goooboooobgon
11850 2001 O 182-190

182

CKit: A Preprocessor for Algorithmic Experiments

Mario SZEGEDY

Rutgers University
110 Frelinghuysen Road,
Piscataway, NJ 08854-8019 USA

szegedy@cs.rutgers.edu

Abstract: CKit [8] is a general purpose preprocessor that I originally designed for and
tested in code theoretical and combinatorial experiments. In this article I explore the most
important features of this preprocessor, describe its design principles, and illustrate its novel
use with examples. I introduce the notions of macros with associative power and lezical
inheritance, and give examples to their use in CKit.

Keywords: programming languages, preprocessors, combinatorial experiments.

1 Introduction

In November, 1996 I finished implementing an ex-
perimental version of a new preprocessor for the
programming language C. The version of this pre-
processor, that I call CKit, runs on UNIX plat-
form, and is mostly designed to help generating
programs for a variety of combinatorial algorith-
mic experiments. Among existing software CKit
is most similar to m4 [5] [6], which is a general
purpose preprocessor implemented on UNIX plat-
form, but the most influential languages to the
design of CKit were Tcl and Perl, and not m4.

CKit extends the lexical and preprocessing
abilities of known preprocessors (such as gec and
m4), so that if the programmer chooses to reach
his/her goal by writing a lot of macros (instead
of C procedures), CKit provides a powerful tool
to do so.
sive amount of macros I arrived at a new ap-
proach to program organization in which the
building blocks of the program are editorial mod-
ules. These do not simply correspond to C proce-
dures, but they also allow for relevant syntactic
shortcuts. Whether by making the CKit features
even more general and powerful we can buy com-

From the habit of writing an exces-

plete syntactic freedom for ourselves is an open
question. I have written packages that help to
imitate the look and feel of the Maple and Mathe-
matica platforms. While we get the same speed in
program writing, C programs, that are generated
with CKit, can run more than 200 times faster

than their Maple counterparts. This dramatic

difference occurs chiefly for search type problems.

2 Objectives and Design Prin-
ciples

CKit operates solely on text, and is oblivious
about the target program’s semantics. Its envi-
ronment typically consists of several macro pack-
ages and master files. (There is no conceptual dif-
ference between macro packages and master files.)
Macro packages can serve many purposes. One
use of them is to create commands that give high
level features and brevity to programs. Another
typical use of them is identical to that of old fash-
ioned C packages (i.e. to serve as a pool of useful
methods), but the most typical use is the combi-
nation of both. Master files describe programs,
input-output transformations, and possibly dif-
ferent modes to run user programs. CKIT’s fur-
ther development hinges on the following plan:

1. To automate a wide range of program edito-
rial activities. In the input the programmer
should be able to describe these ideas in a
simple language.

2. To build on our observation that useful de-
sign concepts, such as that of inheritance
for object oriented languages, have lexi-
cal counterparts that use surprising'ly sim-
ple resources. Correspondingly CKit intro-

duces and implements macros with associa-
tive power, and lezical inheritance (see later).

3. To reduce code repetition. Code repetition
is said to be eliminated completely by ob-
ject oriented programming, but many con-
test this claim.

4, To use a small number of general purpose
commands, and defer all specifics to the
macro packages.

5. To convert the “garbage” produced during
program development into “beauty.” In par-
ticular, CKit should provide a friendly envi-
ronment for alternative program constructs
that coexist until the programmer finishes
his/her experiments and chooses his/her fa-
vorite one.

6. Possibly to provide means for program test-
ing.

3 The Structure of the CKit
Text

The CKit text is made up of six components:

Commands are editorial instructions, which de-
termine how and when text replacements
and insertions take place. They also offer
means of communication between the pro-
grammer, CKit, and the UNIX shell.

Macro Calls call for the text which is associ-
ated with the macro definition of their iden-
tifier. The number of arguments of the caller
must agree with the number of arguments of
the definition, otherwise the macro call is not
recognized.

Labels mark places in the text for later refer-
After the entire text has been pro-
cessed, labels disappear. When text is
sent to @label by the label += text$ com-
mand, the label reappears at the end of the
text sent. Thus consecutive insertions to the
same label cause the corresponding texts to

ence.

be arranged in the order of their insertion.

