $n>10+4l$ and $p\geq p_{c}$ . The two numbers, $\lambda_{1}$ and
$\lambda_{2}$ , play important roles in describing the asymptotic behavior at $\infty$ of positive radial
solutions to Lane-Emden equation with $p\geq p_{c}(n, l)$

$\triangle u+c|x|^{l}u^{p}=0$ (1.6)
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in $\mathrm{R}^{n}$ for $l>-2$ and $c>0$ . It is known that when $p> \frac{n+2+2\iota}{n-2}$ and $l>-2,$ $(1.6)$ has a
positive radial solution $\overline{u}_{\alpha}$ with $\overline{u}_{\alpha}(0)=\alpha$ for each $\alpha>0$ and

$\lim_{rarrow\infty}r^{m}\overline{u}_{\alpha}(r)=L$ , (1.7)

$\mathrm{w}$

.
here

$L=L(n,p, l, c)=[ \frac{l+2}{p-1}(n-2-\frac{l+2}{p-1})\frac{1}{c}]^{\frac{1}{p-1}}$ (1.8)

(see [7, 14]). Furthermore, $p\geq p_{c}(n, l)$ if and only if any two positive radial solutions of
(1.6) can not intersect each other [14]. By analogy with (1.6), it is natural to expect that
under suitable conditions on $K,$ $(1.2)$ with $p\geq p_{c}$ has infinitely many positive solutions
which preserve this separation property. This question was studied first by C. Gui $[9, 10]$

and recently by S. Bae, T. K. Chang and D. H. Pahk. In [3], a sufficient condition to
guarantee infinite multiplicity for (1.2) is the following:

Theorem 1.1 Let $p\geq p_{c}(n, l)$ with $l>-2$ . Suppose that $K\geq 0$ satisfies

$K(x)=c|x|^{l}+O(|x|^{-d})$

near $|x|=\infty$ for some $c>0$ and

$d>n-\lambda_{2}(n,p, l)-m(p+1)$ .

Then, equation (1.2) possesses infinitely many positive entire solutions satisfying

$\lim_{|x|arrow\infty}|x|^{m}u(x)=L(n,p, l, c)$

and no two of them can intersect.

The fact that $p_{c}(n, l)arrow 1$ as $larrow-2$ is a background to study infinite multiplicity
in case that $K(x)$ has a similar behavior to $c|x|^{-2}$ at $\infty$ . In [10], Gui proved that if $K$

is a positive function satisfying $K(x)=c|x|^{-2}+O(|x|^{-d})$ at $|x|=\infty$ for some $d>2$ ,
then equation (1.2) with $p>1$ possesses infinitely many positive entire solutions with the
asymptotic behavior

$\lim_{|x|arrow\infty}(\log|x|)^{1/(p-1)}u(x)=L$ , (1.9)

where

$L=L(n,p, -2, c)=[ \frac{n-2}{(p-1)c}]^{\frac{1}{p-1}}$ (1.10)

and no two of them can intersect. In [2], Bae and Chang established infinite multiplicity
without positivity condition on $K$ as follows:
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Theorem 1.2 Let $p>1$ . If $K\geq 0$ satisfies

$K(x)=c|x|^{-2}+O(|x|^{-n}[\log|x|]^{q})$ , (1.11)

near $|x|=\infty$ for some constants $c>0$ and $q>0$ . Then, equation (1.2) possesses
infinitely many entire solutions with the asymptotic behavior (1.9) and no two of them
can intersect.

In 1982, W.-M. Ni proved in [13] that if $K(x)=O(|x|)^{l}$ near $|x|=\infty$ for some $l<-2$ ,
then (1.2) with $p>1$ possesses infinitely many positive entire solutions which are bounded
away from $0$ .

