
NOTE ON CLASSIFICATION OF SEXTICS

DUC TAI PHO

ABSTRACT. We classify the local and global singularities of sextics which are tame torus
curves of type $(2, 3)$ and we also show the degenerations among tllese classes. As an applica-
tion, two Zariski pairs are found.

INTRODUCTION

The classification of complex algebraic plane curves is a classical problem. For a survey for
the classification of curves of degree less than 6, see [N]. The classification of curves of degree
6 is still not completed, though there are some partial answers for instance in a series papers
by Urabe on sextics which has only simple singularities (see [U] and its references), and then
by Yang extended Urabe’s result in [Y].

According to [Li], singular plane curves of interest are given by
(a) a curve which appears as a branch of generic projections of surfaces,
(b) generic plane sections of discriminants of linear systems on projective space $\mathrm{P}^{2}$ (this

includes dual curves),
(c) a curve defined by explicit equation.
Deformation theory is also useful to prove the existence of curves which can be degenerated

into curves of type (a), (b), (c).
In this paper, we mainly use the method (c) for a special class of sextics, which is so called

torus curves of type $(2,3)$ , and actually these curves have also non-simple singularities, by
that reason we can not use the methods of Urabe or of Yang.

Let $C=\{(X;Y;Z)\in \mathrm{P}^{2}; F(X;\mathrm{Y};Z)=0\}$ be a complex projective plane curve and let
$(x, y)$ be the affine coordinates given by $x=X/Z,$ $y=\mathrm{Y}/Z$ on $\mathbb{C}^{2}:=\mathrm{P}^{2}-\{Z=0\}$ . For simply
we also keep the notation $C$ in the affine chart $\mathbb{C}^{2}$ , where its defining equation $f(x, y)$ is given
by $f(x, y):=F(x, y, 1)$ . Then $C$ is called torus curve of type $(p, q)$ (or $(p, q)$-torus curve for
shortly) if we can write $f=f_{p}^{q}+f_{q}^{p}$ for some polynomials $f_{p},$ $f_{q}$ of degree $p$ and $q$ respectively
in $\mathbb{C}[x, y]$ . In this paper, we consider reduced $(2,3)$-torus curve. A sextic $C=\{f_{3}^{2}+f_{2}^{3}=0\}$

of type $(2,3)$ is called tame if its singularities are sitting only at the intersection of conic $C_{2}$

and cubic $C_{3}$ , where $C_{2}$ and $C_{3}$ are respectively defined by $f_{2}=0$ and $f_{3}=0$ .
In the first section, we assume that conic and cubic passing through the origin of the affine

chart $\mathbb{C}^{2}$ , and $(C, O)$ is an isolated singularity. We will classify all the local singularities at the
origin (in the sense of topological equivalence) by considering the geometrical relation of conic
and cubic. For that purpose the intersection number $\iota=\mathrm{I}(C_{2}, C_{3;}O)$ plays an important role.
The result is contained in Theorem 1.
In the second section, we study the possible configurations of singularities on tame torus
curves of type $(2,3)$ using the local result obtained in the first section. The main result is
Theorem 2.
In the third section we study the spaces with fixed configurations and the possible degenera-
tions among them. Actually these degenerations will be used in the investigation of topological
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problem, namely, the computation of the fundamental group of the complement $\mathrm{P}^{2}\backslash C$ , where
$C$ is a tame torus curve of type $(2,3)$ . The details will be given in [OP].

Finally in the last section, we give two new examples of weak Zariski pairs. In each pair,
both curves are torus curves of type $(2,3)$ .

We omit several proofs in this paper, the full version is given in [P].
Acknowledgement. The author expresses his deepest appreciation to Professor Mutsuo Oka

for generous help and inspiring guidance.

1. LOCAL CLASSIFICATION PROBLEM

1.1. Some classes of singularities. We use the following standard notations for “simple”
singularities, which have the normal form:

$\{$

$A_{n}$ : $x^{2}+y^{n+1}=0(n\geq 1)$

$D_{n}$ : $x^{2}y+y^{n-1}=0(n\geq 4)$

$E_{6}$ : $x^{3}+y^{4}=0,$ $E_{7}$ : $x^{3}+xy^{3}=0,$ $E_{8}$ : $x^{3}+y^{5}=0$

Furtherlnore we define notations of some other (topological equivalence classes of) singularities
which we use later.

(1.1) $\{$

$B_{p,q}$ : $x^{p}+y^{q}=0$ ( $\mathrm{B}\mathrm{r}\mathrm{i}\mathrm{e}\mathrm{s}\mathrm{k}\mathrm{o}\mathrm{r}\mathrm{n}- \mathrm{P}\mathrm{h}\mathrm{a}\ln$ type)
$C_{p,q}$ : $x^{p}+y^{q}+x^{2}y^{2}=0$

$D_{4,7}$ : $y^{4}+x^{3}y^{2}+x^{7}=0$

$Sp_{1}$ : $(y^{2}-x^{3})^{2}+(xy)^{3}=0$

$Sp_{2}$ : $(y^{2}-x^{3})^{2}-y^{6}=0$

Note the symmetry $B_{p,q}=B_{q,p},$ $C_{p,q}=C_{q,p}$ and the identities $B_{2,p}=A_{p-1},$ $B_{3,4}=E_{6}$ .
Suppose we have a germ $(C, O)$ of a plane curve. Recall three local invariants: $\mu(C, O)$ is
the Milnor llumber at $O,$ $\delta(C, O)$ is the $\delta$-invariant which is the maximal llulnber of nodes
in a generic deformation of $C$ , and $r(C, O)$ is the nunlber of the analytic branches. It is
well-known that $\delta=(\mu+r-1)/2$ (see [M]). The invariant triple $(\mu, r, \delta)$ will be used for the
later arguments.

Definition 1.1. Suppose that we have two germs of plane curve singularities $(C,p)$ and
$(C’,p’)$ . We say that $(C,p)$ and $(C’,p’)$ are topologically equivalent if there exists a local
homeomorphism $\phi$ of the respective ambient neighborhoods $U,$ $U’$ such that $\phi(p)=p’$ and
$\phi(C\cap U)=C’\cap U’$ . We denote this equivalence relation as $(C,p)\sim(C’,p’)$ . When $p=p’=O$ ,
let $f$ and $f’$ are defining polynomials of $C$ and $C’$ , then we also write $f\sim f’$ .

For a reduced plane curve germ $(C,p)$ , the topological equivalence type (or shortly topo-
logical type) of the germ $(C,p)$ is determined by the following discrete characteristics (for
instance [Z2, L\^el, $\mathrm{B}\mathrm{K}$] $)$ : the Puiseux pairs of its irreducible components and their linking
numbers. Alternatively, it is known that the embedded resolution graph of $(C,p)$ and the
multiplicities of the total transforms of $(C,p)$ at infinitely near points (including $p$) deterlnine
the topological type.

1.2. Setting. Hereafter, $(x, y)$ is the affine coordinates of $\mathbb{C}^{2}$ and $f_{2}(x, y),$ $f_{3}(x, y)$ are the
affine defining polynomial of $C_{2}$ and $C_{3}$ . The sextic $C$ is defined by $f_{2}(x, y)^{3}+f_{3}(x, y)^{2}=0$ .
We assulne that the origin $O$ is an intersection point of $C_{2}$ and $C_{3}$ and it is an isolated
singularity of $C$ . This implies, in particular, that the conic $C_{2}$ and the cubic $C_{3}$ have no
common component (such a line or the conic itself). We will classify the topological types of
the germ $(C, O)$ , using the geometry of the respective singularities of the conic $C_{2}$ and the
cubic $C_{3}$ and their lnutual position.
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1.3. Strategy of classification. We frequently use the fact that the topological type of a
non-degenerate germ depends only on its Newton boundary. See [$\mathrm{K}$ , O2] for more details.
In our classification, most of the cases can be transformed into non-degenerate forms after
several changes of coordinates, and then the Newton principal part (NPP for short) gives us
a normal form. However there are two special cases, namely $Sp_{1}$ and $Sp_{2}$ which can not be
transformed into non-degenerate form. For these cases, the topological type can be read off
from the explicit resolution of the respective singularity.

From now on, we use $(u, v)$ for local coordinates (i.e. in the sense that we use an analytic
change of coordinates), and $(x, y)$ for global coordinates (i.e. affine coordinates). To deter-
mine the local type of singularities, it is convenient to use suitable changes of local analytic
coordinates. However to see the existence of a sextic of $(2,3)$-torus type, it is usually better
to keep the affine coordinates.

We recall a following lemma [O3, lemma 4.3].

Lemma 1.2. Assume that $c_{f}=\{(u, v)\in \mathbb{C}^{2};f(u, v)=0\}$ a germ of a smooth curve at
the origin. Let $C_{g}=\{(u, v)\in \mathbb{C}^{2}; g(u, v)=0\}$ be another germ of a curve at the origin.
Let $d$ be the multiplicity of $g$ at the origin and let $g_{d}(u, v)$ be the homogeneous polynomial of
degree $d$ , which defines the tangent cone of $C_{g}$ . Let $p,$ $q$ be positive integers such that $p<dq$ .
Consider the germ of a plane curve $C=\{(u, v)\in \mathbb{C}^{2}; f(u, v)^{p}-g(u, v)^{q}=0\}$ . Assume that
each irreducible component of $g_{d}(u, v)=0$ intersects transversely with $c_{f}$ at the origin. Then
topological type of $(C, O)$ is $B_{p,dq}$ and the tangential direction at the $\mathrm{o}r\dot{\mathrm{v}}gin$ coincides with that
of $f=0$, where $B_{p,dq}$ is the Brieskom-Pham singularity introduced in (1.1).

