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On the projection which appears
in the variational treatment of
elasto-plastic torsion problem

YHIEKRE VAT ATHEH
H 7)1l Z1Z (Tomoyuki Idogawa)

Abstract

In the treatment of variational inequalities, the projection operator
Pxg from some Hilbert space V' onto a certain closed convex subset K
plays an important role. But, only for few problems, it is known how
to get the explicit form of Pxu for each given v € V. In this article,
we consider K = {f € H}(Q); |Vf| < 1 a.e.}, which is related to elasto-
plastic torsion problems, and propose an iterative method to approximate
Pxu for 1 dimensional case Q = (a,b). We also show an expansion of it
for higher dimensional but radial symmetric cases.

1 Problem
Let © C RY be a bounded domain with a smooth boundary and
K:=={fe Hy(Q); [VFI <1 ae.}.

We will denote by Py the projection mapping from Hg () into its convex closed
subset K, namely, for v € H}(Q) and v € K,

: def ,
Pgu=v <= |lu—vllgyq) = flg}; lu = fllzge)-

For convenience sake, we take

1/2
lullsgcay = Vel = { /Q Wu<x>|2dx} |

throughout this article. (Note that Q is bounded.) The problem is to find
v = Pgu € K for each given u € H} ().

This projection Px appears in the variational treatment of elasto-plastic
torsion problem. Consider an infinitely long cylindrical elastic-plastic bar of



Figure 1: cylindrical elastic-plastic bar of cross section (2.

cross section Q to which some torsion momentum (7 denotes the torsion angle
per unit length) is applied (Fig. 1). It is known that the stress vector ¢ in ) is
determined by the minimizer u of

J(v)=%/ﬂ|Vv[2d:v——'r/ﬂvdx (v € K),

namely, 0 = Vu [2, p.42]. This minimizing problem is equivalent to finding
u € K such that

u = Pg(u— p(Au—1)) for some p > 0,
where A € L(V,V) and | € V are defined by
1
Q
L f) = T/ fdz ( (+,) : inner product of V)
Q
for f,g € V := HX(Q), respectively [2, p.3].

The projection Px also plays an important role in the error estimates of the
corresponding penalized elliptic variational inequalities [5].

2 Rewriting the problem

We introduce a functional J, : K — R for each given u € H(Q):

L) = = Mgy = [ [Vu(e) - Vi @)Pdo. ®

By using it, the problem can be rewritten such as “To find the minimizer v of
Ju on K.” On this problem, one can easily show:
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Proposition 1  If there ezists a solution v € H}(S) to
Vv = C(Vu) (a.e. in Q), (2)

z (7<),

then v is the minimizer of J, on K, where C(z) := { z/|lz| (2] > 1)

Especially, for 1 dimensional case 2 = (a,b) C R, put

ve)= [ CW(@)de  (asz<h (3)

for a given function u € H{(a,b). If this function v (€ H(a,b) N C([a,b]))
satisfies that v(b) = 0, then v belongs to Hj(a,b) and hence v = Pgu. An
example of this kind: u(z) = —3 cos(3nz) and v defined by (3) for © = (—1,1)
are shown in Fig. 2. We also plot their derivatives in Fig. 3. In this case, Pxu
and v coincide perfectly (see Fig. 2), and (Pxu)’ is only the “cut-off” of «/,

namely, (Pxu)’ = C(v') (see Fig. 3).
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Figure 2: the case v(b) = 0; u(z) = —= cos 37z.

In fact, for 1 dimensional case Q = (a,b), one can easily show that if the
given function v is symmetric (i.e., u(a+¢&) = u(b—§) for any &), then v defined
by (3) satisfies that v(b) = 0 and hence v = Pxu.
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Figure 3: v’ and (Pxu)'; u(z) = —3; cos irz.

But it is rather special. We will show an example for the case v(b) # 0:
w(z) =4(z+1)2*(z+3)(z— )@ —E)(z—2)(z—1) for @ = (—1,1). The graphs
of u, corresponding v and Pxu are shown in Fig. 4. Also the derivatives «’ and
(Pxu)" are plotted in Fig. 5.
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Figure 4: the case v(b) # 0; u(z) = 4(z+1)%(z+3)(z—3)(z—2)(z—2)(z—1).
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Figure 5: v/ and (Pxu)’; u(z) = 4(z+1)(z+3)(z—3)(z—-2)(z—§)(z—1).