On the other hand, another natural question is whether (1.1) still could have infinitely
many entire solutions. In [4], Bae and Ni confirmed this question positively for (1.1) with
$K\equiv 1$ , combining the modified version of the barrier method initiated by Gui [9] and
asymptotic behaviors near $\infty$ of positive solutions of suitable homogeneous equations.
Recently, this equation was studied again by Bae, Chang and Pahk in [3]. Multiplicity
results in $[3, 4]$ for the equation

$\Delta u+u^{p}+\mu f(x)=0$ , (1.12)

where $\mu>0$ is a parameter, can be summarized as follows:

Theorem 1.3 Let $p\geq p_{c}(n, 0)$ . Suppose that $f\not\equiv \mathrm{O}$ and

$f(x)=O(|x|^{-q})$

near $|x|=\infty$ , where
$q>n- \lambda_{2}(n,p, 0)-\frac{2}{p-1}$ .

Then, there exists $\mu_{*}>0$ such that for each $\mu\in(0, \mu_{*}),$ $(\mathit{1}.\mathit{1}\mathit{2})$ possesses infinitely many
positive entire solutions with $ihe$ asymptotic behavior $L(n,p, 0,1)|x|^{-2/(p-1)}$ at $\infty$ .

The main difference between (1.12) and (1.1) lies in the fact that the part $\Delta u+Ku^{p}$

of (1.1) does not possess any scaling-invariant structure in general. Hence, the barrier
method used in [4] cannot apply to the problem (1.1) directly. A new approach is needed
to handle (1.1). In [3], it is observed that a limiting function demonstrating asymptotic
behaviors at $\infty$ of positive solutions of equation (1.2) is continuous with respect to initial
data. This observation makes it possible for the infinitely many pairs of positive solutions
of (1.1) constructed by super- and sub-solution arguments to have specific asymptotic
behaviors at $\infty$ to discern one another, which is, in fact, the key idea in [4] to get infinite
multiplicity for the inhomogeneous problem (1.12). For multiplicity results on the general
form (1.1), we refer the readers to [3].
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In Theorem 1.1 and Theorem 1.3, the monotonicity of $\overline{u}_{\alpha}$ with respect to $\alpha$ is essential
for the constructions of infinitely many pairs of super- and sub-solutions. It, therefore,

seems interesting to ask the multiplicity for (1.1) when $p<p_{c}$ .
When $p$ is the critical Sobolev exponent $\frac{n+2}{n-2}$ , Egnell and Kaj studied in [8] the mul-

tiplicity for (1.12). By variational methods, they showed that if $f\in L^{2n/(n+2)}(\mathrm{R}^{n})$ and
$\mathrm{O}\not\equiv f\geq 0$ , then (1.12) with $p= \frac{n+2}{n-2}$ has at least two positive weak solutions in $D^{1,2}$ for
$\mu>0$ small, where the Sobolev space $D^{1,2}$ is the completion of $\mathrm{C}_{0}^{\infty}(\mathrm{R}^{n})$ in the $L^{2}(\mathrm{R}^{n})$

norm of $|\nabla u|$ . Later, Cao, Li and Zhou verified in [5] that if $0\not\equiv f\geq 0$ belongs to the
dual space $D_{*}^{1,2}$ of $D^{1,2}$ and the dual norm $||f||_{*}$ of $f$ holds

$\mu<C_{n}S^{n/4}/||f||_{*}$ ,

$\mathrm{w}$.here
$C_{n}:= \frac{4}{n-2}(\frac{n-2}{n+2})^{(n+2)/4}$

and $S$ is the Sobolev constant for the embedding $D^{1,2}\llcornerarrow L^{2n/(n-2)}(\mathrm{R}^{n})$ , then (1.12) has
at least two positive weak solutions in $D^{1,2}$ . In fact, there exists $\overline{\mu}>0$ which is the
borderline of existence and nonexistence. We put some results in [1, 5, 8] together as
follows:

Theorem 1.4 Let $p= \frac{n+2}{n-2}$ . Suppose that $\mathrm{O}\not\equiv f\geq 0$ satisfies

$f(x)=O(|x|^{-q})$ (1.13)

near $|x|=\infty$ for some $q>n$ . Then, there exists $\overline{\mu}\geq C_{n}S^{n/4}/||f||_{*}$ such that (1.12)
has at least two positive solutions $U_{\mu}>u_{\mu}$ for each $0<\mu<\overline{\mu}$ while there is no positive
solution of (1.12) for $\mu>\overline{\mu}$ , and there exists a unique positive solution $u_{\overline{\mu}}$ of (1.12) when
$\mu=\overline{\mu}$ . Moreover, as $\muarrow 0+,$ $u_{\mu}arrow \mathrm{O}$ in $D^{1,2}$ and

$\lim_{\muarrow 0+}||U_{\mu}||=S^{n/4}$ .