For $(2, 3)$ -torus curve, we apply the above lemma with $(p, q)=(2,3)$ or $(p, q)=(3,2)$ and
obtain the following result:

Corollary 1.3. With the transverse iniersection condition as above, we have:
(i) If $(C_{3}, O)$ is smooth, then $(C, O)$ is of type $A_{3\iota-1}$ for $\iota=1,2,$

$\ldots,$

$6$ .
(ii) If $(C_{3}, O)$ is singular and $(C_{2}, O)$ is smooth, then $(C, O)$ is of type $B_{3,2\iota}$ , for $\iota=$

$2,3,$
$\ldots,$

$6$ .

1.4. Classification steps. We will divide the situation into 3 cases by the multiplicity $m_{3}$

of the cubic $C_{3}$ at the origin. The simplest case is the case when $(C_{3}, O)$ is smooth.
Case $\mathrm{A}:m_{3}=1$ . In the corollary 1.3 (i), we have to assume that the irreducible components
of the tangent cone of $C_{2}$ intersects transversely with $C_{3}$ . The claim is also true without this
condition.

Proposition 1.4. If $(C_{3}, O)$ is smooth, and it intersects the conic $C_{2}$ with multiplicity $\iota_{f}$ then
$(C, O)$ is of type $A_{3\iota-1}$ .

Proof. Up to an analytic change of coordinates, we may assume that $f_{3}=u$ and the conic has
the following form $f_{2}=cv^{\iota}+uh$, where $h\in \mathbb{C}\{u, v\},$ $c\in \mathbb{C}\{v\}$ and $c(\mathrm{O})\neq 0$ . Putting weights
$w(u)=3\iota$ and $w(v)=2$ , we can see $f=u^{2}+(cv^{\iota}+uh)^{3}=u^{3}+c(0)^{3}v^{3\iota}+\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{e}\mathrm{r}$ terms. This
implies $(C, O)\sim A_{3\iota-1}$ , for $\iota=1,$

$..,$
$6$ . $\square$

We recall here that the invariant triple $(\mu, r, \delta)$ is ( $k,$ ( $k$ mod $2)+1,$ $[k/2]$ ) for $A_{k}$ singularity,
where $[\alpha]$ is the greatest integer less than or equal to $\alpha$ .

Proposition 1.5. For any $1\leq\iota\leq 6$ there enists a smooth cubic $C_{3}$ and a conic $C_{2}$ , such
that the $(C, O)$ is of type $A_{3\iota-1}$ . Furthermore we have a degeneration family: $A_{2}arrow A_{5}arrow$

$A_{8}arrow A_{11}arrow A_{14}arrow A_{17}$

Proof. See in [P]. $\square$
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Remark 1.6. One can compute the Newton principal part by hand, but usually it is a boring
computation. We make a Maple package SCURVE1 , it can be used for compute invariants of
singular plane curves, such that intersection number, Milnor number, NPP, toric modification,
etc.

The case $m_{3}=1$ is done by Proposition 1.5.
Case $\mathrm{B}:m_{3}=2$ . We divide Case $\mathrm{B}$ into two subcases by $m_{2}$ .
(B-I) $(C_{2}, O)$ is smooth $(m_{2}=1)$ : there are 8 cases, indicated in the following figures, where
the dotted lines denote the cubic $C_{3}$ , and the straight lines are affine lines. We remark here
that $C_{2}$ may not irreducible globally, however in the cases I-4 and I-8 it must be irreducible
(because $C_{2}$ has a tangent line which is a component of $C_{3}$ ).
In the pictures I-3 and I-4, the fat dotted line denotes a line with multiplicity 2.

/ $\mathrm{C}2$

$–.\mathrm{I}- 9$

FIGURE 1. Case B-I $(m_{3}=2, m_{2}=1)$ .

$d=2,\mathrm{s}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{w}\mathrm{e}\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}(C,O)\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{f}B_{3,4}\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s},\iota=2\mathrm{I}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e},\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{s}\mathrm{I}- \mathrm{l},\mathrm{I}- 3,\mathrm{I}- 5,\mathrm{I}-.7\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{i}^{r}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}.\mathrm{s}$

of the lemma 1.2, and

The next case I-2 is the most interesting case in this classification, and we consider it at
the end of this part.
I-4. We assume $f_{2}=y-x^{2}$ and $f_{3}=y^{2}h$ , where $h$ is a linear term and $c:=h(\mathrm{O}, 0)\neq 0$ . We
have $\iota=4$ . Putting $y_{1}=y-x^{2}$ , in the new coordinates $(x, y_{1})$ , we have $\mathrm{N}\mathrm{P}\mathrm{P}(f)=y_{1}^{3}+c^{2}x^{8}$ .
Thus $(C, O)\sim B_{3,8}$ .
I-6. As $C_{2}$ is smooth at $O$ , we can take a local system of coordinates $(u, v)$ so that $f_{2}=v$ , and
$\mathrm{N}\mathrm{P}\mathrm{P}(f_{3})=\alpha v^{2}-\beta u^{3}$, where $\alpha,$ $\beta\neq 0$ . Putting weights $w(u)=1$ and $w(v)=2$ , we obtain
$\iota=3$ and $\mathrm{N}\mathrm{P}\mathrm{P}(f)=v^{3}+\beta^{2}u^{6}$ . We can easily see that this polynomial is non-degenerate for
any $\beta\neq 0$ . Thus $(C, O)\sim B_{3,6}$ . This computation applies also for the case of $C_{2}$ being two
lines.
I-8. The cubic $C_{3}$ consists of a line $\ell$ and a conic $C_{2}’$ . We may assume that $f_{2}=y-x^{2}$ and
$f_{3}=y(y+ax^{2}+bxy+cy^{2})$ , where $a$ or $b$ is non-zero. Putting $t_{1}=a+1,$ $t_{2}=b,$ $t_{3}=c$ ,
and substitute $y=x^{2}$ we get $f_{3}(x, x^{2})=t_{3}x^{6}+t_{2}x^{5}+t_{1}x^{4}$ . Hence $\iota$ is equal to 4, 5 or 6
(respectively $\mathrm{I}(C_{2}’,$ $C_{2;}O)=2,3$ or 4). By this setting we have:

Proposition 1.7. Under the above situation the $ge7m(C, O)$ can be of type $B_{3,2\iota}$ , for $\iota=$

$4,5,6$ . Furthermore there is a degeneration family: $B_{3,8}arrow B_{3,10}arrow B_{3,12}$ .

Proof. See in [P]. $\square$

1You can get SCURVE by a request $\mathrm{e}$-mail to the author or download from the web-page:

http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ .comp.metro-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\sim \mathrm{p}\mathrm{d}\mathrm{t}\mathrm{a}\mathrm{i}/\mathrm{s}\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{v}\mathrm{e}/$
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Now we come back to the case I-2.
We may assume the conic $C_{2}$ is defined by $f_{2}=b_{01}y+b_{20^{X^{2}}}+b_{11}xy+b_{02}y^{2}$ and the cubic

$C_{3}$ is defined by $f_{3}(x, y)=y(a_{11}x+a_{02}y)+a_{30}x^{3}+a_{21}x^{2}y+a_{12}xy^{2}+a_{03}y^{3}$ , where $b_{01}\neq 0$

and $a_{11}\neq 0$ . Because $C_{2}\cap\{y=0\}=C_{3}\cap\{y=0\}=\{O\}$ , therefore $\iota=\mathrm{v}\mathrm{a}1_{x=0}{\rm Res}_{y}(f)$ .
We have ${\rm Res}_{y}(f)=x^{3}\varphi(x)$ and

(1.2) $\varphi(0)=b_{01}(b_{01}a_{30}-a_{11}b_{20})(b_{02}a_{02}-a_{03}b_{01})$

Thus $\iota=3$ iff none of these factors is zero.
First we consider the case $\iota=3$ . Putting weights $w(x)=1,$ $w(y)=2$ , by computation

we have NPP$(f;(x, y))$ is a weighted holnogeneous polynomial of degree 6. So that $f(x, y)$ is
non-degenerate if and only if

$(27a_{30}b_{01}^{3}-27a_{11}b_{01}^{2}b_{20}-4a_{11}^{3})(a_{30}b_{01}-a_{11}b_{20})\neq 0$

Thus $f\sim B_{3,6}$ for a generic case. Note that the term $(a_{30}b_{01}-a_{11}b_{20})$ is non-zero by (1.2).
Thus to see further degeneration, we solve

$(27a_{30}b_{01}^{3}-27a_{11}b_{01}^{2}b_{20}-4a_{11}^{3})=0$

in $a_{30}$ and then $\mathrm{N}\mathrm{P}\mathrm{P}(f;(x, y))$ gets a multiply factor. Namely, $(9b_{01}^{3}y+9b_{01}^{2}b_{20}x^{2}+4a_{11}^{2}x^{2})^{2}$ .
Thus we need to take the new coordinates $(x, y_{1})$ with $y_{1}=y-(9b_{01}^{2}b_{20}+4a_{11}^{2})x^{2}/(9b_{01}^{3})$ . In
this case we get $C_{3,7}$ as long as the coefficient of $x^{7}$ is non-zero. In fact, this coefficient is
given by

$c(4a_{11}^{2}+9b_{20}b_{01}^{2})(9a_{02}b_{20}b_{01}^{2}-9a_{21}b_{01}^{3}+9a_{11}b_{11}b_{01}^{2}+4a_{02}a_{11}^{2})$

where $c$ is a non-zero constant.
Thus there are two exceptional cases:
$(\iota 3- 1)4a_{11}^{2}+9b_{20}b_{01}^{2}=0$ or
$(\iota 3- 2)9a_{02}b_{20}b_{01}^{2}-9a_{21}b_{01}^{3}+9a_{11}b_{11}b_{01}^{2}+4a_{02}a_{11}^{2}=0$ .
It turns out that the two cases give completely different geometries.
In the first case $(\iota 3- 1)$ , putting $b_{20}=-c_{20}^{2}$ , thus the equivalence condition is $a_{11}=$

$\pm 3b_{01^{C_{20}}}/2$ . Let assume $a_{11}=3b_{01}c_{20}/2$ , we get
$\mathrm{N}\mathrm{P}\mathrm{P}(f;(x, y_{1}))=c_{1}x^{5}y_{1}+c_{2}x^{2}y_{1}^{2}+c_{3}y_{1}^{3}$ with $c_{1},$ $c_{2},$ $c_{3}$ are non-zero constants. One can
check that this form is topological equivalent to $x^{8}+x^{2}y_{1}^{2}+y_{1}^{3}$ (see Case B-II-5 for a detail
explanation). Thus $(C, O)\sim C_{3,8}$ . We also obtain same result for the case $a_{11}=-3b_{01^{C}20}/2$ .
An important observation is that the $gene\mathit{7}\dot{\mathrm{V}}C$ member of this family is not irreducible but it is
a union of a line and a quintic.

