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Abstract

Current surface reconstruction algorithms perform satisfactorily on well-sampled, smooth
surfaces without boundaries. $\dot{\mathrm{H}}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}$ , these algorithms have severe problems with under-
sampling. Cases of undersampling are prevalent in real data since often they sample a part
of the boundary of an object, or are derived from a surfaces with high curvature. In this
paper we present an algorithm to detect the regions of undersampling. This information can
be used to reconstruct surfaces with boundaries, and also to localize sharp features in nons-
mooth surfaces. We report the effectiveness of the algorithm with a number of experimental
results. Theoretically, we justify the algorithm with some mild assumptions that are valid for
most practical data.
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1 Introduction
Many applications in CAD, computer graphics and scientific computations involve approximating
a surface from its samples. A piecewise linear approximation to the surface which is sought in

surface reconstruction is often appropriate for visual aids. They also form the control net for
generating limit surfaces with higher continuity using subdivision methods [23].

The two dimensional version of the problem, namely curve reconstruction has been well studied
in the literature [2, 5, 11, 12, 13, 18, 19, 22]. Among the algorithms proposed in the literature for
surface reconstruction, the earlier ones [6, 7, 9, 15, 21] concentrated on the empirical results and
did not focus so much on the theoretical guarantees. Edelsbrunner [14] reports the development
of a commercial software under propriety rights which is based on the ideas of $\alpha$-shapes. Very
recently, starting with the algorithm of [1] three algorithms have been proposed with the guarantee
that the output surface is homeomorphic and geometrically close to the sampled surface. They
are the CRUST algorithm by Amenta and Bern [1], the CO-CONE algorithm by Amenta, Choi, Dey
and Leekha [4], and the natural neighbor algorithm by Boissonat and Cazals [8]. The theoretical
guarantee provided by these algorithms requires that the given data sample a surface densely. All
these algorithms run into serious trouble if this condition is not met. In practice, the data may
sample only part of a surface densely. This may be intentional for introducing boundaries, may
be accidental for high curvature regions, or may be unavoidable due to non-smoothness.

In this paper we present an algorithm that detects the regions of undersampling under some
assumptions that are reasonable for most practical data. This information is used in the co-
cone algorithm [4] to reconstruct the surface patches that are well sampled. The main idea of
detecting the locality of undersampled regions is to consider the structure of the Voronoi cells
as indicated in [3]. We mature this idea with new definitions and assumptions and present a
proof that the algorithm finds undersampled regions. Our algorithm finds immediate application
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in reconstructing surfaces with boundaries and also in detecting sharp features in non-smooth
surfaces. To our knowledge, boundaries and non-smoothness pose serious difficulty in surface
reconstruction, and none of the known algorithms can handle them. We present experimental
results with several data sets. The algorithm detects the boundaries in these test cases. It also
points out the regions of high curvature where the surface is undersampled. This information can
be used in a repair phase that fills up the “holes”.

2 Definitions

2.1 Sampling
We base our algorithm on the notion of $\epsilon$-sampling of smooth surfaces as introduced in [1]. The
medial axis of a smooth surface $F\subset \mathbb{R}^{3}$ is the closure of the set of points that have more than
one closest point on $F$ . The local feature size $f(p)$ at a point $p\in F$ is the least distance of $p$ to
the medial axis. The medial bdls at $p$ are defined as the balls that touch $F$ tangentially at $p$ and
are centered on the medial axis. A point set $P\subset F$ is called an $\epsilon$-sample of a surface $F$ if every
point $p\in F$ has a sample within distance of $\epsilon f(p)$ .

Well-sampled patch: Let $S\subseteq F$ be a surface patch such that each point $x\in S$ has a sample
within $\epsilon f(x)$ distance and $S$ is maximal in the sense that no other point $y\not\in S$ has this property.
Notice that $S$ may have several components. Boundaries of $S$ coincide with the boundaries of
undersampled regions in $F$ . Our goal is to recognize the boundaries in $S$ and reconstruct it from
sample $P$ .

2.2 Boundaries
For any compact surface $S$ we can distinguish interior points from the boundary points. An
interior point has a neighborhood homeomorphic to the open disc $\mathrm{D}^{2}=\{x\in \mathbb{R}^{2} : |x|<1\}$ . A
boundary point, on the other hand, has a neighborhood homeomorphic to the halfdisc $\mathrm{D}^{2}\cap \mathbb{P}_{+}$

which is open in the halfspace $\mathbb{P}_{+}=\{(x, y)\in \mathbb{R}^{2} : x\geq 0\}$ .
For the reconstruction of $S$ only the finite set of sample points $P$ is given that well samples $S$ .

Even though all points in $P$ may be interior points of $S$ , the existence of a non empty boundary
should reflect itself in the sample points. We are looking for a definition of interior and boundary
points for a finite sample from a surface that captures the intuitive difference between interior and
boundary points. We base our definition on the restricted Voronoi diagram as introduced in [16].

Restricted Voronoi diagram: Let $P$ be a sample of a compact surface $S$ with or without
boundary embedded in $\mathbb{R}^{3}$ . Denote the Voronoi diagram of $P$ by $V_{P}$ . The restriction of $V_{P}$

on the surface $S$ defines the restricted Voronoi diagram containing the restricted Voronoi cells
$V_{p,S}=V_{p}\cap S$ .

