Problem of Fenchel on the complex projective plane and representations of the 3rd braid group

Takanori MATSUNO
Department of Liberal Arts and Sciences
Osaka Prefectural College of Technology

1 Abstract

We denote by $\mathbf{P^2}$ the complex projective plane. Let $C = \{(X_0: X_1: X_2) \in \mathbf{P^2} | X_2 X_0^2 - X_1^3 = 0\}$ be a curve of $\mathbf{P^2}$. Let $L_{\infty} = \{(X_0: X_1: X_2) \in P^2 | X_2 = 0\}$ be the line of $\mathbf{P^2}$, which we call line at infinity. C is a rational curve of degree 3 with a cusp at (0:0:1). C and L_{∞} are tangent at (1:0:0). Let e_1 , e_2 be positive integers greater than 1. Put $D = e_1C + e_2L_{\infty}$. We consider the following problem and give here a partial answer by constructing representations of the 3rd braid group.

Fenchel's Problem Give a condition on the pair (e_1, e_2) for the existence of a finite Galois covering $\pi: X \to \mathbf{P}^2$ which branches at D.

2 Elementary facts

We choose a point $p_0 \in \mathbf{P^2} - \{C \cup L_{\infty}\}$ and fix it. The fundamental group $\pi_1(\mathbf{P^2} - \{C \cup L_{\infty}\}, p_0)$ is isomorphic to $\langle \alpha, \beta, \delta | \alpha \beta \alpha = \beta \alpha \beta = \delta^{-1} \rangle$ the 3rd braid group. This group is isomorphic to $\langle \gamma, \delta | \gamma^3 = \delta^2 \rangle$. This isomorphism is given by $\gamma \mapsto (\alpha \beta)^{-1}$, $\delta \mapsto (\alpha \beta \alpha)^{-1}$. We identify α (resp. β , resp. δ) with a closed path in $\mathbf{P^2} - \{C \cup L_{\infty}\}$ which rounds counterclockwise direction once around non-singular points P_{α} of C (resp. P_{β} of C, resp. P_{δ} of L_{∞}). Let J be the smallest normal subgroup of $\pi_1(\mathbf{P^2} - \{C \cup L_{\infty}\}, p_0)$ which contains α^{e_1} and δ^{e_2} . There is a finite Galois covering which branches at D if and only if there is a normal subgroup K of $\pi_1(\mathbf{P^2} - \{C \cup L_{\infty}\}, p_0)$ of finite index with $J \subset K$, which satisfies the following conditions: (1)If $\alpha^k \in K$ then $k \equiv 0 \pmod{e_1}$ and (2)If $\delta^l \in K$ then $l \equiv 0 \pmod{e_2}$. However it is difficult to look for such a K.

Let G be a finite group generated by two elements A, B, which satisfy the relation $ABA = BAB, A^{e_1} = B^{e_1} = 1, (ABA)^{e_2} = 1$. Obviously A and B are conjugate to each other. If there is a finite group G as above, we have a surjective homomorphism $\Phi : \pi_1(\mathbf{P^2} - \{C \cup L_{\infty}\}, p_0) \to G$. Then the kernel of Φ corresponds to a finite Galois covering $\pi : X \to \mathbf{P^2}$ which branches at D.

Put Q = ABA. It is easy to see:

Lemma 2.1 If G is abelian, then G is a cyclic group.

Since Q^2 is an element of the center of G,

Lemma 2.2 If the order of Q is odd, then G is abelian (G is a cyclic group).

Hence we have:

Theorem 2.1 If e_2 is odd, then any covering $\pi: X \to \mathbf{P^2}$ which branches at D is cyclic.

Trivially we have:

Propsition 2.1 For given odd number e_2 , if $e_2 \equiv 0 \pmod{3}$ put $e_1 = e_2/3$, otherwise put $e_1 = e_2$. Then there exists $\pi: X \to \mathbb{P}^2$ which branches at D.

It is well-known (see for example [1]):

Lemma 2.3 For given positive integer n there is a finte group G generated by two elements \hat{Q} of order 2 and \hat{R} of order 3 with $\hat{Q}\hat{R}$ of order n.