Next we consider the case $(\iota 3- 2)$ , i.e. $a_{21}=(9b_{01}^{2}b_{20}a_{02}+9b_{01}^{2}a_{11}b_{11}+4a_{02}a_{11}^{2})/(9b_{01}^{3})$ . We
look at the Newton principal part of $f$ with respect to the coordinates $(x, y_{1})$ . It has two
faces, $AB$ and $BC$ where $A=(0,3),$ $B=(2,2)$ and $C=(8,0)$ . The face function with respect
to $AB$ is non-degenerate, while the discriminallt in $y_{1}$ of the face function with respect to $BC$

is
$d=cx^{10}(4a_{11}^{2}+9b_{01}^{2}b_{20})^{2}(-9b_{11}^{2}b_{01}^{2}-16a_{11}a_{12}b_{01}+16b_{02}a_{11}^{2}),$ $(c\neq 0)$

Since the factor $4a_{11}^{2}+9b_{01}^{2}b_{20}$ is already considered in the case $(\iota 3- 1)$ , so the generic case
take place if the last factor of $d$ , say $d_{2}$ , is non-zero. In that case we have $(C, O)\sim C_{3,8}$ .
In colnparison with the previous class of $C_{3,8}$ in case $(\iota 3- 1)$ a generic member of this class is
irreducible.
Finally if $d_{2}=0$ , it turlls out that $(C, O)\sim C_{3,9}$ . And it does not degenerate any further (as
long as $(C_{2}, O)$ is smooth and $(C_{3}, O)$ is $A_{1}$ ).

Summary: In the case $\iota=3$ there are 4 possibilities $B_{3},,$${}_{6}C_{3},,$${}_{7}C_{3,8}$ and $C_{3,9}$ . We remark
that in this case, the intersection lnultiplity is not enough to determine the topology.
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Next we consider the case $\iota\geq 4$ . By Bezout theorem, $C_{2}$ is necessarily a smooth conic.
Thus we can assume that $f_{2}(x, y)=y-x^{2}$ . We have $a_{30}=-a_{11}$ and

$\iota=\{$

4 iff $a_{02}+a_{21}\neq 0$

5 iff $a_{02}+a_{21}=0,$ $a_{12}\neq 0$

6 iff $a_{02}+a_{21}=a_{12}=0,$ $a_{03}\neq 0$

Let consider the case $\iota=4$ . We take the coordinate change $(x, y_{1})$ with $y_{1}=y-x^{2}$ . The
-Newton principal part is given by

NPP $(f;(x, y_{1}))=(a_{02}+a_{21})^{2}x^{8}+2a_{11}(a_{02}+a_{21})x^{5}y_{1}+a_{11}^{2}x^{2}y_{1}^{2}+y_{1}^{3}$

It is degenerate for the weight $P={}^{t}(1,3)$ , where $f_{P}=x^{2}(x^{3}a_{21}+x^{3}a_{02}+a_{11}y_{1})^{2}$ . $\mathrm{T}\mathrm{a}\mathrm{k}\mathrm{i}_{1\mathrm{l}}\mathrm{g}$

the coordinate change $(x, y_{2})$ with $y_{2}=x^{3}a_{21}+x^{3}a_{02}+a_{11}y_{1}$ . We have

NPP $(f;(x, y_{2}))=-(a_{02}+a_{21})^{3}x^{9}/a_{11}^{3}+x^{2}y_{2}^{2}+y_{2}^{3}/a_{11}^{3}$

Hence for generic $a_{ij’}s$ (i.e. $a_{02}+a_{21}\neq 0$ ) we have $(C, O)\sim C_{3,9}$ . Continuing by the same
method, we get $C_{3,12}$ and $C_{3,15}$ for $\iota=5$ and 6 respectively.

Proposition 1.8. There exists a cubic $C_{3}$ and a conic $C_{2}$ , such that the $(C, O)$ is of type
$B_{3,6},$ $C_{3,k}$ (for $k=7,8,9$) and $C_{3,3k}$ (for $k=3,4,5$). Furthermore there are the following
degeneration families:
(i) $B_{3,6}arrow C_{3,7}arrow C_{3,8}arrow C_{3_{2}9\mathrm{z}}$ with the same $\iota=3$ .
(ii) $B_{3,6}arrow C_{3,9}arrow C_{3,12}arrow C_{3,15}$ , with $\iota$ : $3arrow 4arrow 5arrow 6$ .

Proof. See in [P]. $\square$

Remark 1.9. (a) There are two moduli components for the singularity classes $C_{3,8}$ with
$\iota=3$ . The generic curve in the component corresponding to the case $(\iota 3- 1)$ decomposes into
a line and a quintic, later we will use the notation $C_{3,8}^{\#}$ for the singularity in this moduli.
(b) There are two components for the moduli space of the class $C_{3,9}$ , with different intersection
numbers. Later we will distinguish by the new notation $C_{3,9}^{\mathfrak{h}}$ for the case $\iota=4$ .
(c) There are more degenerations for the singularities if we admit $\iota$ to increase or if we
admit the degenerations for the singularities of $C_{2}$ and $C_{3}$ . For example, we can degenerate
$C_{3,7}arrow B_{3,8}arrow B_{3,10}arrow B_{3,12},$ $C_{3,8}arrow B_{3,10}$ and $C_{3,9}arrow B_{3,12}$ by increasing the intersection
number $\iota$ . $B_{3,8}$ degenerates also into $B_{4,6}$ . For the explicit construction, see \S 3.

$(\mathrm{B}-|\mathrm{I}\mathrm{I})(C_{2}, O)$ is singular $(m_{2}=2)$ . There are 9 cases, indicated in Figure 2, where the
straight lines are again affine lines.
Attention. In the cases II-1,5,8,9 though in the pictures of $C_{2}$ are 2 distinct lines, but 2 lines
lnay also coincide.
II-1. Up to an analytic change of coordinates we may assume $f_{3}=uv$ , and $f_{2}=(a_{1}u+b_{1}v+$

$h_{1})(a_{2}u+b_{2}v+h_{2})$ , where $a_{i},$
$b_{i}$ are non-zero constants, and $h_{i}\in \mathfrak{m}^{2}$ for $i=1,2$ . Here $\mathfrak{m}$

is the maximal ideal in $\mathbb{C}\{u, v\}$ . We have $\iota=4$ . Putting weights $w(u)=w(v)=1$ , we get
$f\sim u^{6}+v^{6}+u^{2}v^{2}$ . Thus $(C, O)\sim C_{6,6}$ .
II-2. Since conic consists of 2 distinct lines, say $\ell_{1}$ and $\ell_{2}$ , where $\ell_{1}$ intersects $C_{3}$ transversely
and $p_{2}$ is a tangent cone direction of $C_{3}$ , hence $\mathrm{I}(\ell_{1}, C_{3;}O)=2$ and $\mathrm{I}(\ell_{2}, C_{3;}O)=3$ . Therefore
we may assume $f_{3}=uv$ , and $f_{2}=(a_{1}u+b_{1}v+h_{1})(a_{2}u^{2}+b_{2}v+h_{Q})$ so that $\iota=5$ . And we
obtain $(C, O)\sim C_{6,9}$ .
II-3,4. In these case, the illtersection number $\iota=6$ . By the same way, we get respectively
$C_{9},,$${}_{9}C_{6,12}$ .
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FIGURE 2. Case B-II $(m_{3}=m_{2}=2)$ .

Proposition 1.10. Under the situations II-I\sim II-4, the type of $(C, O)$ can be $C_{6,6},$ $C_{6,9},$ $C_{9,9}$

and $C_{6,12}$ . Furthermore there are the following degeneration families:
$C_{6,6}arrow C_{6,9}arrow C_{9,9}$ $C_{6,9}arrow C_{6,12}$

Proof. See in [P]. $\square$

In the next three cases II-5\sim II-7, the cubic $C_{3}$ has a cusp, and by a lirear change of coordinates
we may assume that $\mathrm{N}\mathrm{P}\mathrm{P}(f_{3})=y^{2}-x^{3}$ , i.e. $f_{3}=y^{2}-x^{3}+h$ where $h$ is the higher term,
and $f_{2}=(a_{1}x+b_{1}y)(a_{2}x+b_{2y})$ .
II-5. This case $a_{1},$ $a_{2}\neq 0$ , the intersection number $\iota=4$ , we may assume $a_{1}=1$ . We have
$\mathrm{N}\mathrm{P}\mathrm{P}(f)=(1+a_{2}^{3})x^{6}-2x^{3}y^{2}+y^{4}$ , and its discriminant in $x\mathrm{i}\mathrm{s}-46656(1+a_{2}^{3})^{2}a_{2}^{9}y^{20}$ . Hence
if $1+a_{2}^{3}\neq 0$ , we have $(C, O)\sim B_{4,6}$ .
If $1+a_{2}^{3}=0$ , then NPP $(f)=3a_{1}^{2}(a_{1}b_{2}+b_{1})x^{5}y-2x^{3}y^{2}+y^{4}$ , the isolated singularity condition
requires the term $3a_{1}^{2}(a_{1}b_{2}+b_{1})x^{5}y$ does not vanish. Thus $f\sim x^{5}y+x^{3}y^{2}+y^{4}$ . So we get
$(C, O)\sim D_{4,7}$ (because $x^{5}y+x^{3}y^{2}+y^{4}\sim x^{7}+x^{3}y^{2}+y^{4}$).