The dual of the restricted Voronoi diagram defines the restricted Delaunay triangulation $D_{P,S}$ .
Specifically, an edge $pq$ is in $D_{P,S}$ iff $V_{p,S}\cap V_{q,S}=\emptyset$ ; a triangle $pqr$ is in $D_{P,S}$ iff $V_{p,S}\cap V_{q,S}\cap V_{r,S}=\emptyset$

and a tetrahedron pqrs is in $D_{P,S}$ iff $V_{p,S}\cap V_{q,S}\cap V_{r,S}\cap V_{s,S}=\emptyset$ . Edelsbrunner and Shah [16]
showed that if each restricted Voronoi cell (defined recursively with dimensions) is a closed ball,
and the same condition holds for the boundary of $S$ , then $S$ is homeomorphic to $D_{P,S}$ . This leads
us to define the neighborhood of a sample point $p$ as $V_{p,S}$ .

Using this definition of neighborhood we define interior vertices. All vertices that are not
interior are called boundary vertices.
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Deflnition 1 (Interior and boundary vertices) A sample point $pfmm$ a sample $P$ of $S$ is
called interior vertex if $V_{p,S}$ does not contain a boundary point of S. Sample points that are not
interior are called boundary vertices.

Arguments of [1] can be used to show that the neighborhoods of interior vertices are homeo-
$\dot{1}$

morphic to disks if $P$ is an $\epsilon$-sample of $S$ with $\epsilon<0.1$ .

2.3 Flat vertices
Our goal is to detect boundary vertices algorithmically and to exploit this information for surface
reconstruction. Given only a finite sample $P$ from a surface $S$ embedded in $\mathbb{R}^{3}$ we cannot construct
the restricted Voronoi diagram $V_{P,S}$ , because the surface $S$ is unknown to us. Therefore we cannot
exploit our definition of interior and boundary vertices algorithmically.

To cope with this problem we define a flatness condition and show that boundary vertices
cannot be flat whereas interior vertices with well sampled neighborhoods are flat. This definition
uses the definitions of poles and the width and heights of Voronoi cells. The benefit we get from
the definition of flat vertices is that it can be exploited algorithmically.

Ray: In
$\mathrm{w}\mathrm{h}.\mathrm{a}\mathrm{t}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{s},\mathrm{w}\mathrm{e}$ will denote the

$\mathrm{r}..\mathrm{a}\mathrm{y}$ from $p$ to $y\mathrm{w}$.ith $\vec{y}$ for any $\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}$ point $p$ a.nd any
point $y\in V_{p}$ .

Angles: We use the notation $\angle(v_{1}^{arrow}, v_{2}^{arrow})$ to denote the acute angle between the lines supporting
two vectors $v_{1}^{arrow}$ and $v_{2}^{arrow}$ .

Poles: Given a finite point set $P\subset \mathbb{R}^{3}$ , let $V_{p}$ be the Voronoi cell of a point $p\in P$ . We borrow
the definition of poles from [1]. The vertex $v_{p}^{+}$ of the Voronoi cell $V_{p}$ which is farthest from the
point $p$ is called the positive pole of $V_{p}$ . Assuming that $P$ does not lie on a plane, $v_{p}^{+}$ always exists.
The negative pole of $V_{p}$ is the farthest point $v_{p}^{-}\in V_{p}$ from $p$ such that $v_{p}arrow-$ . $v_{p}arrow+<0$ . Basically,
negative pole is the farthest point in $V_{p}$ in the “opp.o.site direction” of the positive pole.

$Co$-cone: The set $C_{p}= \{y\in V_{p} : \angle(y^{arrow}, v_{p}^{\sim+})\geq\frac{3\pi}{8}\}$ is called the $\mathrm{c}\mathrm{o}$-cone of $p$ . Basically, $C_{\mathrm{p}}$ is
the complement of a double cone (clipped within $V_{p}$ ) centered at $p$ with an opening angle $\frac{3\pi}{8}$ . See
Figure 1 for an example of a co-cone.

$Co$ -cone neighbors: Given a finite sample $P$ , the set $N_{p}=\{q\in P : C_{p}\cap V_{q}\neq\emptyset\}$ is called the
set of $\mathrm{c}\mathrm{o}$-cone neighbors of $p$ .

Width and height of Voronoi cells: The width $w(V_{\mathrm{p}})$ of the Voronoi cell $V_{p}$ of $p$ is defined as the
radius of $C_{p}$ , i.e., $w(V_{p})= \max\{|py| : y\in C_{p}\}$ , see also Figure 1. Let $h^{+}(V_{p})$ and $h^{-}(V_{p})$ denote the
lengths $|pv_{p}^{+}|$ of $v_{p}arrow+\mathrm{a}\mathrm{n}\mathrm{d}|pv_{p}^{-}|$ of $v_{p}arrow-\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{y}$ . Define the height $h(V_{p})$ as $\min(h^{+}(V_{p}), h^{-}(V_{p}))$ .

Now, we are prepared to define flatness, which depends on two parameters $\rho$ and $\theta$ .

Definition 2 (Flatness) A sample point $p\in P$ is called flat if the following two conditions hold:

1. Ratio condition: $\rho w(V_{p})\leq h(V_{\mathrm{p}})$

2. Normal condition: $\forall q$ with $p\in N_{q},$ $\angle(v_{p}^{+}, v_{q}^{+})\leq\theta$ .

Ratio condition imposes that the Voronoi cell $V_{p}$ is long and thin in the directions of the pole
vectors $v_{\mathrm{p}}\mathrm{a}\mathrm{n}\mathrm{d}\wedge\vdash v_{p}arrow-$ . The normal condition stipulates that the direction of elongation of $V_{p}$ matches
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Figure 1: A Voronoi cell together with the normalized pole vector and the $\mathrm{c}\mathrm{o}$-cone (shaded).

with that of any vertex whose $\mathrm{c}\mathrm{o}$-cone neighbor is $p$ . In the proof we use $\rho=\frac{1}{1.3\epsilon}$ and $\theta=0.14$

radians.