In the next section, we present asymptotic behaviors near $\infty$ which are crucial in
establishing Theorem 1.1, 1.2 and 1.3, and interpret multiplicity results to Riemannian
geometry. In the final section, related eigenvalue problems are discussed in case $p= \frac{n+2}{n-2}$ .

2 Asymptotic behavior

\S 1. We first recall the asymptotic behavior at $\infty$ of positive radial solutions $\overline{u}_{\alpha}$ of equation
(1.6) (see [12, 11; Theorem 2.5, Lemma 4.13 and (4.15)] for details).
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Proposition 2.1 Let $l>-2$ and $c>0$ . For $p\geq p_{\mathrm{c}}(n, l)$ , we have that for arbitrarily
given $\epsilon>0$

$\overline{u}_{\alpha}(r)=\frac{L}{r^{m}}+\frac{a_{\alpha}}{r^{m+\lambda_{1}}}+\cdots+O(\frac{1}{r^{n-2+\epsilon}})$ if $p>p_{c}$ , (2.1)

$\overline{u}_{\alpha}(r)=\frac{L}{r^{m}}+\frac{a_{\alpha}\log r}{r^{m+\lambda_{1}}}+\cdots+O(\frac{1}{r^{n-2+\epsilon}})$ if $p=p_{c}$ (2.2)

near $\infty$ , where $L$ is given by $(\mathit{1}.\mathit{8})_{f}\lambda_{1}$ is given by (1.4), and

$a_{\alpha}=\alpha^{-\lambda_{1}/m}a_{1}<0$ . (2.3)

Although Theorem 2.5 in [11] deals only with the case $l=0$ , the arguments in the proof
can be proceeded similarly to conclude Proposition 2.1. Another direct consequence of
Theorem 2.5 in [11] is the following:

Proposition 2.2 Let $v_{1},$ $v_{2}$ be two positive radial solutions of the equation

$\triangle u+cr^{l}u^{p}=0$

near $\infty$ , where $c>0$ and $l>-2$ . Suppose that

$\lim_{rarrow\infty}r^{m}v_{1}(r)=L=\lim_{rarrow\infty}r^{m}v_{2}(r)$

and
$\lim_{rarrow\infty}r^{\lambda_{1}}(r^{m}v_{1}(r)-L)=\lim_{rarrow\infty}r^{\lambda_{1}}(r^{m}v_{2}(r)-L)$ if $p>p_{c}$ ,

$\lim_{rarrow\infty}\frac{r^{\lambda_{1}}}{\log r}(r^{m}v_{1}(r)-L)=\lim_{rarrow\infty}\frac{r^{\lambda_{1}}}{\log r}(r^{m}v_{2}(r)-L)$ if $p=p_{\mathrm{c}}$ .

Then, $v_{1}(r)-v_{2}(r)=O(r^{-m-\lambda_{2}})$ near $\infty$ , where $\lambda_{2}$ is given by (1.5).

The existence of a positive radial super-solution of (1.6) having the following asymp-
totic behavior is verified similarly as in [11] (see [11; Theorems 2.5, 4.1 and Lemmas 4.11,
4.13]).

Proposition 2.3 Let $p\geq p_{c}(n, l),$ $l>-2$ and $c>0$ . Then, for each $\alpha>0$ , there exists
a positive radial super-solution $\overline{u}_{\alpha}^{+}(r)$ of (1.6) such that $\overline{u}_{\alpha}^{+}(r)>\overline{u}_{\alpha}(r)$ for $r\in[0, \infty)$ and
$\overline{u}_{\alpha}^{+}(r)-\overline{u}_{\alpha}(r)=O(r^{-m-\lambda_{2}})$ as $rarrow\infty$ .