We relnark that the intersection multiplity is not enough to determine the topology of
$(C, O)$ like in Case B-I-2.
II-6. One branch of the conic is tangent to $(C_{3}, O)$ , we may assume that

$f_{2}(x, y)=axy$ , $f_{3}(x, y)=y^{2}-x^{3}+b_{1}yx^{2}+b_{2^{X}}y^{2}+b_{3y^{3}}$

In this case $\iota=5$ . This is a degenerate singularity, since $\mathrm{N}\mathrm{P}\mathrm{P}(f)=(y^{2}-x^{3})^{2}$ . Taking a
canonical toric modification $\pi_{1}$ : $X_{1}arrow \mathbb{C}^{2}$ , we find that $\pi_{1}^{*}f=0$ has again a $(2,3)$-cusp and
it has a simultaneous resolution by one more toric modification for any $b_{i}\in \mathbb{C},$ $i=1,2,3$ .
The tower of the weight vectors in the sense of [AO] is given by $\{^{t}(2,3),{}^{t}(2,3)\}$ . Thus the
topology of $(C, O)$ does not depend on the parameters $a\neq 0$ and $b_{1},$ $b_{2},$ $b_{3}$ . Moreover $(C, O)$

is locally irreducible and its Puiseux pairs is $P(C, O)=\{(2,3), (2,9)\}$ by [O1]. By taking
$a=1,$ $b_{1}=b_{2}=b_{3}=0$ , we get $f=(y^{2}-x^{3})^{2}+(xy)^{3}$ . Thus $(C, O)\sim Sp_{1}$ . The resolution
diagram of $Sp_{1}$ is given in Figure 3. The Milnor number is 18 by [A2] or [AO].
II-7. The conic is a double line and it coincides with the tangent direction of $(C_{3}, O)$ . We
assume that $f_{2}(x, y)=-a^{2}y^{2},$ $a\neq 0$ and $f_{3}(x, y)$ is as above. The intersection number
$\iota=6$ . By the same method as $Sp_{1}$ case, we obtain this singularity is equivalent to $Sp_{2}$ and
the resolution graph is given in Figure 4. We see that $Sp_{2}$ has 2 irreducible components
$f_{3}\pm a^{3}y^{3}=0$ , they have same Puiseux pair $\{(2,3)\}$ and their linking number is 9. Thus
$\mu(Sp_{2})=21$ and $\delta(Sp_{2})=11$ .
Proposition 1.11. There are following degeneration families:

(i) $B_{4,6}arrow D_{4,7}$ in Case II-5.
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FIGURE 3. Resolution graph of $Sp_{1}$ .

FIGURE 4. Resolution graph of $Sp_{2}$ .

(ii) $B_{4,6}arrow Sp_{1}arrow Sp_{2}$ corresponding to $\mathrm{I}\mathrm{I}- 5arrow \mathrm{I}\mathrm{I}- 6arrow \mathrm{I}\mathrm{I}- 7$.

Proof. The proof is obvious ffom the explanations in Cases II-5,6,7. $\square$

II-8. Assuming $f_{3}=y(y-x^{2})$ and $f_{2}=a(x+by)(x+cy)$ , where $a$ is non-zero. We have
$\mathrm{N}\mathrm{P}\mathrm{P}(f)=y^{4}+a^{3}x^{6}$ . Thus $(C, O)\sim B_{4,6}$ .
II-9. Assuming $f_{3}=x^{2}(ax+by+k)$ and $f_{2}=(cx+y)(dx+y)$ , where $k$ is non-zero. We have
$\mathrm{N}\mathrm{P}\mathrm{P}(f)=y^{6}+k^{2}x^{4}$ . Thus $(C, O)\sim B_{4,6}$ .

Finally we consider singular cubic with multiplicity 3 $(m_{3}=3)$ .
Case $\mathrm{C}:m_{3}=3$ . Similarly, we also divide 2 cases by the multiplicity of the conic.
(C-I) Conic $C_{2}$ is smooth at $O$ . Obviously we have $\iota\geq 3$ .
C-I-1. $\iota=3$ , applying the corollary 1.3, we get $(C, O)\sim B_{3,6}$ .

Now we consider the case $\iota\geq 4$ . Then $C_{2}$ is irreducible, as $(C_{2}, O)$ is assumed to be smooth.
Therefore we may assume that $f_{2}=y-x^{2}$ and $f_{3}=(a_{1}x+b_{1}y)(a_{2}x+b_{2}y)(a_{3}x+b_{3y})$ . We
have $\iota$ is equal to the lowest degree in $x$ of $f_{3}(x, x^{2})=x^{3}(a_{1}+b_{1^{X}})(a_{2}+b_{2^{X}})(a_{3}+b_{3^{X}})$ .
C-I-2. $\iota=4$ , by symmetry of $a_{i}’s$ we may assume $a_{1}=0$ and $a_{2},$ $a_{3}$ are none-zero. Putting
$y_{1}=y-x^{2}$ , then $f(x, y_{1})=y_{1}^{3}+b_{1}^{2}a_{2}^{2}a_{3}^{2}x^{8}+\mathrm{h}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{e}\mathrm{r}$ terms $\sim y_{1}^{3}+b_{1}^{2}a_{2}^{2}a_{3}^{2}x^{8}$ . Since $a_{1}=0$ then
$b_{1}$ must be non-zero. Thus $(C, O)\sim B_{3,8}$ .

Similarly, we obtain
C-I-3. $\iota=5$ if $a_{1}=a_{2}=0$ and $a_{3}\neq 0$ : result is $(C, O)\sim B_{3,10}$ .
C-I-4. $\iota=6$ if $a_{1}=a_{2}=a_{3}=0$ : result is $(C, O)\sim B_{3,12}$ .
(C-II) Conic $C_{2}$ is singular. We have $\iota=6$ . Since both conic and cubic are products of linear
terms, then $f$ is a homogeneous polynomial of degree 6. Since $O$ is an isolated singularity,
then $f$ should be non-degenerate and it is a product of linear terms. Thus $(C, O)\sim B_{6,6}$ .

1.5. Statement of the result on the local classification. Now we can state the result in
the local classification:

Theorem 1 (Local Classification). Let $C=\{f=f_{2}^{3}+f_{3}^{2}=0\}$ is a tame $(2,3)$-torus curve.
Put $C_{i}=\{f_{i}=0\}$ for $i=2,3$. The topological type of the germ $(C, O)$ can be read off from
$C_{2}$ and $C_{3}$ as follows:

1. Cubic $(C_{3}, O)$ is smooth: $A_{3\iota-1}(\iota=1, \ldots, 6)$ .
2. Cubic is not smooth at $O$ (i.e., $m_{3}\geq 2$).
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(a) Conic $(C_{2}, O)$ is smooth.
(i) $(C_{3}, O)$ is $A_{1}$ and $\iota=2:E_{6}=B_{3,4}$ .
(ii) $(C_{3}, O)$ is $A_{1}$ and $(C_{2}, O)$ is tangent to one of the branch:

$B_{3},,$${}_{6}C_{3,7},$ $C_{3,8},$ $C_{3,9}$ for $\iota=3$ , and
$C_{3,3\iota-3}$ for $\iota=4,5,6$ .

(iii) $(C_{3}, O)$ is not $A_{1}$ : $B_{3,2\iota},$ $\iota=2,$
$\ldots,$

$6$ .
(b) Conic $(C_{2}, O)$ is $A_{1}$ :

(i) $(C_{3}, O)$ is $A_{1}$ :
$C_{6,6}$ for $\iota=4$ , no common tangential cone,
$C_{6,9}$ for $\iota=5$ , one common tangential cone,
$C_{9,9}$ for $\iota=6$ , two common tangential cones.

(ii) $(C_{3}, O)$ is either $A_{2}$ or $A_{3}$ :
$B_{4,6}$ or $D_{4,7}$ , for $\iota=4$ , no common tangential cone,
$Sp_{1}$ if $\iota=5$ and $(C_{3}, O)=A_{2}$ and the tangential cones coincide.

(c) $C_{2}$ is a line with multiplicity 2:
(i) $(C_{3}, O)$ is a $A_{1}$ :

$B_{4,6}$ for $\iota=4$ , no common tangential cone,
$C_{6,12}$ if $\iota=6$ , a colnmon tangential cone.

(ii) $(C_{3}, O)$ is either $A_{2}$ or $A_{3}$ :
$B_{4,6},$ $D_{4,7}$ for $\iota=4$ , no common tangential cone,
$Sp_{2}$ for $\iota=6,$ $(C_{3}, O)$ is $A_{2}$ , the same tangential cone.

(d) Cubic $C_{3}$ consists of three lines passing through $O$ , and $C_{2}$ consists of two lines
passing through $O:B_{6,6}(\iota=6)$ .

Remark 1.12. When $(C_{3}, O)$ is a node (i.e., $A_{1}$ ), $C_{3}$ can be reduced (either a line and a
conic meeting transversely at $O$ or three lines where two of them are passing through $O$).
$(C_{3}, O)$ is $A_{3}$ if and only if $C_{3}$ consists of a line and a conic which are tangent at O. $(C_{2}, O)$

has a node if it consists of two lines.