3 Assumptions and Theorems
Our goal is to exploit the definition of flat vertices in a boundary detection algorithm. In Theorem
1 we prove that interior vertices with well sampled neighborhoods are flat. In Theorem 2 we prove
that the boundary vertices cannot be flat. These two theorems form the basis of our boundary
detection algorithm. We omit the proofs of these two theorems in this version. See [10] for details.

In the proofs we assume $\epsilon\leq 0.01,$ $\rho=\frac{1}{1.3\epsilon}$ and $\theta=0.14$ radians. With these values we can
show that interior vertices satisfy the ratio condition. However, the normal condition may not
hold for all of them. Nevertheless, we can show that a subset of interior vertices that have well
sampled neighborhoods satisfy the normal condition. To be precise we introduce the following
definition.

Definition 3 (Deep interior vertex:) An interior vertex $p$ is called deep if it does not have
any boundary vertex as Voronoi neighbor.

Theorem 1 All deep interior vertices are flat.
For Theorem 2 we need some boundary assumptions. The first assumption (i) says that bound-

ary vertices remain as boundary even if $S$ is expanded with a small collar around its boundary,
and the assumption (ii) stipulates that the boundaries be “well separated”.

Assumption 1 (Boundary assumption)

$i$ . The restricted Voronoi cell of a boundary vertex is a disk. The surface patch $S’\supset S$ with
the condition that any $x\in S’$ has a sample within $\delta f(x)$ distance for some $\delta>\epsilon$ defines the
same set of boundary vertices as $S$ does. We will need $\delta=1.3\Delta\epsilon$ for our proofs, where $\Delta$ is

defined as $\max\{\frac{h(V)}{f(p)}\}$ .

$ii$ . Neighborhood of each boundary vertex intersects the neighborhood of at least an interior
vertex.

Theorem 2 Boundary vertices cannot be flat.
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Remark. It is interesting to note that one can assume the surface $F$ to have small features around
any sample point to render it as a boundary point in our definition. After all, the surface $F$ is
unknown to us. This should reflect in our assumptions and proofs. Observe that, the smaller the
feature size gets, the larger gets $\Delta$ as $\Delta=\max\{\frac{h}{f(}Ep\overline{)}\}$ . In order for boundary assumption to be
valid, we need $\delta$ to be fixed even though $\Delta$ increases. This requires $\epsilon$ to decrease as $\delta=1.3\Delta\epsilon$ .
But, decreasing $\epsilon$ would require a larger value $\mathrm{o}\mathrm{f}\rho\wedge\cdot$ Thus, indeed larger value of $\rho$ are needed to
detect more vertices as boundary.

4 Boundary detection
The algorithm for boundary detection first computes the set of interior vertices, $R$ , that are flat.
It uses two parameters $\rho$ and $\theta$ to check the ratio and normal conditions. In theory, we require

$1\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}1\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{A}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}2\mathrm{g}\mathrm{u}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}R\mathrm{i}\mathrm{s}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{y}$ .
$\mathrm{I}\mathrm{n}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}R\rho=\frac{1}{1.3\epsilon,\mathrm{r}\theta}$

.
$\mathrm{a}\mathrm{n}\mathrm{d}\theta=0.14.\mathrm{H}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r},\mathrm{i}\mathrm{n}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{w}\mathrm{e}\mathrm{o}\mathrm{b}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{o}\mathrm{o}\mathrm{d}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{r}\rho \mathrm{a}\mathrm{n}\mathrm{d}$

is expanded to include all interior vertices in an iterative procedure. A generic iteration proceeds
as follows. Let $p$ be any co-cone neighbor of a vertex $q\in R$ so that $p\not\in R$ and $V_{p}$ satisfies the ratio
condition. If $v_{p}^{+}$ and $v_{q}^{+}$ make small angle up to orientation, i.e., if $\angle(v_{p}^{arrow+}, v_{q}^{arrow+})\leq\theta$ , we include $p$

in $R$ . If no such vertex can be found, the iteration stops. We argue that $R$ includes only and all
interior vertices at the end. The rest of the vertices are detected as boundary ones.

The following routine $\mathrm{I}\mathrm{s}\mathrm{F}\mathrm{L}\mathrm{A}\mathrm{T}$ checks the conditions stated in Definition 2 to detect flat vertices.
The input is a sample point $p\in P$ with a parameter $\rho$ that measures the height $\mathrm{v}\mathrm{s}$ . width ratio for
$V_{p}$ . The return value is true if $p$ is a flat vertex, and false otherwise. The routine BOUNDARY
uses $\mathrm{I}\mathrm{s}\mathrm{F}\mathrm{L}\mathrm{A}\mathrm{T}$ to detect the boundary vertices.