Empty Replacements are used to separate
identifiers and to protect arguments with

183

commas. As soon as the parser recognizes
them, they disappear from the program text.

Comments of the form /< text >/ delimit
text which is to be eliminated by the parser.

CKit Externals are those strings of characters
that do not belong to any of the above cat-
egories, e.g., identifiers that are not macro
calls, most non-alphabetical characters, etc.
These do not prompt an action from the
parser, and they are skipped during process-
ing.

These components can follow each other in any
order, and in any number. However, semantics
will naturally determine their order, e.g., an iden-
tifier is recognized as a macro call only in case it
appears in the text after the corresponding macro
definition. Some CKit commands may embed -
other commands, macro calls, etc. These com-
mands are called inclusive commands and will be
discussed more details in the next section.

4 CKit Commands

4.1 Types of CKit Commands

CKit command fall into four categories:

1. Cut and paste
marker+:text$, which cuts text and pastes
it to the place marked by @marker. Other
commands in this category are cond??text$,
which expands to text if cond holds (cond is
of the form macrocall=value), otherwise it
expands to the empty string. name!?text$
expands to text if name is not defined, other-
wise it expands to the empty string. In both
cases text is parsed from its start.

commands, e.g.

9. Macro creator commands. The most fre-
quently used of them is macroname/arglist
::text$. This command either creates a
macro, if it does not exist already, or if it
does, then it causes the old definition to be
replaced with the new one. The command
macroname/arglist+:text$ adds text to
the text of an existing macro, and if the
macro does not exist, it creates a new one.

184

| Op. [Syntax [Description I

i block +: text$ Defines a macro.

+: block +: text$ Adds extra text to macro block or to a place
marked with block

?7 block 77 text$ Includes text under condition defined in block.

1? block !7 text$ Includes text if block is not defined.

>< >< block Invalidates a previously defined macro.

<: blockl <: block2 Causes block1 to inherit all lexical properties
of block2.

> [> block Interpolates a file.

3. Commands defining lexical associations. White spaces around the command operator are

The CKit command for creating an associa-
tive array is namel//name?2: :text$, where
text ‘is the value of namel for argument
In CKit macros and associative
arrays, and their common generalization,
which is called macros with associative power
are handled by the same mechanism. Lezi-
cal Inheritance, when an identifier inherits

name?2.

all associative features of another one, is an
artifact of this machinery. The correspond-
ing command namel<:name?2 is discussed in
Chapter 9 in more details.

4. CKit control flow commands. CKit flow con-
trol commands play a role in experimenting
with alternative program constructs. These

: commands are new to CKit and they are out
of the scope of the present discussion.

4.2 The Sy_ntax of CKit Qo_,rlrrlmands

Every CKit command has to contain'a command
operator, which'is a two letter symbol. The most
important ‘operators are summarised in the table
in-the top: of*'the page.

Block: A sequence of non-whitespace characters
preceded and followed by a whitespace charac-
ter:

» Text: Arbitrary sequence of characters in which ev-
ery $ symbal is the closing mark of an embedded
CKlt command

The block of non white space characters that
is immediately ‘before the command operator is
called the preclause of a command. The post-
clause of a command is either block or a text$
(see the definition of block and text above).

optional. Some CKit commands do not have pre-
clause or the postclause. Commands which have
text$ as postclause are called inclusive, for
other CKit commands can be part of text. Com-
mand must be followed by a white space character
or by the $ symbol.

5 Creating
Macros

and Expanding

Macros are identifiers which define text, and
come with or without arguments. If a macro
has arguments, it defines text patterns with
variable parts to be filled in. In CKit there
are two different ways to denote the variable
parts. MAX/x/y::($1)>($2)7($1):($2)$ and
MAX/x/y:: (x)>(y)7(x): (y)$ are equally legal
definitions of the same macro. The number of ar-
guments of a macro is fixed in CKit. If a macro
is called with the wrong number of arguments, it
is not an error: it simply will be recognized as a
CKit external. When macros are expanded, first
their arguments are interpolated, the macro call
is then replaced with the text of the macro, which
is then parsed from the start. The @@ string sep-
arates identifiers, which disappears after parsing,
e.g., concat/x/y: :x0Qy$ defines a macro which
concatenates its two arguments.