Let $K=K(r)$ be a radial function in $\mathrm{R}^{n}$ . The radial version of equation (1.2) is of
the form

$\{$

$u”+ \frac{n-1}{r}u’+K(r)u^{p}$ $=$ $0$ ,

$u(\mathrm{O})=\alpha>0$ , $u’(\mathrm{O})$ $=$ $0$ .
(2.4)

For each $\alpha>0$ , the local solution $u_{\alpha}$ of (2.4) is decreasing and extended locally wherever
it exists and remains positive. To obtain a continous family of positive radial solutions
of (2.4) for $\alpha>0$ small, it suffices to construct countable solutions with initial data
converging to $0$ , by the following:
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Lemma 2.4 Assume that $K\geq 0,$ $\not\equiv 0$ . Suppose that there exist three solutions $u_{\alpha},$ $u_{\beta},$ $u_{\gamma}$

of (2.4) such that $0<u_{\alpha}<u_{\beta}<u_{\gamma}$ in $[0,\overline{R})$ for some $\overline{R}\in(0, \infty]$ . Then, for each
$\alpha<\delta<\beta,$ $(\mathit{2}.\mathit{4})$ possesses a positive radial solution $u_{\delta}$ in $B_{\overline{R}}$ satisfying

$0<u_{\alpha}(r)<u_{\delta}(r)<u_{\beta}(r)$

for $0\leq r<\overline{R}$ .

Combining Green’s identity, Proposition 2.3 and Lemma 2.4, we construct a continuous
family of positive radial solutions of (2.4) [3; Proposition 3.1].

Proposition 2.5 Let $p\geq p_{c}(n, l)$ with $l>-2$ . Suppose that $K=K(r)\geq 0$ satisfies that

$\int_{1}^{\infty}(K(r)-cr^{l})_{-}r^{n-1-m(p+1)-\lambda_{2}}dr<\infty$

and either $r^{-l}K(r)\leq cp$ near $\infty$ ,

$\int_{1}^{\infty}(K(r)-cr^{l})_{+}r^{n-1-m(p+1)-\lambda_{2}}dr<\infty$

$or$

$\int_{1}^{\infty}(K(r)-cr^{l})_{+}r^{n-1-mp-\lambda_{2}}dr<\infty$

for some $c>0$ , where $k_{\pm}= \max(\pm k, 0)$ . $Then_{f}$ there exists a positive consiant $\alpha^{*}=$

$\alpha^{*}(p, K)$ such that for each $\alpha\in(0, \alpha^{*}]$ , equation (2.4) possesses a positive radial solution
$u_{\alpha}$ with $u_{\alpha}(\mathrm{O})=\alpha$ satisfying

$\lim_{rarrow\infty}r^{m}u_{\alpha}(r)=L(n,p, l, c)$

and no two of them can intersect.

When $K$ satisfies the conditions of Theorem 1.1, infinitely many pairs of super- and
sub-solutions of (1.2) are constructed by making use of Proposition 2.5. Then, standard
barrier method implies Theorem 1.1. Proposition 2.2 as well as Proposition 2.5 is an
important ingredient in establishing Theorem 1.3.

Under the assumptions on $K$ as in Proposition 2.5, equation (2.4) with $p\geq p_{c}(n, l)$

and $l>-2$ has a family $\{u_{\alpha}\}$ of positive radial solutions indexed by $\alpha\in(0, \alpha^{*}]$ for
some $\alpha^{*}>0$ such that $u_{\alpha}(\mathrm{O})=\alpha$ and $u_{\alpha}$ is monotonically increasing with respect to $\alpha$ .
Moreover, it is observed in the proof of Proposition 2.5 that for each $\alpha\in(0, \alpha^{*}]$ , there
exist $\gamma<\alpha$ and $\beta>\alpha$ such that $\overline{u}_{\gamma}\leq u_{\alpha}\leq\overline{u}_{\beta}$ in $\mathrm{R}^{n}$ and thus, $r^{m}u_{\alpha}(r)arrow L$ as $rarrow\infty$ .