$\mathrm{I}\mathrm{s}\mathrm{F}\mathrm{L}\mathrm{A}\mathrm{T}(p\in P, \theta, \rho)$

1 compute the width $w(V_{p})$ and the height $h(V_{p})$

2 if $\rho w(V_{p})\leq h(V_{p})$

3 if $\forall q$ with $p\in N_{q}$ : $\angle(v_{p}v_{q})\sim\vdash,arrow+\leq\theta$

4 return true
5 return false

BOUNDARY $(P, \theta, \rho)$

1 $R:=\emptyset$

2 for all $p\in P$

3 if $\mathrm{I}\mathrm{s}\mathrm{F}\mathrm{L}\mathrm{A}\mathrm{T}(p)R:=R\cup p$

4 while $\exists p\not\in R$ and $\exists q\in R$ with $p\in N_{q}$ ,
and $\rho w(V_{p})\leq h(V_{p})$ and $\angle(v_{p}^{+}, v_{q}^{+})\leq\theta$

$5$ $R:=R\cup p$

6 return $P\backslash R$

4.1 Justification
We can show that BOUNDARY computes all and only boundary vertices if we make the following
assumption. Notice that this assumption is valid for most practical data. The proof of the claim
is available in [10].

Assumption 2 (Interior assumption) Each interior vertex is path connected to a deep interior
vertex in the restricted Delaunay triangulation of $S$ .
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Figure 2 shows two triangulations of the dataset FOOT. The first triangulation is computed
with the CO-CONE algorithm [4] without boundary detection. The second triangulation is com-
puted with the modified CO-CONE algorithm that uses BOUNDARY to detect boundary vertices.
biangles incident to the boundary vertices are shaded darker.

(a) (b)

Figure 2: hiangulation of the dataset FOOT (a) without boundary detection; the big hole above
the ankle is covered with triangles, (b) with boundary detection using the algorithm BOUNDARY;
the hole above the ankle is well detected.

Non-smoothness
Recall that our theory is based on the assumption that the sampled surface is smooth. However, we
observe that the boundary detection algorithm also detects undersampling in non-smooth surfaces,
see Figure 3 and also Figure 7, 8 and 10. The ability to handle non-smooth surfaces owes to the fact
that non-smooth surfaces may be approximated with a smooth one that interpolates the samples.
For example, one can resort to the implicit surface that is $C^{1}$ -smooth and interpolates the sample
points using natural co–ordinates as explained in [8]. For higher order continuity results of [20]
can be called upon. These smooth surfaces have high curvatures near the sharp features of the
original non-smooth surface. Our theory can be applied to the approximating smooth surface to
ascertain that the samples in the vicinity of sharp features act as boundary vertices in the vicinity
of high curvatures for the smooth surface.

Figure 3: Boundary vertices are detected in the vicinity of the sharp edge in HALFSPHERE, triangles
incident to boundary vertices are shaded darker.
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5 Surface reconstruction
Our goal is to reconstruct a smooth compact surface $S\subset \mathbb{R}^{3}$ which may have a non-empty
boundary from a finite sample $P\subset S$ . For this purpose we modify the $\mathrm{C}\mathrm{O}$-CONE algorithm [4]
such that it is capable of reconstructing surfaces with boundary. Like the CRUST the CO-CONE
algorithm consists of three steps:

(1) CANDIDATETRIANGLEEXTRACTION. In this step a set of candidate triangles for the recon-
struction is extracted from the Delaunay triangulation of the sample points. In general the
underlying space of these triangles is. not a manifold, but a manifold with boundary can be
extracted in the next two steps.

(2) PRUNING. The candidate $\dot{\mathrm{t}}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e}\mathrm{s}$ are already close to a manifold for sufficiently dense
samples. We want to extract a manifold from this set by walking on the outside or inside of
this set. During the walk we may encounter the problem of entering a triangle $t$ which has
a bare edge, i.e., an edge incident to a single triangle, namely $t$ . The purpose of this step is
to get rid of these edges with their incident triangles.

(3) WALK. We walk on the out- or inside of the set of triangles that remained after pruning
and report the triangles walked over.

We modify the first step of CO-CONE algorithm for boundary detection. In the original co-
cone algorithm each sample chooses a set of candidate triangles incident to it. In the modified
algorithm, only the interior vertices are allowed to choose the candidate triangles.

CANDIDATETRIANGLEEXTRACTION $(P\subset \mathbb{R}^{3}, \theta\in(0, \pi/2), \rho)$

1 compute the Voronoi diagram $V_{P}$

2 $CandidateTriangles:=DelaunayTriangles$
3 $B:=\mathrm{B}\mathrm{o}\mathrm{u}\mathrm{N}\mathrm{D}\mathrm{A}\mathrm{R}\mathrm{Y}(P, \theta, \rho)$

4 for each sample $p\in P$

5 if $p\not\in B$ .
6 for each Voronoi edge $e\in V_{p}$

7 if $C_{p}\cap e\neq\emptyset$

8 e.Mark.insert $(p)$ . $\mathrm{v}$

9 for each Voronoi edge $e\in V_{P}$

10 for each $p\in \mathrm{D}\mathrm{u}\mathrm{A}\mathrm{L}\mathrm{T}\mathrm{R}\mathrm{I}\mathrm{A}\mathrm{N}\mathrm{G}\mathrm{L}\mathrm{E}(e)\cap P$

11 if $(p\not\in B)$ and $(p\not\in e.Mark))$

12 CandidateTriangles.delete$(\mathrm{D}\mathrm{u}\mathrm{A}..\iota \mathrm{T}\mathrm{R}\mathrm{I}\mathrm{A}\mathrm{N}\mathrm{G}\mathrm{L}\mathrm{E}(e))-$

13 return CandidateTriangles

First the set CandidateTriangles is initialized to the set of all Delaunay triangles (line 2).
This set gets filtered subsequently. Each Voronoi edge $e$ has a field Mark that collects the samples
whose $\mathrm{c}\mathrm{o}$-cones intersect $e$ (line 7). This check is done only if the sample is not a boundary vertex.
In other words, only interior vertices mark the Voronoi edges that intersect their $\mathrm{c}\mathrm{o}$-cones. Next,
we look at the markings of the Voronoi edges and delete their dual triangles from the candidate
set if they are not marked by an adjacent sample which is interior (lines 10-12). In essence, we
rely only on the triangles that are chosen by interior vertices and a triangle is in the candidate set
only if all of its interior vertices have chosen it.