Theorem 1-D (Local Degenerations). Under the notation in Theorem 1, we have following
degellerations:

1. $(C_{3}, O)$ is smooth: $A_{2}arrow A_{5}arrow A_{8}arrow A_{11}arrow A_{14}arrow A_{18}$

2. $(C_{3}, O)$ is $A_{1}$ and $(C_{2}, O)$ is slnooth:
(a) $B_{3,4}arrow B_{3,6}arrow C_{3,7}arrow C_{3,8}arrow C_{3,9}$

(b) $B_{3,4}arrow B_{3,6}arrow C_{3,9}^{\#}arrow C_{3,12}arrow C_{3,15}$

3. $(C_{3}, O)$ is $A_{2}$ or $A_{3},$ $(C_{2}, O)$ is smooth: $B_{3,4}arrow B_{3,8}arrow B_{3,10}arrow B_{3,12}$

4. $(C_{3}, O)$ is $A_{1},$ $(C_{2}, O)$ is $A_{1}$ : $B_{4,6}arrow D_{4,7},$ $B_{4,6}arrow Sp_{1}arrow Sp_{2}$ .
5. $(C_{3}, O)$ is $A_{2}$ or $A_{3},$ $(C_{2}, O)$ is $A_{1}$ : $C_{6,6}arrow C_{6,9}arrow C_{9,9},$ $C_{6,9}arrow C_{6,12}$ .

The $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{i}_{1\mathrm{l}}\mathrm{g}$ is well known.

Proposition 1.13. Let $C$ be a reduced curve of degree $d$ in $\mathrm{P}^{2}$ defined by $F(X, Y, Z)$ . Then
there is a family $C_{t}$ for $0\leq t\leq 1$ of curves of degree $d$ such that $C_{t}\cong C$ for $t\neq 0$ and
$C_{0}\cong B_{d,d}$ where $B_{d,d}$ is the class of $d$ lines meeting at $O$ .

Proof. We follow the method in [OS]. We may assume that the line at infinity $Z=0$
meets $C$ transversely. Take $F(X, Y, Z, t):=F(X/t, Y/t, Z)t^{d}$ and define the family

$C_{t}\square =$

$\{F(X, Y, Z, t)=0\}$ .

Remark 1.14. For the sake of the global study of sextics, we distinguish $C_{3,8}$ and $C_{3,8}^{\#}$ , and
also $C_{3,9}$ alld $C_{3,9}^{\mathfrak{h}}$ though they are locally topologically equivalent.
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Table $\mathrm{A}$ : Local classification

Table $\mathrm{A}’$ : The local degeneration series

$\iota$
$m_{3}=1$

1

2

3

4

5

6
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2. GLOBAL CLASSIFICATION

In this section, we consider the possible combination of the local singularities of reduced
tame $(2,3)$-torus curves, using the local classification obtained in Section 1.

Assume that $C$ is an irreducible curve of degree $d$ and denote the set of singularities of $C$

by $\Sigma(C)$ . We recall the genus formula

(2.1) $g= \frac{(d-1)(d-2)}{2}-\sum_{P\in\Sigma(C)}\delta(C, P)\geq 0$ or
(2.2) $\chi(C’)=3d-d^{2}+\sum_{P\in\Sigma(C)}\mu’(C, P)\leq 2$

where $C’$ is the normalization of $C,$ $\chi(C’)$ is the topological Euler characteristic, $\mu’(C, P)$ $:=$

$\mu(C, P)+r(C, P)-1$ and $r(C, P)$ is the number of analytic branches at $P$ (see [BK]). We call
$\mu’(C, P)$ the normalized Milnor defect of $C$ at $P$ . When $C$ is a tame $(2,3)$-torus curve, then
its singularities set $\Sigma(C)$ is given by $C_{2}\cap C_{3}=:\{P_{1}, P_{2}, \ldots, P_{n}\}$ . Therefore (2.1) is equivalent
to the following

(2.3) $\sum_{i=1}^{n}\delta(C, P_{i})\leq(6-1)(6-2)/2=10$ .

Denote $i_{k}:=\mathrm{I}(f_{2}, f_{3;}P_{k})$ , we call $(i_{1}, \ldots, i_{n})$ is an $i$-vector and $n$ the length of $\mathrm{i}$-vector. By
Bezout theorem, we have

(2.4) $\sum_{i=1}^{n}i_{k}=6$ .

When $C$ is reducible curve with $r(C)$ irreducible components, the inequality (2.1) does not
hold and (2.2) has to be replaced by the following.

(2.5)
$\chi(C’)=3d-d^{2}+\sum_{P\in\Sigma(C)}\mu’(C, P)\leq 2r(C)$

Our strategy for the global classification is the following steps:
Step 1. Consider every possible $\mathrm{i}$-vector, which satisfies (2.4).
Step 2. List up every possible combination of the local singularities having prescribed i-vector.
Step 3. Prove or disprove the existence of a reduced tame $(2,3)$ -torus curve with the configu-
rations. In this stage, if the inequality (2.2) is not satisfied, we have to look for the reduced
curves with the given configuration.

For the later discussion, we recall

Lemma 2.1. The possible topological types of a singularity on an irreducible quartic curve
are $A_{1},$

$\ldots,$
$A_{6},$ $D_{4},$ $D_{5}$ and $E_{6}$ .

Proof. See for instance in [W] $\square$

From the above strategy we can enumerate singularities as follows:

Theorem 2 (Global Classification). The configuration of singularities of a tame torus curves
$C$ of type $(2, 3)$ is given by Table $\mathrm{B}$ , where the notation $\{\Sigma(C)\}^{\star}$ is for the cases of reducible
$C$ .
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Table $\mathrm{B}$ : Global classification

Proof. We will prove the assertion by three steps (corresponds to 3 steps in the strategy) as
follows.
Step $1+\mathrm{S}\mathrm{t}\mathrm{e}\mathrm{p}2$ : The $\mathrm{i}$-vector of length 6 (1, 1, 1, 1, 1, 1) is obviously given under the generic
situation where $C_{2}$ and $C_{3}$ intersect transversely.

The $\mathrm{i}$-vector with $n=5$ is given by (1, 1, 1, 1, 2) and the possible configurations are
$\{A_{5},4A_{2}\}$ and $\{E_{6},4A_{2}\}$ .

The $\mathrm{i}$-vectors with $n=4$ is either (1, 1, 1, 3) or (1, 1, 2, 2). The possible configurations are
(1, 1, 1, 3): $\{3A_{2}, \sigma\}$ , where $\sigma=A_{8},$ $B_{3},,$${}_{6}C_{3},,$${}_{7}C_{3},,$${}_{8}C_{3}^{\#},’ {}_{8}C_{3,9}$

(1, 1, 2, 2): $\{2A_{2},2A_{5}\},$ $\{2A_{2}, A_{5}, E_{6}\},$ $\{2A_{2},2E_{6}\}$

The $\mathrm{i}$-vectors with $n=3$ are (1,1,4), (1,2,3), (2,2,2) and the possible configurations are
(1, 1, 4): $\{2A_{2}, \sigma\}$ , where $\sigma=A_{11},$ $C_{3,9}^{\mathfrak{h}},$ $B_{3},,$${}_{8}C_{6,6},$ $B_{4,6},$ $D_{4,7}$

(1, 2, 3): $\{A_{2}, A_{5}, \sigma\},$ $\{A_{2}, E_{6}, \sigma\}$ , where $\sigma=A_{8},$ $B_{3},,$${}_{6}C_{3},,$${}_{7}C_{3},,$${}_{8}C_{3}^{\#},’ {}_{8}C_{3,9}$

(2, 2, 2): $\{3A_{5}\},$ $\{3E_{6}\},$ $\{2A_{5}, E_{6}\},$ $\{A_{5},2E_{6}\}$
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The $\mathrm{i}$-vectors with $n=2$ are $(1,5),(2,4),(3,3)$ and the possible configurations are
$(1, 5)$ : $\{A_{2}, \sigma\}$ , where $\sigma=A_{14},$ $C_{3,12},$ $B_{3,10},$ $C_{6,9},$ $Sp_{1}$

$(2, 4)$ : $\{\tau, \sigma\}$ where $\tau=A_{5},$ $E_{6}$ $\sigma=A_{11},$ $C_{3,9}^{\#},$ $B_{3},,$${}_{8}C_{6,6},$ $B_{4,6},$ $D_{4,7}$

$(3, 3)$ : $\{\tau, \xi\}$ where $\tau,$ $\xi=A_{8},$ $B_{3},,$${}_{6}C_{3},,$${}_{7}C_{3},,$${}_{8}C_{3}^{\#},’ {}_{8}C_{3,9}$

For the case $n=1$ , we have the following obvious possibility.
(6) : $\{A_{17}\}.’\{C_{3,15}\},$ $\{C_{9,9}\},$ $\{B_{3,12}\},$ $\{C_{6,12}\},$ $\{Sp_{2}\},$ $\{B_{6,6}\}$

Step 3. Existence and Non-existence.
$n=6$ : The configuration $\{6A_{2}\}$ is given by generic conic and cubic which intersect transversely
and this case was first studied by Zariski, [Z1].
$\underline{n=5.}$ The configuration $\{4A_{2}, \sigma\},$ $\sigma=A_{5}$ or $E_{6}$ is given by the generic member of the moduli
of the singularity $A_{5}$ or $E_{6}$ discussed in \S 1.
$n=4$ : Any configurations $\{3A_{2}, \sigma\}$ where $\sigma=A_{8},$ $B_{3},,$${}_{6}C_{3},,$${}_{7}C_{3},,$${}_{8}C_{3,9}$ are obtained by a
generic curve in the moduli of singularity $\sigma$ at the origin. This holds also for $\{3A_{2}, C_{3,8}^{\#}\}^{\star}$ ,
but we notice that a generic member of this class consists of a line and a quintic, though it
satisfies the inequality (2.2).