By putting $\hat{Q} = \hat{A}\hat{B}\hat{A}$ and $\hat{R} = \hat{A}\hat{B}$, we have:

Theorem 2.2 If e_2 is 2, then for any positive integer e_1 greater than 1 there is a covering $\pi: X \to \mathbf{P}^2$ which branches at D.

Let D be as before and let $D' = e_1'C + e_2'L_{\infty}$. Let e_j'' be the LCM $\langle e_j, e_j' \rangle$ (j = 1, 2) and put $D'' = e_1''C + e_2''L_{\infty}$.

By constructing the fiber product, we have:

Propsition 2.2 If there is a covering $\pi: X \to \mathbf{P^2}$ which branches at D and there is a covering $\pi': X' \to \mathbf{P^2}$ which branches at D', then there is a covering $\pi'': X'' \to \mathbf{P^2}$ which branches at D''

3 Cyclic extension

We denote by S_n the symmetric group of n letters. Let $\hat{G} \subset S_r$ be a finite group generated by two permutations \hat{Q} , \hat{R} , which satisfy the relation $\hat{Q}^2 = \hat{R}^3 = 1$. Then \hat{Q} is a product of cycles of length 2 with no common letters and \hat{R} is a product of cycles of length 3 with no common letters.

We may assume \hat{G} has the following properties. (1)transitivity: For each letters x, y there is a permutation of \hat{G} which maps x to y. (2)simplicity: If a permutation of \hat{G} fixes a letter, then it is the unit element of \hat{G} .

Now by showing examples, we give a method to construct a cyclic extension $G \subset S_{rq}$ of $\hat{G} \subset S_r$ by an element of its center.

The case r=3. Put $\hat{Q}=(a\ b)$ and $\hat{R}=(a\ b\ c)$. In this case $\hat{G}=S_3$ and non-abelian. We need to assume q is odd. Put

$$R = \begin{pmatrix} a_1 & a_2 & \dots & a_q & b_1 & b_2 & \dots & b_q & c_1 & c_2 & \dots & c_{q-1} & c_q \\ b_1 & b_2 & \dots & b_q & c_1 & c_2 & \dots & c_q & a_2 & a_3 & \dots & a_q & a_1 \end{pmatrix}.$$

Then

$$F = Q^2 = R^3 = (a_1 \dots a_q)(b_1 \dots b_q)(c_1 \dots c_q)$$

and

$$A = R^{-1}Q = (a_1 \ c_{p+1} \ a_{p+2} \ c_1 \ \ldots)$$

where q = 2p + 1. The order of A is 2q.

Let G be a finite group generated by two permutations Q, R. F is a center of G. In a natural way we have the following exact sequence:

$$1 \to \langle F \rangle^G \to G \to \hat{G} \to 1$$

where $\langle F \rangle^G$ is a subgroup of G generated by $F \cdot \langle F \rangle^G$ is a cyclic group of order q. Then we can have a surjective homomorphism $\Phi : \pi_1(\mathbb{P}^2 - \{C \cup L_{\infty}\}, p_0) \to G$. Hence we have:

Theorem 3.1 If q is odd, then there is a finite Galois covering $\pi:X\to \mathbb{P}^2$ which branches at $2qC+2qL_{\infty}$

The case r=4. Put $\hat{Q}=(a\ b)$ and $\hat{R}=(b\ c\ d)$. In this case $\hat{G}\subset S_4$ and non-abelian. For the extension we need to assume the LCM <6,q>=1. In a similar way, we have:

Theorem 3.2 If q is as above, then there is a finite Galois covering $\pi: X \to \mathbf{P}^2$ which branches at $4qC + 2qL_{\infty}$

The case r = 12. Put $\hat{Q} = (a \ j)(b \ d)(c \ h)(e \ l)(f \ i)(g \ k)$ and $\hat{R} = (a \ b \ c)(d \ e \ f)(g \ h \ i)(j \ k \ l)$. In this case $\hat{G} \subset S_{12}$ and non-abelian. In a similar way, we have:

Theorem 3.3 There is a finite Galois covering $\pi: X \to \mathbf{P^2}$ which branches at $3q(q-1)C + 2qL_{\infty}$

References

- [1] R.H.Fox, On Fenchel's conjecture about F-groups, Mat. Tidsskrift, vol B (1952) 61-65
- [2] M.Namba, Branched coverings and algebraic functions, Research Notes in Math. (1987) vol 161 Pitman-Longman