The second step PRUNING removes triangles incident to sharp edges in a cascaded manner as
was originally suggested in [1]. An edge $e$ is called sharp if there are two consecutive triangles
incident to $e$ such that the angle between them is more than $3\pi/2$ . An edge is also called sharp
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if it has only one incident triangle. We have to be careful in this step not to trigger the cascaded
deletion of the desired surface by deleting a triangle incident on a boundary vertex which has a
bare edge. So, we remove a triangle only if it is not incident on a boundary vertex.

Let $K$ be a two dimensional simplicial complex.

PRUNING $(K)$

1 Pending: $=\emptyset$

2 for each edge $e\in K$

3 Pending.push$(e)$

4 while Pending $\neq\emptyset$

5 $e:=Pending.pop()$
6 if $\mathrm{I}\mathrm{s}\mathrm{S}\mathrm{H}\mathrm{A}\mathrm{R}\mathrm{P}(e)=\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}$

7 for each $t\in e.Triangles$

8 if $\forall(p\in t\cap P)p\not\in B$

9 $K:=K\backslash \{t\}$

10 for each $e’\in t.Edges\backslash \{e\}$

11 Pending.push$(e’)$

12 return $K$

First a stack Pending is initialized empty (line 1). Then all edges in the complex $K$ are pushed
onto this stack (lines 2 and 3). Together with every triangle $t$ we store a list Edges of its edges.
With each edge $e$ we store a set Triangles of triangles incident to $e$ . We assume that we have
a function $\mathrm{I}\mathrm{s}\mathrm{S}\mathrm{H}\mathrm{A}\mathrm{R}\mathrm{P}$ available that requires an edge $e$ as input and returns true if $e$ is sharp and
false if $e$ is not sharp. As long as the stack Pending is not empty, an edge $e$ is popped from
the stack. If this edge is sharp, all those incident triangles are removed from the complex $K$ that
are not incident to a boundary vertex. All edges other than $e$ that are incident to the deleted
triangle $t$ are pushed onto the stack Pending (lines 4–11). These edges may become sharp due
to the deletion of the triangle $t$ . Observe that during deleting triangles we not only check if it
is incident to a sharp edge, but also check if it is incident to any boundary vertex. Finally, the
reduced complex $K$ is returned (line 12).

The third step WALK extracts a manifold.

WALK $(K)$

1 Surface $:=\emptyset$

2 choose arbitrary oriented $t\in K$

3 Surface.insert $(t)$

4 Pending: $=\emptyset$

5 for each $earrow\in t.Edges$

6 Pending.push$((e, tarrow))$

7 while Pending $\neq\emptyset$

8 $(etarrow,):=Pending.pop()$

9 if e.processed $=\mathrm{f}$ alse
10 e.processed: $=\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}$

11 $t’:=\mathrm{S}\mathrm{u}\mathrm{R}\mathrm{F}\mathrm{A}\mathrm{C}\mathrm{E}\mathrm{N}\mathrm{E}\mathrm{I}\mathrm{G}\mathrm{H}\mathrm{B}\mathrm{O}\mathrm{R}(K, etarrow,)$

12 if $t’\neq\emptyset$

13 Surface.insert $(t’)$

14 for each $e^{\neg}\in t’.Edges\backslash \{e\gamma$

15 Pending.push$((et’\neg,))$

16 return Surface
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First we initialize the set Surface empty (line 1). Then we choose an arbitrary triangle $t$ from
the complex $K$ , orient it and insert it in the the set Surface (lines 2 and 3). Next we initialize
the stack Pending empty (line 4). From the orientation of the chosen triangle $t$ we derive an
orientation for all edges incident to $t$ . These edges are stored in a field Edges associated with
every triangle. We denote an oriented edge $e$ by $earrow$. For each oriented edge $e$ of triangle $t$ , we
push the pair $(etarrow,)$ onto the stack (lines 5 and 6). As long as the stack Pending is not empty, we
pop its top element $(etarrow,)$ (line 8). If the edge $e$ is not processed so far we use the field processed
to mark it processed and compute the surface neighbor of $(etarrow,)$ , i.e. the triangle $t’$ incident to $e$

that ‘best fits’ $t$ (lines 9-11). If $t’$ does not exist, the triangle $t$ is incident to the boundary. We
insert $t’$ in the set Surface (lines 12 and 13). We assume that the function $\mathrm{S}\mathrm{u}\mathrm{R}\mathrm{F}\mathrm{A}\mathrm{C}\mathrm{E}\mathrm{N}\mathrm{E}\mathrm{I}\mathrm{G}\mathrm{H}\mathrm{B}\mathrm{O}\mathrm{R}$

orients $t’$ such that its orientation matches the orientation of $t$ and push all the pairs of oriented
edges $e^{\neg}$ besides $e\mathrm{i}arrow \mathrm{n}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}$ to $t’$ together with the triangle $t’$ itself onto the stack Pending (lines
14 and 15). Finally we return the surface Surface (line 16). The above method works under the
assumption that the surface is orientable, i.e., surfaces like M\"obius strip are not allowed.