- CKit introduces a new array of macro expan-
sions, which has not been applied so far. This,
together with the ability of inserting text to an
arbitrary point of the program text, gives a bet-
ter control over program editing. The main new
macro features of CKit and examples to their use
are listed in the table below:

185

| New Feature: | Reference:
Macro calls with argument modifier Section 8.1
Macros with associative power Section 7.2, 7.3, 9
Macros with hidden arguments Section 9
Lexical inheritance Section 9

6 Building an Experiment

The author has used CKit for a variety of combi-
natorial applications. Among them are:

1. A problem of Erdos about sequences of nat-
ural numbers with all-distinct subset-sums.

2. Finding a false coin in a collection of coins

(1] 2].

3. Finding maximal clique and optimal coloring
of graphs.

4. Finding mixed (binary-ternary) codes (3],

5. Finding upper bounds on the size of bternary
codes of length 7, minimum distance 4 [3] [7].

We shall demonstrate the operation of CKit
through the highlights of a software, which was
designed to find mixed binary-ternary codes with
given parameters [3]. Some macros have been
changed in this article for a more concise exposi-
tion.

A codeword of a mixed binary-ternary code is
a sequence of digits (by ... bgt; ..
and [are fixed, and b1,...,bt € {0,1};t1,...,t1 €
{0,1,3}. Our goal is to find a set C of code-
words as large as possible such that the Ham-
ming distance between each two codewords is at
least d. The Hamming distance between the two
codewords (by...bgt1...t;) and () ...byt)...1)
is defined as |{i | b # bi}| + [{j | t; # t;}|- The
numbers k, I, and d are the parameters of the
mixed code. The maximal size code with these
parameters is denoted by N(k,1,d).

The software highlighted in subsequent sec-
tions uses a clique finder algorithm of Johnson
and Applegate, and its goal to give lower bounds
on N(k,l,d). The problem about mixed codes
was brought to the author’s attention by Neil
Sloane, who with coauthors in [3] extensively
studied the problem. The author’s contribution

.t;) such that k.

to their work is a slight improvement for param-
eters k = 8, 1 = 1, and d = 3 (N(k,[,d) was
improved from 50 to 48).

In the next two sections we build up a set of
macros, taking the reader through new CKit fea-
tures simultaneously. Once we define a macro, we
use it in later paragraphs without warning.

7 Creating Basic Macros

Basic macros are the ones that are likely to be
useful in all our programs. Among them are: pro-
gram template macros; declaration macros, print
macros, timers, data store/retrieve macros, data
visualization macros. ‘Representative examples of
the first three groups are presented in this section.

7.1 Program Templates

CKit is a text processor, which has no knowl-
edge of the syntax of the language of our object
(in our case C). If we want CKit to insert dec-
larations, function prototypes, typedefs into the
appropriate places, we have to let the CKit com-
piler know where these places are in the program
text. In general, we can mark places in text with
@identifier, The following C-program template
defines a macro that describes the structure of a
simple C program:

PROG ::

include <stdio.h>

Q@includes

@typedefs

Q@declarations

Q@prototypes

int main (int arge, char past *argv){ $

END_PROG :: }
@procedures $

All our programs will use the PROG and
END_PROG macros.

7.2 Declarations

Declarations of variables through CKit can be
useful for two reasons. First, many programmers
like to declare a variable where it is used first.
The syntax of C (unlike e.g., the syntax of Java)
does not allow for this. Secondly, it is often ad-
vantageous to keep track of the type of a variable
in order to be able to write in-line procedures
that can depend on the argument’s type. The fol-
lowing macro declares a global integer, and then
replaces the text of the macro call with the vari-
able’s name: ’

Int/name ::

name !7 declarations +:
int name;$ name//type ::
. name$

int$

The above macro illustrates a number of fea-
tures in CKit. The macro Int has one for-
mal parameter: name. The macro text in-
cludes further- CKit commands: the macro
definition name//type::int$, the conditional
inclusion command name!?declarations+:int
name;$ name//type::int$, which contains the
former as well as the insertion command
declarations+:int name;$. We show the op-
eration of this macro through a sample program,
which relies on the