The configuration $\{2A_{2},2A_{5}\}$ is given by a smooth conic $C_{2}$ and a smooth cubic $C_{3}$ which
are tangent at two points and have two other transverse intersections. The configurations
$\{2A_{2}, A_{5}, E_{6}\}$ and $\{2A_{2},2E_{6}\}$ are obtained by the similar device. The existence of these
configuratiolls also shown by explicit equations, in Proposition 3.1 of Section 3.
$\underline{n=3.}$ For (1,1,4), the existence of the configurations $\{2A_{2}, \sigma\}$ where $\sigma=A_{11},$ $C_{3,9}^{\#},$ $B_{3},,$${}_{8}C_{6,6}$ ,
$B_{4,6}$ is proved as the above. Similarly the configuration $\{2A_{2}, D_{4,7}\}^{\star}$ exists and an example is
given by $f_{2}=(x+y)(-x+2y),$ $f_{3}=y^{2}-x^{3}$ . In this case $C$ has two irreducible colnponents,
a line $\Gamma_{1}$ and a quintic F5. Note that $\Gamma_{1}\cap\Gamma_{5}=\{O\},$ $\Gamma_{5}$ has a singularity $E_{7}$ at $O$ and 2 $A_{2}$

singularities.
Now we consider the configuration with $\mathrm{i}$-vector (2,2,2).
The configuration $\{3A_{5}\}$ is given for instance by $f_{2}=(x-1)^{2}+y^{2}-1$ and $f_{3}=x(y^{2}-1)$ .

Note that $C_{2}\cap C_{3}$ consists of three simple tangent points. The configuration $\{3E_{6}\}$ is given
by $f_{2}=(x-1)^{2}+y^{2}-1$ and $f_{3}=(x-1)(x^{2}-y^{2})$ . This case was studied by Oka [O4]. The
existence of the configurations $\{2A_{2}, E_{6}\},$ $\{A_{5},2E_{6}\}$ is shown in Proposition 3.1.

Now we consider the configurations with $\mathrm{i}$-vector (1,2,3). Examples of the configurati’ons
$\{A_{2}, A_{5}, \sigma\}$ and $\{A_{2}, E_{6}, \sigma\}$ with $\sigma=A_{8},$ $B_{3},,$${}_{6}C_{3,7}$ are given in Proposition 3.1.

The configuration $\{A_{2}, A_{5}, C_{3,8}\}^{\star}$ exists and an example is given by $f_{2}=y-x^{2},$ $f_{3}=$

$(-23x^{3}-15yx^{2}+27xy-16y^{3}+27y^{2})/27$ . In this case, $C$ has two irreducible components,
a conic $\Gamma_{2}$ which is defined by $5x^{2}-16xy-16y^{2}-9y=0$ and a quartic $\Gamma_{4}$ which defined
by $40x^{4}-10yx^{3}-117yx^{2}+51y^{2}x^{2}+18y^{2}x-16xy^{3}+81y^{2}+16y^{4}-63y^{3}=0$. Note that
$\Gamma_{2}\cap\Gamma_{4}=\{O, A\}$ where $(C, O)$ is $C_{3,8},$ $(C, A)$ is $A_{5}$ and $\Gamma_{4}$ has two singularities, $A_{3}$ at $O$ and
$A_{2}$ at $B=(1,1)$ .

The configuration $\{A_{2}, A_{5}, C_{3,8}^{\#}\}^{\star}$ exists, by taking $f_{2}=y-x^{2},$ $f_{3}=2y^{3}+(3/2)yx-$

$(7/2)xy^{2}+yx^{2}-x^{3}$ . In this case, $C$ is also has two irreducible components: they are a line
$\Gamma_{1}=\{y=0\}$ and a quintic $\Gamma_{5}$ . The line $\Gamma_{1}$ is a tangent direction $\dot{\mathrm{o}}\mathrm{f}\Gamma_{5}$ with multiplicity 5 at
$O$ , and they have no other intersection point except $O$ . Moreover, $\Gamma_{5}$ has 3 singularities, an
$A_{3}$ at $O$ , an $A_{5}$ at $(1, 1)$ and an $A_{2}$ at $(-1/4,1/16)$ .

The configuration $\{A_{2}, E_{6}, C_{3,8}^{\#}\}^{\star}$ exists, by taking $f_{2}=y^{2}+y(x-1/4)-x^{2},$ $f_{3}=$

$y(-(3/8)x+(9/16)y)-x^{3}+(19/8)x^{2}y-(63/32)y^{3}’$ . Again $C$ is a union of a line and a
quintic.
$\underline{n=2.}$ The configurations with respect to $\mathrm{i}$-vector $(1,5)$

$\acute{\mathrm{d}}\mathrm{o}$ exist by simil.ar reason as the cases
(1,1,4), (1,1,1,3) or (1,1,1,1,2).
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Now we consider the configuration with $\mathrm{i}$-vector $(2,4)$ . Examples of the configurations
$\{A_{5}, \sigma\}$ and $\{E_{6}, \sigma\}$ with $\sigma=A_{11},$ $C_{3,9}^{\mathfrak{h}},$ $B_{3,8}$ are given in Proposition 3.1.

There are 3 more configurations for $\mathrm{i}$-vector is $(2,4)$ , in these cases the conic is a line with
multiplicity 2. Hence at least $f$ has two factors. Explicit examples are given as follows.

$\{A_{5}, B_{4,6}\}^{\star}:f_{2}(x, y)=x^{2}$ and $f_{3}(x, y)=y^{2}-x^{3}$ . $C$ has two cubic components, defined by
$y^{2}-(1\pm\sqrt{-1})x^{3}=0$ . The singularities of $C$ are a $B_{4,6}$ at $O$ and an $A_{5}$ at $(0,1)$ .

$\{A_{5}, D_{4,7}\}^{\star}:f_{2}=-(x-y)^{2}$ and $f_{3}=y^{2}-x^{3}$ . In this case, $C$ has 3 irreducible components,
a line $\Gamma_{1}$ , a conic $\Gamma_{2}$ and a cuspidal cubic F3. The singularities of $C$ are a $D_{4,7}$ at $O$ and an
$A_{5}$ at $(1, 1)$ . $\Gamma_{2}$ intersects F3 at $O$ and $(1, 1)$ with respective intersection multiplicity 3 and 1,
while $\Gamma_{1}$ is tangent to both $\Gamma_{2}$ and $\Gamma_{3}$ at $O$ .

$\{A_{5}, C_{6,6}\}^{\star}$ : $f_{2}=-x^{2}$ and $f_{3}=(y-1)(x^{2}-y^{2})$ . In this case, $C$ has 2 irreducible
components, both of them are nodal cubics. The singularities of $C$ are a $C_{6,6}$ at $O$ and an $A_{5}$

at $(0,1)$ .
$\mathrm{i}$-vector is $(3,3)$ : Examples of the configurations $\{2A_{8}\},$ $\{A_{8}, B_{3,6}\}$ and $\{A_{8}, C_{3,7}\}$ are given

in Proposition 3.1.
An example of $\{A_{8}, C_{3,8}^{\#}\}^{\star}$ is given by $f_{2}=y-x^{2},$ $f_{3}=-x^{3}+x^{2}y+(9y+16y^{2})x/6+$

$y^{2}+32y^{3}/27$ . In this case, $C$ is a union of a line $\Gamma_{1}$ and a quintic $\Gamma_{5}$ , where $\Gamma_{1}$ is a tangent
direction of $\Gamma_{5}$ at $\mathit{0}$ , and $\Sigma(\Gamma_{5})=\{A_{8}, A_{3}\}$ . The singularities of $C$ are a $C_{3,8}^{\#}$ at $O$ and an $A_{8}$

at $(1,1)$ .
An example of $\{2B_{3,6}\}^{\star}$ is given by $f_{3}=x(x-2)y,$ $f_{2}=y^{2}+x^{2}-2x$ . In this case, $C$ is

a union of three smooth conics $\Gamma_{2}^{(i)}$ , and they
,

$\mathrm{i}_{1}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}$ each other other at two points $O$ and
$A=(2,0)$ with multiplicity 2.
$\underline{n=1.\cdot}$ The existence in these cases is obvious from the local classification. The explicit equa-
tions for irreducible curves are given in Proposition 3.1. Explicit examples for the reducible
cases are given as following.

$\{B_{3,12}\}^{\star}$ : Let $f_{2}=y-x^{2},$ $f_{3}=y^{3}$ . In this case, $C$ consists of three smooth conics $\Gamma_{2}^{(i)}$ ,
which are tangent to each other at $O$ with multiplicity 4.

$\{C_{6,12}\}^{\star}$ : Let $f_{2}=-y^{2},$ $f_{3}=x(y-x^{2})$ . In this case, $f=(x^{3}-xy-y^{3})(x^{3}-xy+y^{3})$ , thus
$C$ is a union of two nodal cubics.

$\{Sp_{2}\}^{\star}$ : Let $f_{2}=-y^{2},$ $f_{3}=y^{2}-x^{3}$ . In this case, $f=(x^{3}-y^{2}-y^{3})(x^{3}-y^{2}+y^{3})$ , thus $C$

is a union of two cuspidal cubics.
$\{B_{6,6}\}^{\star}$ : Let $f_{2}=y^{2},$ $f_{3}=x^{3}$ . Thus $C$ consists of 6 concurrent lines.
To complete the proof of Theorem 2, it suffices to show the non-existence of the relnaining

configurations. $\square$

Lemma 2.2. There are no tame $(\mathit{2},\mathit{3})$-torus curves having a configuration of singularities in
the following list.

(1) $\{A_{2}, E_{6}, C_{3,8}\}^{\star},$ $\{A_{2}, E_{6}, C_{3,9}\}^{\star}$ and $\{A_{2}, A_{5}, C_{3,9}\}^{\star}$ ,
(2) $\{C_{3},, {}_{k}C_{3,l}\}^{\star}$ for any $6\leq k,$ $l\leq 9,$ $(k, l)\neq(6,6)$ . Here we use the notation $C_{3,6}$ for $B_{3,6}$

for notation’s consistency, and $C_{3,8}^{\#}$ is also included in these pairs.
(3) $\{E_{6}, \sigma\}^{\star}$ where $\sigma=C_{6,6},$ $B_{4,6},$ $D_{4,7}$ .
(4) $\{A_{8}, C_{3,8}\}^{\star},$ $\{A_{8}, C_{3,9}\}^{\star}$ .