The return value $t’$ of $\mathrm{S}\mathrm{u}\mathrm{R}\mathrm{F}\mathrm{A}\mathrm{C}\mathrm{E}\mathrm{N}\mathrm{E}\mathrm{I}\mathrm{G}\mathrm{H}\mathrm{B}\mathrm{O}\mathrm{R}(C, etarrow,)$ is the topmost triangle triangle among the
set of triangles incident to $e$ whose normals (oriented according to the orientation of $t$ ) make an
angle smaller than $\frac{\pi}{2}$ with the normal of $t$ , see Figure 4.

Figure 4: The surface neighbor of the dark grey shaded triangle is the topmost triangle among
the light grey shaded triangles.

Putting the three steps CANDIDATETRIANGLEEXTRACTION, PRUNING and WALK together
gives the modified CO-CONE algorithm.

CO-CONE $(P\subset \mathbb{R}^{3}, \theta\in(0, \pi/2), \rho)$

1 $K:=\mathrm{C}\mathrm{A}\mathrm{N}\mathrm{D}\mathrm{I}\mathrm{D}\mathrm{A}\mathrm{T}\mathrm{E}\mathrm{T}\mathrm{R}\mathrm{I}\mathrm{A}\mathrm{N}\mathrm{G}\mathrm{L}\mathrm{E}\mathrm{E}\mathrm{x}\mathrm{T}\mathrm{R}\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{I}\mathrm{O}\mathrm{N}(P, \theta, \rho)$

2 $K’:=\mathrm{P}\mathrm{R}\mathrm{U}\mathrm{N}\mathrm{I}\mathrm{N}\mathrm{G}(K)$

3 $K”:=\mathrm{W}\mathrm{A}\mathrm{L}\mathrm{K}(K’)$

4 return $K”$

6 Implementation and results
As with many other geometric algorithms we faced the numerical robustness as an important
issue in implementing CO-CONE. There are two main sources of problems. First, algorithms
and data structures defined under a general position assumption do not work for practical data
sets since such degenerate situations do occur. Second, we need to evaluate geometric predicates
which are difficult to compute exactly (especially if the situation is close to a degenerate one). To
cope with this problem we resort to the robust library of geometric algorithms called CGAL [24]
developed by an European consortium of seven universities. The library consists of $\mathrm{C}++\mathrm{t}\mathrm{e}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e}$
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code which makes it easy to use different number types and implementations of predicates for the
computation.

For our implementation of the CO-CONE algorithm we used the Delaunay triangulation from
the CGAL library together with filtered predicates. Computation of filtered predicates simulates
exact evaluation on a demand basis and thus runs faster than predicate evaluations with exact
arithmetic. Instead of filtered predicates if we use floating point arithmetic the running time
decreases roughly by a factor of two, see Table 2. However, results may not be reliable.

Besides robustness we encountered a problem which is more inherent to our algorithm: Some
data contain noise beyond the tolerance of the CO-CONE algorithm. This may turn some interior
vertices as “false boundary vertices”. These points are detected as interior by BOUNDARY, but
their incident candidate triangles after the CO-CONE step do not form a flat disk. Thus, the
pruning step runs the risk of deleting the desired output since it does not recognize these “false
boundary vertices”. That means, it can happen that during the PRUNING step all triangles are
removes that are not incident to a boundary vertex. To cope with this problem, we employ a
safety check $\mathrm{H}\mathrm{A}\mathrm{s}\mathrm{U}\mathrm{M}\mathrm{B}\mathrm{R}\mathrm{E}\mathrm{L}\mathrm{L}\mathrm{A}$ to each vertex.

6.1 Umbrella check

An umbrella incident to a vertex $p\in K$ is a set of triangles incident to $p$ which form a topological
closed disc $\mathrm{I}\wp$ . An umbrella is called sharp if it contains a sharp edge. $\mathrm{H}\mathrm{A}\mathrm{s}\mathrm{U}\mathrm{M}\mathrm{B}\mathrm{R}\mathrm{E}\mathrm{L}\mathrm{L}\mathrm{A}$ deletes
the sharp edges and their incident triangles in a cascaded manner. But, unlike pruning this
cascaded deletion is applied only to edges and triangles incident to the vertex being checked.
If the vertex retains a triangle after this cascaded deletion, $\mathrm{H}\mathrm{A}\mathrm{s}\mathrm{U}\mathrm{M}\mathrm{B}\mathrm{R}\mathrm{E}\mathrm{L}\mathrm{L}\mathrm{A}$ returns true. To
avoid misunderstandings note that $\mathrm{H}\mathrm{A}\mathrm{s}\mathrm{U}\mathrm{M}\mathrm{B}\mathrm{R}\mathrm{E}\mathrm{L}\mathrm{L}\mathrm{A}$ removes the triangles only virtually, i.e. after
applying $\mathrm{H}\mathrm{A}\mathrm{s}\mathrm{U}\mathrm{M}\mathrm{B}\mathrm{R}\mathrm{E}\mathrm{L}\mathrm{L}\mathrm{A}$ to a point $p$ of a complex $K$ the set of triangles incident to $p$ is exactly
the same as it was before. That means, $\mathrm{H}\mathrm{A}\mathrm{s}\mathrm{U}\mathrm{M}\mathrm{B}\mathrm{R}\mathrm{E}\mathrm{L}\mathrm{L}\mathrm{A}$ is only used to check if a point has a non
sharp umbrella but not to alter the complex $K$ .