FOR/var/bnd :: for(Int(var)=0;
var < (bnd); var ++)$

macro, and prints integers from 0 to 10, and their
cubes below them:

| >general .x

PROG

FOR(i,10) printf("%54", i);
printf("\n")

FOR(i,10) printf("%5d4", ixixi)
END_PROG

Each call of FOR results in the expansion of
the Int macro with parameter i. During the
first call parameter i is unknown to CKit.
Hence, the command !? (meaning include
text, if block before the command operator is
not defined) expands to declarations +: int
name;$ name//type :: int$. When this text
is interpolated and parsed, it has two effects:
First, text int name; will be inserted to the place
marked @declarations, secondly a macro with
identifier name, and an associative argument type

186

is defined. From this point on i and 1//type will
be defined (name has the empty string as its de-
fault value). When the Int macro is called again
with argument i, then the conditional inclusion
expands to the empty string, since i is already
known. The only effect of this call is that a copy
of i replaces the macro call.

7.3 Macros with Associative Power

Next we elaborate more on the concept of macros
with associative power, taking another declara-
tion macro as an example. The macro

Intvec/name/vlength ::
name !7 declarations +:
int name[vlength], -
name@@dim;$
name//type ::
name//length ::
vlength$$

int$

contains two commands that declare macros with
associative arguments, both with identifier name.
These macros are not differentiated through their
identifiers, but by their arguments. name (type)
expands to intvec, and name(length) expands
to vlength (where name and vlength depend on
the parameters Intvec is called. For all prac-
tical purposes name behaves like an associative
array, but it is more general. name with any
other argument than type and length is defined
as the empty string by default. If the macro
Intvec included name/any::I am name$, then
calling name with a default argument would ex-
pand to I am name.

Macro Vectorcopy in the example below cre-
ates an array (vect2), which is identical to an-
other one (vect1). The second macro in the same
example uses name(type) to put the appropri-
ate print instruction into the program text. For
the later we assume that macros Prinint and
Printintvec to print integers and arrays of inte-
gers are already defined.

Vectorcopy/vectl/vect2 ::
Intvec(vect2,vectl(length))
FOR(copyvar, vectli@@dim)
vect2[copyvar] =
vectl[copyvar];$

Print/name ::
name//type=int 77
Printint (name)$
name//type=intvec 77
Printintvec(name)$$

7.4 Higher Level Templates:

The possibility of building a hierarchy of tem-
plates is particular to those preprocessors with
inclusive macros.

Simpledecl/Declmacro/type ::
Declmacro/name ::

name !? declarations +:
Type name;$ name//type ::

Type$ name$$

expands to declaration macros similar to the one,
which declares an integer in the beginning of this
section. E.g Simpledecl(Real,real) expands to
the definition of the macro Real, which declares
reals, or Simpledecl(Register,register) ex-
pands to the definition of Register which de-
clares registers. The above example shows how
to build macros to reach the level of abstraction
in program organization that saves the most code.

8 Creating a Macro Platform
for an Experiment

In this section we give a representative cross sec-
tion of those specific macros that the author re-
lied on, when searching for mixed codes of given
parameters. These macros are contained in file
codes23.x. Since we need the general macros as
well, the file codes23.x starts with

|> general.x

Assume that macros DIM2 DIM3 and DIST define
the parameters k, [, and d of the code. Each code-
word will be represented by a 4 byte integer such
that the first k bit represents the binary digits of
the code and the following 2! bits represent the

187

ternary digits (two bits for each digit). First we
build formulas to express the distance between
two codewords:

EX1/i :: (((i) >> Int(kk)) % 2)$
EX2/i :: (((i) >> Int(kk)) % 4)$
gexpr/i/j/gsum :: Int(gsum)=0;

FOR(kk,DIM2) {
if (EX1(i) != EX1(j) gsum++; }
for (kk=DIM2; kk<DIM2+2*DIM3; kk+=2) {
if (EX2(i) != EX2(j) gsumt++; }$

Higher level macros use this notion of distance.
Some of them are:

MAKESET/set/expressions/fofmula Sl
MAKESUBSET/set1/set2/expressions/formula
EACHINSET/set/property/indicator ::...
INSET/set/indicator ::...
MAXCODE/inputset/outputset ::...
FAR ::...
ATLEAST/point/distance/indicator ::