Proof. (1) For a singular point $P\in C$ , recall that $\mu’(P):=\mu(P)+r(C, P)-1$ . We first
consider the case $\{A_{2}, E_{6}, C_{3,8}\}^{\star},$ $\{A_{2}, E_{6}, C_{3,9}\}^{\star}$ and $\{A_{2}, A_{5}, C_{3,9}\}^{\star}$ . Note that $\chi(C’)=4$

for each of them. Thus $r(C)\geq 2$ . In fact, we have observed before any generic member of the
moduli of $\{A_{2}, A_{5}, C_{3,8}\}^{\star}$ consists of a conic and a quartic. Each of the above three configu-
rations should be a degeneration of a family of $\{A_{2}, A_{5}, C_{3,8}\}^{\star}$ . In the case of $\{A_{2}, E_{6}, C_{3,8}\}^{\star}$
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and $\{A_{2}, E_{6}, C_{3,9}\}^{\star}$ (respectively in the case of $\{A_{2},$ $A_{5},$ $C_{3,9}\}^{\star}$ ), a quartic can not contain sin-
gularities $A_{2}$ and $E_{6}$ simultaneously (resp. $A_{2}$ and $A_{6}$ ) by the inequality (2.2), which proves
the non-existence of the case (1).

(2) Now we consider the configurations $\{C_{3},, {}_{k}C_{3,l}\}^{\star}$ for any $6\leq k,$ $l\leq 9$ . Note that
$\mu’(C_{3,\ell})=12,12,14,14$ respectively and the tangent cones are irreducible. Thus if $C$ has any
two of them simultaneously, we need to have $r(C)\geq 3$ . Rrthermore if $C_{3,8}$ or $C_{3,9}$ is included,
$r(C)\geq 4$ , in which case, $C$ has at least two line components. If $C$ has two line components,
we have an obvious contradiction by the number of the tangential cone argument. Thus the
remaining cases are $\{C_{3},, {}_{k}C_{3,l}\},$ $k,$ $l=6,7$ and $C$ has either 3 conics or one line and two
other components of degree 2 and 3 respectively. Observe that $C_{3,7}$ has irreducible singularity
$A_{4}$ , which can not exist on a cubic or a conic. Thus the non-existence is proved except
$\{C_{3},, {}_{6}C_{3,6}\}^{\star}=\{B_{3,6}, B_{3,6}\}^{\star}$. This exceptional case exists as we have seen before.

(3) Assume that the singularity at $O$ is $C_{6,6},$ $B_{4,6}$ or $D_{4,7}$ . Then the conic $C_{2}$ consists of
two different lines $\ell_{1},$ $\ell_{2}$ or a line with multiplicity two by the local classification argument in
\S 2. Note that in any case, the intersection multiplicity of a line (or the reduced line) in $C_{2}$

and $C_{3}$ at $O$ is 2. Thus there exists a simple intersection outside of $O$ . In the first case, the
other partner singularities are two $A_{2}$ , which is not the case (3). If $C_{2}$ is a double line, the
other partner singularity is $A_{5}$ as we have seen in Corollary 1.3, which is also not in case (3).

(4) Assume that $C$ has a configuration $\{A_{8}, C_{3,8}\}^{\star}$ or $\{A_{8}, C_{3,9}\}^{\star}$ . Then they must be a
degeneration of the configuration of type $\{A_{2}, A_{5}, C_{3,8}\}^{\star}$ whose generic member consists of a
conic and a quartic. Thus by the same argulnent as above, this is impossible. $\square$

I am grateful to Professor Oka for pointing out some missing cases in Table $\mathrm{B}$ and showing
the above non-computational proof of Lemma 2.2.

3. THE GLOBAL DEGENERATION

3.1. A certain degenerations. In this section we consider the degenerations of irreducible
tame torus curves of type $(2,3)$ , our aim is finding the list of all maximal curves. Here an
irreducible sextic $C$ of a torus type is called maximal if $C$ does not have any degeneration in
the space of irreducible sextics of torus type.

The degenerations between the curves in the table $\mathrm{B}$ may come from the configurations in
the same level of $\mathrm{i}$-vectors in the table $\mathrm{B}$ , and also from different levels of $\mathrm{i}$-vectors. We first
show the following.

Proposition 3.1. In the same $i$-vectors level, the degeneration families are given in Table
$\mathrm{B}’$ .

Proof. See in [P]. $\square$

A configuration at the end of each degeneration family in the above proposition is called
semi-maximal. Next we consider degenerations between the semi-maximal curves. For later
purpose, we first give the following degenerations, which will be used to prove Theorem 3.4.

Proposition 3.2. Among the semi-maximal curves and together $\{6A_{2}\}_{f}$ there are following
degeneration families:
(1) $\{6A_{2}\}arrow\{4A_{2}, E_{6}\}arrow\{2A_{2},2E_{6}\}arrow\{3E_{6}\}arrow\{E_{6}, B_{3,8}\}$

(2) $\{A_{2}, E_{6}, C_{3,7}\}arrow\{E_{6}, B_{3,8}\}$

(3). $\{2A_{2}, B_{4,6}\}arrow\{A_{2}, Sp_{1}\}$

Proof. See in [P]. $\square$
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Table $\mathrm{B}’$ : Global degenerations (with same i-vector)

$\{A_{17}\}$ $arrow$ $\{C_{3,15}\}$ $\{A_{17}\}$ $arrow$ $\{C_{9,9}\}$

$———–,———————–\{A_{2},A_{14}\}arrow\{A_{2},C_{312}\}arrow\{A_{2},B_{3,10}\}$

$\{A_{2}, A_{14}\}$ $arrowarrow\{A_{2}, C_{6,9}\}$ $arrow$ $\{A_{2}, Sp_{1}\}$

$\{A_{5}, A_{11}\}$ $arrow$ $\{A_{5}, C_{3,9}^{\#}\}$ $arrow$ $\{A_{5}, B_{3,8}\}$

$\{E_{6},A_{11}\}\downarrow$

$arrow$

$\{E_{6},C_{3,9}^{\#}\}\downarrow$

$arrow$

$\{E_{6},B_{3,8}\}\downarrow$

$(*)$

$———–,———————–\{2A_{8}\}arrow\{A_{8},B_{36}\}arrow\{A_{8},C_{37)}\}$

$\{2A_{2}, A_{11}\}$ $arrow$ $\{2A_{2}, C_{3,9}^{\mathfrak{h}}\}$ $arrow$ $\{2A_{2}, B_{3,8}\}$

$\searrow$ $\downarrow$

$\{2A_{2}, C_{6,6}\}$ $arrow$ $\{2A_{2}, B_{4,6}\}$

$\{A_{2}, A_{5}, A_{8}\}$ $arrow$ $\{A_{2}, A_{5}, B_{3,6}\}$ $arrow$ $\{A_{2}, A_{5}, C_{3,7}\}$

$\downarrow$ $\downarrow$
$\downarrow$ $(**)$

$\{A_{2}, E_{6}, A_{8}\}$ $arrow$ $\{A_{2}, E_{6}, B_{3,6}\}$ $arrow$ $\{A_{2}, E_{6}, C_{3,7}\}$

$\{3A_{5}\}$ $arrow$ $\{2A_{5}, E_{6}\}$ $arrow$ $\{A_{5},2E_{6}\}$ $arrow$ $\{3E_{6}\}$

$\{3A_{2}, A_{8}\}arrow\{3A_{2}, B_{3,6}\}arrow\{3A_{2}, C_{3,7}\}arrow\{3A_{2}, C_{3,8}\}arrow\{3A_{2}, C_{3,9}\}$

$\{2A_{2},2A_{5}\}arrow\{2A_{2}, A_{5}, E_{6}\}arrow\{2A_{2},2E_{6}\}$

$\{4A_{2}, A_{5}\}$ $arrow$ $\{4A_{2}, E_{6}\}$

3.2. Maximal sextics. First we remark the following.

Lemma 3.3. Assume that we have an analytic family of plane curves $(|t|\leq\epsilon)$ such that $C_{t}$

has only isolated singularities in a fixed open neighborhood $U$ of the origin for any $t$ and $O$ is
the unique singularity of $C_{0}$ . We assume that $P_{t,1},$

$\ldots,$
$P_{t,\nu}$ are the singular points of $C_{t}\cap U$

which converges to $O$ for $t=0$ . Then we have
(1) If $\nu\geq 2_{f}\sum_{i=1}^{\nu}\mu(C_{t}, P_{t,i})>\mu(C_{0}, O)$ .
(2) If $\nu=1,$ $\mu(C_{0}, O)\geq\mu(C_{t}, P_{t,1})$ for $t\neq 0$ and the equality holds if and only if $(C_{0}, O)$

is equivalent to $(C_{t}, P_{t,1})$ for $t\neq 0$ .

Proof. The first assertions follows from the vanishing theorem of Lefschetz number of the
monodromy $([\mathrm{A}1], [\mathrm{L}\hat{\mathrm{e}}2])$ and the second assertion is due to $([\mathrm{L}\hat{\mathrm{e}}2],[\mathrm{L}\mathrm{R}])$ . $\square$

Using Propositions 3.1 and 3.2 we obtain the following theorem.

Theorem 3.4. The maximal sextics of torus type has the following configurations.
(1) $n=1:\{C_{3,15}\},$ $\{C_{9,9}\}$ .
(2) $n=2:\{A_{2}, B_{3,10}\},$ $\{A_{2}, Sp_{1}\},$ $\{E_{6}, B_{3,8}\},$ $\{A_{8}, C_{3,7}\}$ .
(3) $n=4:\{3A_{2}, C_{3,9}\}$ .