$\mathrm{H}\mathrm{A}\mathrm{s}\mathrm{U}\mathrm{M}\mathrm{B}\mathrm{R}\mathrm{E}\mathrm{L}\mathrm{L}\mathrm{A}(K, p\in K)$

1 Umbrella: $=p.Triangles$
2 Pending $:=\emptyset$

3 for every edge $e\in p.Edges$

4 Pending.push $(e)$

5 while Pending $\neq\emptyset$

6 $e:=Pending.pop()$
7 if $\mathrm{I}\mathrm{s}\mathrm{S}\mathrm{H}\mathrm{A}\mathrm{R}\mathrm{P}(e)=\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}$

8 for each $t\in e.Triangles$

9 Pending.push $(t\cap(p.Edges\backslash e))$

10 Umbrella.delete $(t)$

11 if Umbrella $=\emptyset$

12 return false
13 return true

First the set Umbrella is initialized to the set of triangles incident to $p$ (line 1). Next we
initialize the stack Pending empty (line 2). Then we push all edges $e$ incident to $p$ onto the stack
Pending (lines 3 and 4). We assume that the edges incident to $p$ are stored in the set Edges and
the triangles incident to $p$ are stored in the set Triangles. As long as the stack Pending is not
empty we pop its top element. If this element is a sharp edge $e$ , we delete all triangles incident to
$e$ in the complex $K$ from the set Umbrella, and push all edges incident to such a triangle and the
point $p$ besides the edge $e$ onto the stack Pending (lines 5-11). Finally we return false if the set

Umbrella is empty and true otherwise.
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The boundary vertices detected by our implementation are the union of the boundary vertices
detected by the algorithm BOUNDARY and the vertices not detected by the algorithm HASUM-
BRELLA. We observe that PRUNING with this enlarged set of boundary vertices is safe. For samples
from smooth surfaces that fulfill the sampling condition we observe that UMBRELLACHECK is not
necessary.

6.2 Parameters and precision
In the proofs we choose the ratio $\rho$ of the height to the width of a Voronoi cell to be more than
$\frac{1}{1.3\in}$ . In practice a value between 1.1 and 1.7 gives good results. Increasing this ratio detects more
points as boundary as can be observed in Figure 5.

(a) (b)

Figure 5: Both figures show the reconstructed heel of the dataset FOOT for different values of $\rho$ .
In (a) this ratio is 1.5 and in (b) it is 4.3.

Although $\theta$ is 0.14 radians in theory, a value as large as $\frac{\pi}{6}$ gives good results. We observed that
the output is quite sensitive to the opening angle of the double cones that defines $\mathrm{c}\mathrm{o}$-cones. If this
angle is decreased, the width increases with the inverse of the $\sin$ of this angle. Thus, the height
$\mathrm{v}\mathrm{s}$ . width ratio deteriorates quite sharply forcing the ratio condition fail for many vertices. On
the other hand, if we make this angle larger $\mathrm{c}\mathrm{o}$-cones become thinner which may not allow some
of the desired triangles to be captured as candidate triangles. We used $\frac{3\pi}{8}$ to define the co-cones
both in theory and practice.

As mentioned earlier, numerical robustness is an important issue in our reconstruction software.
Figure 6 shows the reconstruction for the dataset HALFSPHERE with floating point arithmetic and
with filtered exact arithmetic. Numerical problem occurs in this dataset since it contains many
$\mathrm{c}\mathrm{o}$-planar points causing degeneracies in the Delaunay triangulation. As a result the Delaunay
triangulation is computed incorrectly. CO-CONE takes 1.9 seconds computing time with floating
point arithmetic compared to 3 seconds with filtered predicates. Figure 7 shows the effect of using
filtered predicates instead of floating point arithmetic for the OILPUMP dataset. Floating point
arithmetic takes 469 seconds for the reconstruction whereas filtered exact arithmetic takes 966
seconds. Considering the tradeoff between running. time and robustness our experiments show
that one should accept increased running time for reliable computations.

6.3 More datasets
We have experimented with many other datasets, some of which are listed below. In the figures
the triangles incident with boundary vertices are shaded darker.
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(a) (b)

Figure 6: Left and right figures show the reconstructed HALFSPHERE with floating point and exact
arithmetic respectively.

(a) (b)

Figure 7: Reconstruction of the dataset OILPUMP (a) with floating point arithmetic and (b) with
filtered exact arithmetic; sharp features are.. well detected.

The dataset ENGINE has three connected components. CO-CONE nicely $\mathrm{s}\mathrm{e}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}\vee$ the three
connected components and identifies the boundaries of the two outer shells. It also identifies the
sharp tip of the innermost component, see Figure 8.

Figure 8: Boundaries and sharp tip in ENGINE are detected.
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The dataset CAT: This dataset contains a single boundary at the bottom of the cat and some
undersampled regions, especially at the ears and legs. Figure 9 shows the detected boundary and
undersampled regions.

Figure 9: The dataset CAT.

The dataset KNUCKLE: This is a challenging dataset for reconstruction, because it contains
many undersampled parts. This undersampling is mostly due to sharp features. Figure 10 shows
how the CO-CONE algorithm deals with undersampling. Most of the sharp features are well
detected. Two regions where undersampling is extreme are shown with a zoom.

