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Problem of Fenchel on the complex projective plane and
representations of the 3rd braid group
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- Department of Liberal Arts and Sciences
Osaka Prefectural College of Technology

1 Abstract

We denote by P2 the complex projective plane. Let C = {(Xo: X1 : X2) € P2|X2X§ - X3 =0}
be a curve of P2, Let Lo, = {(Xo : X1 : X3) € P?|X, = 0} be the line of P2, which we call line
at infinity. C is a rational curve of degree 3 with a cusp at (0:0:1). C and L, are tangent at
(1:0:0). Let eq, ez be positive integers greater than 1. Put D = e;C + ez L. We consider the
following problem and give here a partial answer by constructing representations of the 3rd braid
group.

Fenchel’s Problem Give a condition on the pair (e1,e2) for the existence of a finite Galois
covering 7 : X — P2 which branches at D.

2 Elementary facts

We choose a point po € P2 — {CU Ly} and fix it. The fundamental group m; (P2 —{CULx},po)
is isomoriphic to < a, 8, §|lafa = fafB = §~! > the 3rd braid group. This group is isomorphic to
< v,6y® = 6 >. This isomorphism is given by 7 +— (af)~*,8 = (cfa)~!. We ideniify « (resp.
B, resp. &) with a closed path in P2 _ {C U Ly} which rounds counterclockwise direction once
around non-singular points P, of C (resp. Ps of C, resp. Pjs of L). Let J be the smallest normal
subgroup of m; (P2 — {C U L}, po) which contains a®* and §°2. There is a finite Galois covering

which branches at D if and only if there is a normal subgroup K of 7r1(i’2 —{CUL},po) of finite
index with J C K, which satisfies the following conditions: (1)If * € K then k = 0 (mod e;) and
(2)If §' € K then I =0 (mod e;). However it is difficult to look for such a K.

Let G be a finite group generated by two elements A, B, which satisfy the relation ABA =
BAB,A®t = B®* = 1,(ABA)** = 1. Obviously A and B are conjugate to each other. If there is

a finite group G as above, we have a surjective homomorphism @ : 7r1(P2 —{CULx},p0) —G.

Then the kernel of ® corresponds to a finite Galois covering 7 : X — P2 which branches at D.
Put Q = ABA. It is easy to seeé: :

Lemmé_ 2.1 If G is abelian, then G is a cyclic group.
~ Since Q? is an element of the center of G,

Lemma 2.2. If ib.é order of Q is odd, then G is abelian { G is a cyclic group).

Hence we have:

Theorem 2.1 If ez is odd, then any covering 7 : X — P2 whick branches at D is cyclic .

Trivially we have:
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Propsition 2.1 For given odd number e3, if ey =0 (mod 3) put ey = e3/3, otherwise pui e = e,
Then there exisis m: X — P2 which dbranches at D.

1t is well-known (see for example [1]):

Lemma 2.3 For given posilive inleger n there is a ﬁnte group G generated by two elements Q of
order 2 and R of order 8 with QR of order n.

By putting Q =ABAand R= Aé we have:

Theorem 2.2 If ey 15 2, then for any posziwe inieger e; greaier than 1 there i3 a covering = :
X — P2 which branches at D.

Let D be as before and let D' = e;'C + ey’ Leo. Let ¢;” be the LCM < ej,¢;' > (j = 1,2) and
put D" = e1"C + ey Lo
By constructing the fiber product, we have:

Propﬂtzen 2.2 If there is a covering v : X — P2 which branches at D and there is a covering
#' : X' — P2 which branches at D', then there is a covering o' : X" — P2 which branches at D"

3 Cyclic extension

We denote by S, the symmetric group of n letters. Let G C S, be a finite group generated by
two permutations @, R, which satisfy the relation Q2 = &3 = 1. Then Q is a product of cycles of
length 2 with no common letters and R is a product of cycles of length 3 with no common letters.

We may assume G has the following properties. (1)transitivity: For each letters z, y thereis a
permutaion of G which maps z to y. (2)s1mphc1ty If a permutation of G fixes a letter, then it is
the unit element of G. X

Now by showing examples, we give a method to construct a cyclic extension G C Sy of G C S;
by an element of its center.

The case r = 3. Put @ = (a b) and &R = (a b ¢). In this case G = S and non-abelian. We
need to assume ¢ is odd. Put

Q _f &1 @3 ... a4 bl bg SN bq—l bq C1 Co eee Cp Cpyi Cp+2 .- Cq )
by b2 ... b a2 az ... aq Cp42 Cpt3 --- € O 2 ... Cp41
R= a4 G2 ... Qg bl bz .o bq ‘€1 C2 ... Cg-1 G4 )
bl bz .o bq kL ¢ ... & G2 @3 ... Qq a1
Then

F=Q*=R®=(a; ... a))(b1 ... b)(e1 -.- ¢q)

- and
A= R"lQ = (61 Cp+1 Gp42 C1 - )

where ¢ = 2p+ 1. The order of A is 2q.
Let G be a finite group generated by two permutations Q, R. F is a center of G. In a natural
way we have the following exact sequence: :

1< F>65G-G—1

where < F' > is a subgroup of G generated by F. < F >@ is a cyclic group of order g. Then we
can have a surjective homomorphism @ : m; (P2 —{C U L}, po) — G. Hence we have:
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Theorem 3.1 If q is odd, then there is a finile Galois covering w : X — P2 which branches ai
2qC + 2L

The case r = 4. Put § = (a b) and R = (b c d). In this case G c S4 and non-abelian. For
the extension we need to assume the LCM< 6,¢ >= 1. In a similar way, we have:
Theorem 3.2 If q is as above, then there is a finite Galois covering 7 : X — P2 which branches
at 4qC + 29L '

The case r = 12. Put Q = (a 5)(b d)(c h)(e I)(f i)(g k) and R=(abec)de f)lghiykl.
In this case G C S;2 and non-abelian. In a similar way, we have:

Theorem 3.3 There is a finite Galois covering w: X — P2 which branches at 3¢(q—1)C +2¢Lo
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