Proof. Assume that there is a family of degeneration $C_{t}arrow C_{0}$ for $tarrow \mathrm{O}$ . By Lelnma 3.3,
the sum of Milnor numbers is strictly increasing for $tarrow \mathrm{O}$ . For $\{C_{3,15}\},$ $\{C_{9,9}\}$ , the assertion
is obvious as they have $\mu=19$ and no other place to degenerate. Now we consider the
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configurations $\{A_{2}, B_{3,10}\},$ $\{A_{2}, Sp_{1}\},$ $\{E_{6}, B_{3,8}\}$ . The total Milnor numbers are 20 for each
of them and they are obviously maximal. For $\{A_{8}, C_{3,7}\}$ , the total Milnor number is 19 and
the possibility of the degeneration is to one of $\{A_{2}, B_{3_{\gamma}10}\},$ $\{A_{2}, Sp_{1}\},$ $\{E_{6}, B_{3,8}\}$ . If this is
the case, there must be degenerations of each of the two singularities to the corresponding
singularities in the above configurations. Then $C_{3,7}$ has to degenerate into either $Sp_{1}$ or $B_{3,10}$

or $B_{3,8}$ , and then $A_{8}$ has no partner to degenerate.
It remains to show that the configuration $\{3A_{2}, C_{3,9}\}$ can not degenerate to any configura-

tion in (1) or (2). By the total Milnor number argument, the possibility is to $\{A_{2}, B_{3,10}\},$ $\{A_{2}, Sp_{1}\}$

or $\{E_{6}, B_{3,8}\}$ . Assume that $\{3A_{2}, C_{3,9}\}arrow\{E_{6}, B_{3,8}\}$ . As $2A_{2}arrow E_{6}$ but $3A_{2}\neq+E_{6}$ , we need
to have a degeneration $A_{2}+C_{3,9}arrow B_{3,8}$ which is ridiculous as the Milnor number is de-
creasing. The impossibly of the degeneration $\{3A_{2}, C_{3,9}\}arrow\{A_{2}, B_{3,10}\}$ or $\{A_{2}, Sp_{1}\}$ can be
proved by computation, see in [P]. $\square$

Remark 3.5. The impossibility of the above degeneration can be shown by looking the dual
curves. Suppose that we have a degenerating family $C_{t}$ with $C_{t}$ has $\{3A_{2}, C_{3,9}\}$ for $t\neq 0$ and
$C_{0}$ has the configuration $\{A_{2}, Sp_{1}\}$ . We assume also that the singularities $C_{3,9}$ and $Sp_{1}$ are
at the origin, with $y=0$ as the tangent cone. Then we first notice that the dual curve of $C_{t}$

and $C_{0}$ has degree 6 $([\mathrm{O}4])$ . This $\mathrm{i}_{1}\mathrm{n}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}$ that the corresponding dual curve can be considered
as an analytic family of sextics. Secondly we can see that the dual singularity of $C_{3,9}$ is again
$C_{3,9}$ at $(0,1,0)$ and $C_{t}^{*}$ has further three $A_{2}$ singularities also. On the other hand, the dual
singularity of $Sp_{1}$ is $A_{8}$ by $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\ln 14$, [O4]. Let $L$ be the line supporting the tangent cone of
$C_{0}$ at the singularity $Sp_{1}$ . Then $L\cap C_{0}=\{O\}$ . This implies that in the dual curve $C_{0}^{*}$ , it has
$A_{8}$ singularity at $(0,1,0)$ . Then in the family $C_{t}^{*}arrow C_{0}^{*}$ , we have the degeneration $C_{3,9}arrow A_{8}$ .
This is $\mathrm{i}_{1}\mathrm{n}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}$ as the Milnor nulnber is decreasing. The detail will be studied in our next
paper [OP].

4. NEW ZARISKI PAIRS

We first modify the $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}_{11}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of a Zariski pair given in [Ar]. Our definition is weaker than
the original one.

Definition 4.1. A pair of plane curves $(C, C’)$ is called a weak Zariski pair if they have same
degree and $\Sigma(C)\sim\Sigma(C’)$ , but $\mathrm{P}^{2}-C$ is not homeomorphic to $\mathrm{P}^{2}-C’$ .

We do not ask the respective tubular neighborhood of $C$ and $C’$ are homeolnorphic. The
notation $\Sigma(C)\sim\Sigma(C’)$ means that there is a bijection $\phi$ : $\Sigma(C)arrow\Sigma(C’)$ such that $(C, \xi)$ is
$\mathrm{t}\mathrm{o}_{\mathrm{I}})\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{i}\mathrm{c}\mathrm{a}1$ equivalent to $(C’, \phi(\xi))$ for any $\xi\in\Sigma(C)$ .

As a corollary of $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\ln 2$ we have two new Zariski pairs with respect to the following
configurations

a) $\{A_{2}, A_{5}, C_{3,8}\}^{\star}$ and $\{A_{2}, A_{5}, C_{3,8}^{\#}\}^{\star}$ .
b) $\{3A_{2}, C_{3,8}\}$ and $\{3A_{2}, C_{3,8}^{\#}\}^{\star}$ .

In the first pair, $\{A_{2}, A_{5}, C_{3,8}\}^{\star}$ is a union of a conic and a quartic, while $\{A_{2}, A_{5}, C_{3,8}^{\#}\}^{\star}$ is
a ullion of a line and a quintic.

In the second pair, $\{3A_{2}, C_{3,8}\}$ is irreducible, while $\{3A_{2}, C_{3,8}^{\#}\}^{\star}$ is reducible, a union of a
line and a quintic.

The explicit equations of the above pairs and the discussions about geometry of these curves
are given in the previous section.

41



REFERENCES

[A1] N. A’Campo, Le nombre de Lefschetz d’une $\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{d}\mathrm{r}\mathrm{o}\mathrm{n}\dot{\mathrm{u}}\mathrm{e}$, Indag. Math. 35, 539-580 (1973).
[A2] N. A’Campo, La fonction zeta d’une monodromie, Comm. Math. Helv. 50, 539-580 (1975).
[AO] N. A’Campo, M. Oka, Geometry of plane curves via Tchirnhausen resolution tower, Osaka J. Math.

33, 1003-1033 (1996).
[Ar] E. Artal, Sur les couples des Zariski, J. Algebraic Geometry 3, 223-247 (1994).
[BK] E. Brieskorn and H. Kn\"orrer, Plane algebraic curmes, Birkll\"auser-Verlag (1986).
[F] W. Fulton, Algebraic curves, W.A.Benjalnin, New York (1969).
[K] A. G. Kouchnirenko, Poly\‘edres de Newton et nolnbres de Milnor, Invent. Math.32, 1-31 (1976).
[L\^el] D. T. L\^e, Sur les noeuds alge’briques, Compositio Math. 25 (1972), 281-321.
[L\^e2] D. T. L\^e, Une application d’un th\’eor\‘elne d’A’Campo \‘a l’\’equisingularit\’e, Indag. Math. 35 (1973),

403-409.
[LR] D. T. L\^e and C. P. Ralnanujam, The invariance of Milnor number implies the invariance of the

topological type, Amer. J. Math. 98 (1976), 67-78.
[Li] A. Libgober, Fundanlental Groups of the Complelnents to Plane Singular Curves, Proc. Symp. Pure

Math. 46, Part 2, , 29-45 (1987).
[M] J. Milnor, Singular Points of Complex Hypersurface, Annals Math. Studies, No. 61, Princeton Univ.

Press, 1968.
[N] M. Namba, Geometry of projective algebraic cumes, Decker, New York (1984).
[O1] M. Oka, Geolnetry of plane curves via toroidal resolution, in Algebraic Geometry and Singulanties, ed.

by A. Calnpilo, Progress in Math. 134, 1996, 95-118.
[O2] M. Oka, Non-degenerate compleie intersection singularity, $\mathrm{H}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{n}$, Paris (1997).
[O3] M. Oka, Flex curves and their applications, Geometriae Dedicata 75 (1999), 67-100.
[O4] M. Oka, Geometry of cuspidal sexlics and lheir dual curves, to appear in Advanced Studies in Pure

Math., 2000, Singularities and arrangenlents, Sapporo-Tokyo 1998.
[OP] M. Oka and D. T. Pho, Fundamental grou]) of sextic of torus $\mathrm{t}\mathrm{y}\iota$ ) $\mathrm{e}$ , in preparation.
[OS] M. Oka and K. Sakamoto Product theorem of the fundamental group of a reducible curve J. Math.

Soc. Japan 30599-602, 1978.
[P] D. T. Pho, Classification of singularities on torus curves of type $(2,3)$ , Tokyo Metro. Univ. Math.

Prepnnt Series. 10, 2000.
[U] T. Urabe, Dynkin graphs and combinations of singularities of plane sextic curves, Contemp. Math. 90,

295-316 (1989).
[W] $\mathrm{C}.\mathrm{T}$.C. Wall, Geometry of quartic curves, Proc. London Math. Soc. 117, 415-423 (1995).
[Y] Jin-Gen. Yang, Sextic curves with simple singularities, Tohoku Math. J. 48 (1996), no. 2, 203-227.
[Z1] O. Zariski, On the problem of existence of algebraic functions of two variables possing a given branch

curve, Amer. J. Math., $\mathrm{v}\mathrm{o}\mathrm{l}51$ , 305-328 (1929).
[Z2] O. Zariski, Studies in equisingularities I: equivalent singularities of plane algebraoid curves, Amer. $J$.

Math., $\mathrm{v}\mathrm{o}\mathrm{l}87$ , 507-536 (1965).

DEPARTMENT OF MATHEMATICS, TOI$<\mathrm{v}\mathrm{o}$ METROPOLITAN UNIVERSITY, MINAMI-OHSAWA 1-1, HACHIOJI-
$\mathrm{S}\mathrm{H}\mathrm{I}$ , TOKYO 192-0397, JAPAN

$E$-mail address: pdtai@comp.metro-u.ac.jp

42