In such a case, it is clear that any primitive function of C(u’) can not belong
to Hy(Q) since its values at 2 boundary points are not equal. In other words,
(2) has no solution in H}(2), in general.

Then, instead of (2), we consider the following system of equations:

{ Vv =C(Vu—Vw) (ae.in ), (@)

It means that at first, we alter u by subtracting the appropriate quantity, namely,
a function w € H'(Q) satisfying Aw = 0. Then we “cut-oft” its gradient and
get the primitive function. If the obtained function v belongs to H}(£), then
the next theorem assures that v = Pxu.

Aw=0 (weak sense).

Theorem 1 Let Q C RY be a bounded domain with smooth boundary. If there
exists a solution (v, w) in HE(Q) x HY(Q) to the system of equations (4) with a
given parameter u € H}(Q), then v belongs to K and minimizes the functional
Ju defined by (1).

(Proof) It is clear that v € K. Hence, it suffices to show that
Vf € K, Ju(f) - Ju(v) > 0.

Let denote Q, := {z € Q; |V(u—w)| > 1} and Q, := Q\Q,. Fix f € K and
put § := f —v € H}(Q). For this §, we can easily show

V6 - Vo=Vf-Vv—|Vo!=Vf - Vo-1<0 (ae. inf,)
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since [V f| <1 and |Vu| =1 (a.e. in £,), and hence
Vé-(Vu—-Vw) <0  (ae in ).

On the other hand, since Aw = 0 (weak sense in H'(2)) and § € H}(Q),

/Vé-dex: Vé - -Vwdr + Vé-Vwdz =0.
Q Qp Q.

By using these facts, we get
Ju(f)—Ju(v)=/Q|Vu—V(v+5)|2dx——/Q|Vu—Vv|2da:
- /Q|V5|2da:——2/QV5-(Vu—Vv)dx
= L|V5|2dm—2/§l V6-(VU—M) dzr—2 [ Vi -Vwdz

|Vu — Vu| Q.

- /[V6|2dx+2/ Vé-(M—Vu) dz+2 [ V6. Vwds
Q Q |Vu — V| Q

- /|V6|2d:v+2/ (IVa— Ve ™ — 1) V6 - (Vu — Vu) do
Q

P

> / Vol2ds > 0.
Q

3 1 dimensional case

Theorem 1 assures that if one could solve the system of equations (4) with a
given parameter u € Hj (), one get the projection Pxu. But unfortunately,
there may not be any solution to (4) in general, except 1 dimensional case. In
fact, when Q = (a,b) C R! (—00 < a < b < o), the equation w” = 0 can be
solved such as w’ = const. a.e. in (a,b). Hence it is sufficient to solve

v =C — ) (a.e. in Q) (5)

for v € Hg(a,b) and o € R instead of (4). And we got an iterative solution
to (5), namely, an algorithm to produce the sequences {vx} C H'(a,b) and
{ax} C R which approximate v and «, respectively.
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Algorithm I Put ap := 0 and iterate the followings on k =0,1,2,---.

1. Define vy, € H(a,b) N C([a, b)) by using ox such as
vk(z) == /-w C(u' (&) — o) d€ (a <z <D).

b
2. Put ) := Z’“( )

and oy = ag + .

When vy, — v in H'(a,b) and ax — a in R as k — oo, one can expect
v(b) = 0, ie., v € Hi(a,b). If it holds, the pair of v and « solves to (4). In fact,
these properties are assured by the following theorem. :

Theorem 2  For any v € H}(a,b), each sequence {ax} and {vy} in Algo-
rithm I converges. Moreover, the limit function of vy belongs to H}(a,b).

Theorem 2 is the direct result of following 3 lemmas. At first, we will prove
the convergence of {ax} by showing the monotonicity and the boundedness of
it.

Lemma 1 (monotonicity) In Algorithm I, if

1 b

Q) = 60 = B—__a/ C(U;I(g)) dg > 0,
then the sequence {0y} satisfies that 0 < 0p41 <6 (k=0,1,2,--- ).
(Proof) Fixke€ {0,1,2,---} and assume d; > 0. Let denote

Q(f) :i={z € f(z) > 1}, Q(f) ={z € f(z) < -1},
Q. (f) = Q\((f) U n(Y)),

where Q = (a,b), and define {);; by
Qi = QU — o) NG —ax) (4,5 € {p,z,n}).
For brevity, we will use the notations