What is worthwhile to notice about them is
how reserved they are about the use of parame-
ters. MAXCODE takes a subset of all strings with
parameters k and [, Sk, returns a maximal code
in them (second parameter). This macro is the
interface with the clique finder algorithm of John-
son and Applegate. Macros ‘do not have a re-
turn value. We often take the last parameter
If this value
is Boolean, we call it an “indicator.” Macro
MAKESET creates a subset of Sy; by inputing a
list of several expressions in its second argument,
and comprising the indicators of these expressions
into one Boolean formula in the second. To im-
plement this we do not have to go beyond the
capabilities of the commands that have been dis-
cussed so far. In the next subsection we discuss a
feature of CKit which comes handy, when dealing.
with macros that expect names of expressions in
their argument.

of the macro as our return value.

8.1 Argument Modifiers in Macro

Calls
Let us have the following macro that assigns the

first k values of an expression to an array:

ASSIGN/vect/k/expr :: FOR(i,k) vect[i]
= expr(i);$

If Expr is a macro of an expression with only one
argument, then the above macro can be called
with Expr as its last argument. But if we have an
expression Expr (x,y), which has two parameters,
and we want to assign Expr(i,i) to vect[i],
first we have to define a new expression, which
has only one parameter, by
Expri/x :: Expr(x,x)$
and then use Exprl as the last argument of
ASSIGN. This solution is too cumbersome if Expri
is used only once. In CKit it is possible to inter-
pret the argument list of a macro by putting an
argument modifier enclosed in brackets before the
the actual arguments of a macro call. The macro
call ' ‘
Expr[\1,\1](i)
is equivalent to- Expr(i,i). We may write
ASSIGN(vect,100,Expr[\1;\1]) to give the value
of Expr(i,i) to vect[i] for i< 100.

In general, if the number of arguments of a
macro mymacro is k in the macro definition, then

mymacro [texti,texts, ..

., textg] (argy, ...,
arg;)- :

is a valid call, where k is arbitrary, and text,
texty, etc. may contain references to arg, args,
etc. This call is equivalent to

mymécro (text;”,texty’, ..., texty’),

where text;’ is obtained from text; by replacing
every occurrence of \ j with arg; for 1 < j <1. If
lis 0, the parentheses are empty, but they should
not be left out.

9 ‘Bui_lvdi‘n'g Schemes

Scliemes “are program constructs, that once are
built, can be used in more than oneé contexts.
Procedures are such constructs in procedural lan-
guages, and classes in object oriented languages.
CKit schemes are macro constructs. Let us take a
local optimization scheme for finding mixed codes
as an example.

The input for the scheme is a mixed code
(set), which is not optimal. In order to improve
on the code we delete some of the code words
(SHRINK), and then we find a maximum set of
codewords, which can be added to the smaller
set such that the union of the old (smaller) and
new (newcode) set again forms a code. We repeat

188

this process bnd times. The scheme also has an
input parameter param, which controls the size of
the ball from which we leave out the codewords
in the shrinking process. The CKit description of
this scheme is as follows:

LOCOPT/set/bnd/param ::
FOR(locopt, bnd) {
RANDOM(locopt,rnd)
SHRINK (rnd)
EXPAND

}

//RANDOM/locopt/rnd ::
while(!ind) {
Int(rnd) = rand()
INSET(rnd,all,ind)
if(ind) break;

18

//SHRINK/rnd :: .
MAKESUBSET(smaller,set, ATLEAST(rnd,
param,indic), indic)$

//EXPAND ::

MAKESUBSET (farset,basic,EACHINSET(
smaller,FAR,ind),ind)
MAXCODE(farset,newcode) MAKESET(set,
INSET(smaller,indl)

INSET (newcode,ind2), ind1}{ind2)$$

What we need to notice about macros RANDOM,
SHRINK and EXPAND is that their definitions in
the definition of LOCOPT start with the // sym-
bol. This symbol in CKit means lexical associa-
tion. Macros like this‘constitute the hidden pa-
rameters of the encapsulating macro, and can-
not be directly called from outside of the macro
that encapsulates them. CKit uses the associa-
tive power of the encapsulating macro to im-
plement hidden parameters. It is possible to
call the macro EXPAND from outside LOCOPT with
LOCOPT(EXPAND). '

Lexical Inheritance

The use of hidden parameters becomes appar-
ent with the introduction of lexical inheritance.