(a) (b) (c)

Figure 10: Reconstruction of the dataset KNUCKLE. In (a) the entire reconstruction is shown and
in (b) and (c) two undersampled parts are zoomed.

The dataset MANNEQUIN: This dataset contains one boundary at the bottom and undersam-
pled regions in eyes, lips and ears. Figure 11 shows the reconstruction of this dataset with and
without boundary detection. Using boundary detection the CO-CONE detects the boundary at
the bottom as expected.

The dataset MONKEY: This dataset is created using the function $(x, y)-\neq x^{3}-3xy^{2}$ on the
unit square. The graph of this function is called monkey saddle. The monkey saddle contains a
single boundary which is perfectly detected. Figure 12 shows the monkey saddle and compares
the output with the output of the CO-CONE algorithm without boundary detection.
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(a) (b)

Figure 11: Reconstruction of the dataset MANNEQUIN (a) with boundary detection and (b) without
boundary detection.

(a) (b)

Figure 12: Reconstruction of the dataset MONKEY (a) with boundary detection and (b) without
boundary detection.

6.4 Running times
We tested the CO-CONE algorithm on many datasets. All the tests were done on a Silicon Octane
computer with 300 Mhz MIPS processor and 512 MByte of main memory. For all datasets we
used $\rho=1.5$ and $\theta=\frac{\pi}{6}$ in the algorithm BOUNDARY.

For rendering we used Geomview [17], provided by the Geometry Center at the University of
Minnesota.

The basic data of our experiments are summarized in Table 1. The running times are with
respect to filtered exact arithmetic. Observe that in all cases the number of triangles is roughly
twice the number of points, which is expected from Euler’s formula.

Table 2 allows a closer look on the running times. We also included the timings when using
floating arithmetic.

Since the CO-CONE algorithm is logically split into three steps: Delaunay triangulation, Bound-
ary detection and Surface reconstru$c$tion we measure the CPU times for each of these three steps.

As expected the Delaunay triangulation computation is the most time consuming step. The
running times using filtered arithmetic are almost twice as high as the running times using floating
point arithmetic, but they are still in a reasonable range. The total running time shows a sub
quadratic behavior with respect to the number of sample points.
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object
number of

points
number of
triangles

running
time(sec.)

$\ovalbox{\tt\small REJECT}_{0^{\mathrm{O}\mathrm{N}\mathrm{K}\mathrm{E}\mathrm{Y}}}\mathrm{M}\mathrm{A}\mathrm{N}\mathrm{N}\mathrm{E}\mathrm{Q}\mathrm{U}\mathrm{I}\mathrm{N}1277221\mathrm{K}\mathrm{U}\mathrm{N}\mathrm{C}\mathrm{K}\mathrm{L}\mathrm{E}601407912085243374\mathrm{M}10000196001620\mathrm{E}\mathrm{N}\mathrm{G}\mathrm{I}\mathrm{N}\mathrm{E}11360223561040\mathrm{F}\mathrm{o}\mathrm{O}\mathrm{T}2002139997592\mathrm{I}\mathrm{L}\mathrm{P}\mathrm{U}\mathrm{M}\mathrm{P}3093361041966\mathrm{C}\mathrm{A}\mathrm{T}1000019826311$

Table 1: Experimental data.

object Delaunay Boundary Reconstruction

$\ovalbox{\tt\small REJECT}_{0^{\mathrm{O}\mathrm{N}\mathrm{K}\mathrm{E}\mathrm{Y}}}\mathrm{M}\mathrm{A}\mathrm{N}\mathrm{N}\mathrm{E}\mathrm{Q}\mathrm{U}\mathrm{I}\mathrm{N}135- 57136- 77103- 77\mathrm{K}\mathrm{N}\mathrm{U}\mathrm{C}\mathrm{K}\mathrm{L}\mathrm{E}107- 4260- 3441- 45\mathrm{M}1328- 175- 117- \mathrm{E}\mathrm{N}\mathrm{G}\mathrm{I}\mathrm{N}\mathrm{E}836- 405107- 5897- 59\mathrm{F}\mathrm{o}\mathrm{O}\mathrm{T}233- 99224- 119138- 103\mathrm{I}\mathrm{L}\mathrm{P}\mathrm{U}\mathrm{M}\mathrm{P}414- 154313- 172239- 143\mathrm{C}\mathrm{A}\mathrm{T}121- 50108- 5882- 51$

Table 2: A closer look on the running time of the CO-CONE algorithm in seconds. The first times
(before ‘-,) are with respect to filtered arithmetic and the second times (after ‘-,) are with respect
to floating point arithmetic. (For the MONKEY dataset the CGAL code was not able to compute
the Delaunay triangulation using floating point arithmetic).

7 Conclusions
In this paper we present an algorithm to detect the regions of undersampling in data that are sam-
pled from some surface. This provides a unified approach to reconstruct surfaces with boundaries
and to identify the regions of non-smoothness or high curvature where undersampling does occur.
The existing algorithms with theoretical guarantees fail miserably on such data sets since they
assume that the data is derived from a smooth surface without any boundary. As exhibited by
our empirical results, our boundary detection algorithm correctly identifies the vertices that are
visibly lying on the boundary. Also, it identifies the regions of non-smoothness and high curvature
effectively in practice.

A probable follow up of this work is to investigate how this algorithm can be used to reconstruct
non-smooth surfaces. After detecting the regions of non-smoothness, can we repair the surface to
fill up the “holes”? Currently research on this question is under progress.
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