O 1
Qs :=/ dr and wi-:zl—z—J—=——/ dz i,j € {p,z,n}).
| ]I ) J [QI |Q| i ( { })

ij



Note that

] :=b—a= Z |€%;| and Zwij =1 (i,5 € {p,z,n}),
iJ bJ

and |Q.| = |Qpn] = |Q2n| = 0 since o1 = o + 0 > op. By using them, we
can write

1
Ok1 — O = T Z/Q {C(W — ag+1) = C(U — ox)} dx
i i

1
- |_—I {/ (v — ags1 — 1)dz + / (—agt1 + o) dx
sz zZ
+/ (—2)dz + (-1 —u’+ak)da:}
an Qnz

1
= (v — agp1 — 1) dz — w2, 0p — 2wy

A (-1 —u' + ag) dz.

+ 1
12| Ja,.
From the definition of Q,, and €., we obtain the following evaluations: .

—min{2,6;} <¥(z) —ak1 —1<0  (ae 7inQyp),
—min{2,6;} < —-1-v(z)+ <0  (ae zin Q).

By the estimates from above, we get the monotone decreasingness of {0x}:
5k+1 < (1 - wzz)(sk, - 2wnp < 6k

Next, we will show the non-negativeness of {0;}. By the estimates from below,
we get '

Spr1 > —min{2, 8 twap + (1 — wez )0 — 2wy — min{2, 0k }wn,.
When 6 > 2, we can deduce from this estimate
Skr1 > 2(—wap + 1 — Wiy — Wnp — Wnz) = 0.
In the other hand, Wheh 8 < 2, we can easily show that wn, = 0, and hence

5k+1 > 5k("'wzp +1-w,, — wnz) > 0.

One can get similar result as Lemma 1 for the case do < 0.
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Corollary 2 In Algorithm I, if

b
o = fy 1= / C())de <0,

then the sequence {0y} satisfies that 0 > 041 > 0f (K =0,1,2,--- ).

It is obvious that d;x = 0 implies ép = 0 for all ¥’ € {k,k+ 1,k +2,---}.
Since oy, = Zf;é d;, it is easy to look that {a4} is also monotone and that the
sign of ay, is “same” as that of d, in the sense considering the sign of 0 to belong
to both of plus and minus one. Hence, we get the following.

Corollary 3  For the sequences {0x} and {ax} generated by Algorithm I, it
holds that

ar>0=0,>0 and o <0=06,<0 (k=0,1,2,---).
We use this property in the proof of Lemma 4.

Lemma 4 (boundedness) In Algorithm I, the sequence {ax} is bounded
such as

9 \1/2
o < (725) Mol +1 (6=012)

(Proof) When u = 0 in H}(a,bd), it is clear that ay = 0 for any k €
{0,1,2,---}. Then, we take u 5 0, namely, [|ullgi(ap = |@/llz2(ap) > 0. And we
will show only for the case ay > 0 here. Almost the same proof works for the
case ay < 0.

For each fixed ¢ > 0, assume that

9
keN st ak2< te
b—a

1/2
)uwwm+L ()

Note that d;x > 0 since oy > 0. Putting
O ={zeQ v(x)—ar>-1}, Q:=(a,b)\Q,

we get the inequality

(b—a)dr = A C(u(§) — ox)dE + A C(w/(§) — o) d€

(4)
< | 1ow©-anld~ [ d <ol - |0l
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where |Q;| := [, dz. Since Q2] = (b— a) — |Qu], || = 0 implies that d; < 0
which contradicts to the assumption (). Then, we assume |Q;| > 0 hereafter.
By using (*) and the definition of €;, we can easily show that

24¢, ,
e = [WOF 2 (=1 2 T [lErey.

Hence, it follows that

2+¢
o = [ (@R de 2 ;

a4

and then,
Q2] — [ = €|l

This and (1) lead that d; < 0 which contradicts to (x). O
Lemma 1 (Corollary 2) and Lemma 4 show the convergence of {ax} generated
by Algorithm I. Then, we will show the convergence of {vx} in H(a,b).

Lemma 5  For {ax} and {v;} generated by Algorithm I, denoting

it holds that vy — v (k — o) in H'(a,b) and v € H}(a,b).
(Proof) It is easy to see that
Vz1,22 € R, |C(21) — C(z2)| < |21 — 2.
By using this property and the definitions of v and v, we get
[V (z) — vi(z)] = |C(W/(z) — @) — C(v/(z) — ox)| < |a— k] (ae. in ).