For $\alpha\in(0, \alpha^{*}]$ , set $W(\alpha, t):=r^{m}u_{\alpha}(r)-L,$ $t=\log r$ and

$D(\alpha, t):=e^{\lambda_{1}}{}^{t}W(\alpha, t)$ for $p>p_{c}$ ,

$D(\alpha, t):=t^{-1}e^{\lambda_{1}}{}^{t}W(\alpha, t)$ for $p=p_{c}$ .
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Then, it follows from (2.1), (2.2) and (2.3) that for fixed $0<a<\alpha^{*},$ $D(\alpha, t),$ $a\leq\alpha\leq\alpha^{*}$ ,
are uniformly bounded above and below at $+\infty$ , that is, there exists $M=M(a,p)$ such
that for all $\alpha\in[a, \alpha^{*}]$ ,

$|W(\alpha, t)|\leq Me^{-\lambda_{1}t}$ for $p>p_{\mathrm{c}}$

and
$|W(\alpha, t)|\leq Mte^{-\lambda_{1}t}$ for $p=p_{c}$ .

For fixed $-\infty<t<+\infty,$ $D(\alpha, t)$ is continuous with respect to $\alpha$ . Moreover, $D(\alpha, t)$

converges uniformly on $[a, \alpha^{*}]$ as $tarrow+\infty$ , which seems of independent interest.

Lemma 2.6 For given $0<a<\alpha^{*},$ $D(\alpha, t)$ converges uniformly on $[a, \alpha^{*}]$ as $tarrow+\infty$

provided that
$\int_{1}^{\infty}|K(r)-cr^{l}|r^{n-1-m(p+1)-\lambda_{2}}dr<\infty$ .

An immediate consequence of Lemma 2.6 is that the limit of $D(\alpha, t)$ as $tarrow+\infty$ is contin-
uous. This fact is crucial in verifying infinite multiplicity for the general inhomogeneous
equation (1.1).

Proposition 2.7 Let $p\geq p_{c}(n, l)$ with $l>-2$ . Suppose the assumptions of Proposition
2.5. Then, $D( \alpha):=\lim_{tarrow+\infty}D(\alpha, t)$ is continuous for $\alpha>0$ small.

\S 2. Now, we consider the asymptotic behavior at $\infty$ of positive radial solutions of the
equation

$\Delta u+c|x|^{-2}u^{p}=0$ (2.5)

near $\infty$ for some $c>0$ . Recall the following asymptotic behavior (see [12; Lemma 5.1]).

Lemma 2.8 Let $p>1,$ $c>0$ and $u$ be a positive radial solution of (2.5). If

$\lim_{rarrow\infty}(\log r)^{1/(p-1)}u(r)=L(n,p, -2, c)$ ,

then

$u(r)= \frac{L}{(\log r)^{1/(p-1)}}-\frac{pL\log(c\log r)}{(p-1)^{2}(n-2)(\log r)^{p/(p-1)}}+o(\frac{1}{(\log r)^{p/(p-1)}})$ ,

near $\infty$ , where $L$ is given by (1.10).

It turns out that the asymptotic behavior of the difference of two positive radial solu-
tions of (2.5) is important to establish infinite multiplicity for equation (1.2). In fact,
the assumption (1.11) on $K$ at $|x|=\infty$ in Theorem 1.2 comes from the following key
observation.
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Proposition 2.9 Let $p>1$ and $v_{1},$ $v_{2}$ be two positive radial solutions of (2.5). Suppose

that
$\lim_{rarrow\infty}(\log r)^{1/(p-1)}v_{1}(r)=L=\lim_{rarrow\infty}(\log r)^{1/(p-1)}v_{2}(r)$ .

Then,
$\lim_{rarrow\infty}(\log r)^{m}[v_{2}(r)-v_{1}(r)]=0$

for any $m>0$ .