NEWLOCOPT <: LOCOPT

declares that CKit accepts NEWLOCOPT in any tex-
tual context, where LOCOPT is accepted. The hid-

den parameters of NEWLOCOPT are the same as
those of LOCOPT, but new ones can be added, and
the old ones can be redefined. For instance

NEWLOCOPT <: LOCOPT ::
//SHRINK/rnd ::

if (locopt<100) {

SHRINK1(rnd) } else {

SHRINK2(rnd) }

//SHRINK1/rnd ::

MAKESUBSET (smaller,set,ATLEAST(rnd,5,
indic), indic)$

//SHRINK2/rnd ::

MAKESUBSET (smaller,set,ATLEAST(rnd,
param, indic), indic)$

redefines NEWLOCOPT (SHRINK), and creates two
new hidden parameters SHRINK1 and SHRINK2 for
NEWLOCOPT. With the above CKit text segment
NEWLOCOPT expands in the same way as LOCOPT,
but SHRINK expands in the newly defined manner.

10 Alternative Program Con-
structs

CKit is prepared to help the programmer through
his/her experiments before he/she writes large
chunks of well-organized codes. The experimental
aspect of CKit is even more pronounced in pro-
viding a framework for alternative program con-
structs. Taking the use of macros we built, we
can attempt to find a maximal sized mixed code
with parameters 8, 1, and 3 with:

|> codes23.x
DIM1 :: 8%
DIM2 :: 1%
DIST :: 3%

ALTERNATIVE1 ::

MAKESET (set, ,)
NEWLOCOPT (set,400,4)
SAVE(set,result.8.1.3)$

ALTERNATIVE2 ::

RETRIEVE (set,result.8.1.3)
LOCOPT(set,400,6)
SAVE(set,result.8.1.3)$

PROG
ALTERNATIVE1
END_PROG

189

The above code contains two programs worth of
macros, but CKit compiles only the one that is in
the definition of ALTERNATIVEL. If later we need
to run the second alternative, we can change the
last three lines of the above program to:

PROG
ALTERNATIVE2
END_PROG

If we encapsulate all our experiments in a macro,
we can easily put several experiments into a sin-
gle file. CKit provides means to automate the
comparison of the outcome of these experiments.
This feature is new to CKit, and we do not go
into the details of it.

Acknowledgments: 1 am grateful to Noga Alon
and Neil Sloane for providing me with test in-
stances from their research. The engine of my
coding theory programs was a clique finder pro-
gram developed by David Johnson and David Ap-
plegate, and I am grateful to them for letting me
use it. Finally, I would like to thank to Kiem-
Phong Vo for his professional advice on my soft-
ware.

References

[1] N. Alon, D. N. Kozlov and V. H. Vu, The ge-
ometry of coin-weighing problems, Proc. 37
IEEE FOCS, IEEE (1996), 524-532

[2] N. Alon and V. H. Vu, Anti-Hadamard ma-
trices, coin weighing, threshold gates and in-
decomposable hypergraphs, J. Combinatorial
Theory, Ser. A, in press.

[3] A.E. Brouwer, Heikki O. Hamalainen, Patric
R. J. Ostergard, N. J. A. Sloane, Bounds
on Mixed Binary/Ternary Codes, accepted to
IEEE transactions on Information Theory

[4] Brian W. Kernighan, Dennis M. Ritchie.
The C Programming Language, Prentice-Hall
Software Series

[5] m4.info,
http://www.inf.tu-dresden.de/info/m4.info

[6] Pre-Processors,
http://www.qpsf.edu.au/software/pre/pre.html

190

[7] Mario Szegedy, The Bipartite Graph Method:
A New Way to Obtain Upper Bounds On
Non-Linear Codes ATT Labs Research, un-
published

[8] Mario Szegedy, Gizella Stefan Szegedy. Man-
ual for the CKit Program Generator Kit, ATT
Labs Research, Tech Report