Therefore, we obtain

b b
o= vl = [ @) - w@Pde+ [ [v(e) = (e da

/b
b b

< /|a—ak|2(:1;—a)2dx+/ la — | dz
a a

= la—af (3(6—-a)’+ (b—0),

2 b
dz +/ |v/(z) — vi(z)|* dz

/ W) — vl(0)) de
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and then the convergence vy — v in H'(a,b). Furthermore, since

b
o(®) - vs(B)] = / () — vy(x)) do

b
< [ W@ @) do < fo - ol - ),
it holds that vg(b) — v(b) (k — 00). In the other hand,

vk(b) = 6k(b — @) = (k41 — o) (b — a)
implies vy,(b) — 0, hence we get v(b) = 0, namely, v € Hj(a,b). O

4 Radial symmetric case

For higher dimensional cases, the system of equations (4) may not have any
solution, in general. But, when both of domain 2 and given function u are
radial symmetric, the problem is reducible to 1 dimensional one, and can be
solved. In this section, we consider that both {2 and u are radial symmetric.

At first, we mention about the most simple (trivial) case, namely, the domain
Q is spherical one:

Q={zeRY; |z <a} with 0<a<oo

In this case, it is obvious that v = Pxu can be obtained such as
v(z) = — l IC(ﬂ’(ﬂ))dp (z € Q),
where @ : R — R is defined by 4(|z|) := u(z).
For more interesting case, we consider a ring domain:
Q={recR", a<|z|<b} with 0<a<b<oo. (6)
In this case, the system of equations (4) can be written as

vr = Clu, — wy) (a.e. in ),
N-1
Wy + — wr =0 (weak sense)
with r := |z|. Since the 2nd equation of this system is solvable such as

N

wy(z) = ar'™ (a.e. T € Q),



with arbitrary constant «, it suffices to solve
¥'(r) = C (&(r) — ar™") (a.e. T € [a,b]) (M

for o € H}(a,b) and a € R. The equation (7) is similar to (5) and we can
expand Algorithm I to solve it as followings.

Algorithm II  Put ap := 0 and iterate the followings for k =0,1,2,---

1. Define vi(zx) by using oy such as

ja o
k() ==/ C(ﬁ'(p)— pN'il) dp  (z€Q)

N-1

2. Put 0y := Z_ - |:lcill—1»1b vk(z) and agy1 == ag + .

This algorithm is justified by the next theorem.

Theorem 3  If Q is a ring domain such as (6) and u € H3(Q) is radial
symmetric one, then each sequence of {ax} and {vx} in Algorithm II converges.

The sequence {a;} generated by Algorithm II also has the monotonicity and
the boundedness, and the convergence of {ay} is direct result of them. Once
the convergence of {4} was shown, one can also show the convergence of {v;}.
These lemmas written below prove Theorem 3.

Lemma 6 (monotonicity) In Algorithm II, if

aN—l b
o = By = / C(@(p)) dp > 0,

then the sequence {8} satisfies that 0 < 041 < 6 (k=0,1,2,---).

Lemma 7 (boundedness) In Algorithm II, the sequence {ax} is bounded
such as

9 \/2
<0 (525) IWlen+1 (B=01.2:00)

Lemma 8  For {ax} and {vy} generated by Algorithm II, denoting

(87

; ||
= ’}LIEOak and v(zx):= /a C’(u'(p) — pN“l) dp (z€),

then it holds that vy — v (k — 00) in HY(Q) and v € Hy(Q).
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The proofs of Lemma 6, 7 and 8 are done by almost same arguments as
Lemma 1, 4 and 5, respectively, and we omit them here.

Finally, we will show an example of numerical result of Algorithm II. In
Fig. 6, v and Pxu defined in -2 dimensional ring domain ) such as

(@) = 4(Ja] + V(i + 2)(1al - £)(lal = D)l - £)(lel - 1),
Q={zeR% 0.5< |z| <25},

are plotted as 3D graphs.

Figure 6: v and Pxu for 2 dimensional ring domain case:
u(r) = 4+ D2+ H - - Hr-Hr-1).

In Fig. 7, the same u and Pxu expressed above but for 1, 2 and 3 dimensional
domains are plotted as —u and r—Pxu graphs. One may notice that the differ-
ence between the values of u and those of Pxu is rather uniform in 1 dimensional
case. But in a higher dimensional case, the difference between the values of u
and those of Pxu near the origin is larger than that of them far from the origin.
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v, denotes Pk u for n dimensional case.
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