For our convenience, we fix a family $\{\overline{u}_{\alpha}\}$ of positive radial solutions of (2.4) indexed by

$\alpha\in(0, \alpha^{*}]$ for some $\alpha^{*}>0$ such that $\overline{u}_{\alpha}(0)=\alpha,\overline{u}_{\alpha}$ is monotone with respect to $\alpha$ and

$\lim_{rarrow\infty}(\log r)^{1/(p-1)}\overline{u}_{\alpha}(r)=L(n,p, -2, c)$ ,

where $K$ is a smooth positive radial function $\overline{K}$ such that for some $c>0$ ,

$\overline{K}(r)=\frac{1}{1+r^{2}}$ for $0\leq r\leq 1$

and
$\overline{K}(r)=\frac{c}{r^{2}}$ for $r\geq 2$

(see [10; Theorem 5.1 and Lemmas 5.3, 5.6]). Moreover, it follows from Proposition 2.9

that for each $\alpha\in(0, \alpha^{*})$ ,

$F_{\alpha}(r):=\overline{u}_{\alpha}*(r)-\overline{u}_{\alpha}(r)=o([\log r]^{-m})$ as $rarrow\infty$

for any $m>0$ . This estimation plays a similar role in proving Theorem 1.2 as Proposition

2.3 does in Theorem 1.1. For the radial case, we have the following [2; Proposition 3.1]:

Proposition 2.10 Let $p>1$ . Suppose that $K=K(r)\geq 0$ satisfies that

$\int_{1}^{\infty}|K(r)-cr^{-2}|r^{n-1}(\log r)^{-a}dr<\infty$

for some $c>0,$ $a>0$ . Then, there exists a positive constant $\alpha^{*}=\alpha^{*}(p, K)$ such that

for each $\alpha\in(0, \alpha^{*}]$ , equation (2.4) possesses a positive radial solution $u_{\alpha}$ with $u_{\alpha}(\mathrm{O})=\alpha$

satisfying
$\lim_{rarrow\infty}(\log r)^{1/(p-1)}u_{\alpha}(r)=L(n,p, -2, c)$

and no two of them can intersect.

Theorem 1.2 follows from Proposition 2.10 and the particular barrier method initiated by

Gui $[9, 10]$ and modified in $[3, 4]$ . An interesting question is whether $[\log|x|]^{q}$ in (1.11)

could be replaced with the form $|x|^{q}$ with $0<q<n-2$ , which is still left unanswered.

We interpret Theorem 1.1 and Theorem 1.2 in the context of Riemannian geometry.

Let $(M, g)$ be an $\mathrm{n}$-dimensional Riemannian manifold and $K$ be a given function. The
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scalar curvature problem is to find a metric $g_{1}$ on $M$ conformal to $g$ such that the corre-
sponding scalar curvature to $g_{1}$ is $K$ . The introduction of $u>0$ by $g_{1}=u^{4/(n-2)}g,$ $n\geq 3$ ,
brings out the equation

$\frac{4(n-1)}{n-2}\triangle_{g}-ku+Ku^{\frac{n+2}{n-2}}=0$, (2.6)

where $\triangle_{g}$ denotes the Laplace-Beltrami operator on $M$ in the $g$ metric and $k$ is the scalar
curvature of $(M, g)$ . If $M=\mathrm{R}^{n}$ and $g=\Sigma_{i=1}^{n}dx_{i}^{2}$ is the standard metric, then equation
(2.6) reduces to

$\triangle u+K(x)u^{\frac{n+2}{n-2}}=0$ in $\mathrm{R}^{n}$ .

When $p= \frac{n+2}{n-2}$ , Theorem 1.1 and Theorem 1.2 are translated as follows:

Theorem 2.11 Suppose that $K$ satisfies the assumptions of Theorem 1.1 with $\frac{n+2}{n-2}\geq$

$p_{c}(n, l)$ or the assumptions of Theorem 1.2. $Then_{f}$ there exist infinitely many Riemannian
metrics $g_{1}$ on $\mathrm{R}^{n}$ such that (i) $K$ is the scalar curvature of $g_{1}$ ; (ii) $g_{1}$ is conformal to the
standard metric $g$ on $\mathrm{R}^{n};(\mathrm{i}\mathrm{i}\mathrm{i})g_{1}$ is complete.

3 Positive global solutions

Let $p= \frac{n+2}{n-2}$ and assume that $\mathrm{O}\not\equiv f\geq 0$ and $f\in D_{*}^{1,2}$ . We call a positive solution in $D^{1,2}$

of (1.12) in $\mathrm{R}^{n}$ a positive global solution. Define

$\overline{\mu}=\sup$ {$\mu>0$ : (1.12) has a positive global solution}.

Denote the minimal solution (the smallest one among all positive solutions) of (1.12) by
$u_{\mu}$ for $0<\mu\leq\overline{\mu}$ and consider the eigenvalue problem

$-\triangle\varphi=\lambda pu_{\mu}^{p-1}\varphi$ , $\varphi\in D^{1,2}$ . (3.1)

Let $\lambda_{1}$ be the least eigenvalue of (3.1), i.e.,

$\lambda_{1}=\lambda_{1}(\mu)=\inf\{\int|\nabla\varphi|^{2}$ : $\varphi\in D^{1,2},$ $\int pu_{\mu}^{p-1}\varphi^{2}=1\}$ .

The minimum is achieved by some $\varphi_{1}=\varphi_{1}(\mu)\in D^{1,2}$ and $\varphi_{1}>0$ in $\mathrm{R}^{n}$ which is the
corresponding eigenfunction of (3.1) for $\lambda=\lambda_{1}(\mu)$ .

Lemma 3.1 $\lambda_{1}(\mu)$ is a coniinuous function on $(0,\overline{\mu}]$ such that for $0<\mu<\nu<\overline{\mu}$ ,

$1=\lambda_{1}(\overline{\mu})<\lambda_{1}(\nu)<\lambda_{1}(\mu)$ .

$Moreover_{y}\lambda_{1}(\mu)arrow+\infty$ as $\muarrow 0+$ .
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In particular, uniqueness of $u_{\overline{\mu}}$ in Theorem 1.4 follows from the fact that $\lambda_{1}(\overline{\mu})=1$ .

Define $F:\mathrm{R}\cross D^{1,2}arrow D_{*}^{1,2}$ by

$F(\mu, u)=\triangle u+(u^{+})^{p}+\mu f(x)$ .

It is easy to see that $F(\mu, u)$ is differentiable and for $\mu\in(0,\overline{\mu})$ ,

$F_{u}(\mu, u_{\mu})w=\triangle w+pu_{\mu}^{p-1}w$

is an isomorphism of $\mathrm{R}\cross D^{1,2}$ onto $D_{*}^{1,2}$ . Then, the Implicit Function Theorem implies
that the solutions of $F(\mu, u)=0$ near $(\mu, u_{\mu})$ are given by a single continuous curve. By
making use of a bifurcation result of Crandall and Rabinowitz [6], we conclude that under
the condition (1.13) of Theorem 1.4, $(\overline{\mu}, u_{\overline{\mu}})$ is a bifurcation point of $F$ .

Let $\mu\in(0,\overline{\mu})$ and $U_{\mu}$ be a second solution of (1.12). Then, there is another eigenvalue
problem

$-\triangle\varphi=\eta pU_{\mu}^{p-1}\varphi$ , $\varphi\in D^{1,2}$ . (3.2)

Let $\eta_{1}$ be the least eigenvalue of (3.2), i.e.,

$\eta_{1}=\eta_{1}(\mu)=\inf\{\int|\nabla\varphi|^{2}|\varphi\in D^{1,2}, \int pU_{\mu}^{p-1}\varphi^{2}=1\}$ .

The behavior of $\eta_{1}$ is the following [1]:

Lemma 3.2 For $0<\mu<\overline{\mu}$ ,
$\frac{1}{p}<\eta_{1}(\mu)<1$ .

Moreover, $\eta_{1}(\mu)arrow 1/p$ as $\muarrow 0+while\eta_{1}(\mu)arrow 1$ as $\muarrow\overline{\mu}$ .

In Theorem 1.4, we suspect that $\overline{\mu}=C_{n}S^{n/4}/||f||_{*}$ . On the other hand, a fundamental
question on (1.12) is the multiplicity of positive entire solutions satisfying $L|x|^{-m}$ at $\infty$

when $\frac{n+2}{n-2}\leq p<p_{c}$ . Furthermore, the $\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}/\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ of singular solutions of
(1.12) is also a challenging problem. A singular solution is a positive classical solution in
$\mathrm{R}^{n}\backslash \{0\}$ which converges to zero at $\infty$ and blows up to $\infty$ at the origin.
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