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Nonstandard Representations of Unbounded Self-Adjoint
Oprators
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1. Introduction

In nonstandard analysis, standardizations of internal (or nonstandard) objects have been
studied for constructing standard mathematical objects; e.g. an internal measure space
is converted into a measure space in the standard sense, called Loeb space ([1][2][3][4]).
The standardization of an internal Hilbert space H is called the nonstandard hull of H,
written as H (Henson and Moore [5]). Then the standardization of an internal operator
A on H with finite norm is naturally defined on , In this paper, the standardization
of A shall be called the standard part of A, written as A A prominent work of Moore
[6] was focused on the case where H is hyperfinite-dimensional, and studied hyperfinite-
dimensional extension of bounded operators on #. On the other hand, in the case where
the norm of A is not finite, it is not straightforward to give an adequate definition of the
standard part of A. Albeverio et al. [4] defined A only when # is hyperfinite-dimensional
real Hilbert space and A is an internal positive symmetric operator on H.

In this paper, we give a definition of A for any internal complex Hilbert space H and
for any internal S-bonded self-adjoint operator A on H, as well as a general consideration
on A so defined, which suggests the adequacy of the definition.

2. Preliminaries

We work in a N;-saturated nonstandard universe [7]. Note that every nonstandard universe
constructed by a bounded ultrapower is R;-saturated.

Let (V,]| - ||) be an internal normed linear space. Define the subspaces p(V, || - ||) and
fin(V, ]| - ||) of V by
p(Vill- 1D ={&eVIgl=0},  fin(V,]]-[]) ={€e V]|l < oo} (1)
We often abbreviate them as u(V') and fin(V'). Let £=¢&+4p(V) and }Af = fin(V)/u(V),
the quotient space. We can naturally define the usual norm || - [ on V by ||€]] = °||£]].
A countably infinite sequence {&}ien, where & € fin(V, || - ||), approzimately converges to
£ € V in the norm || - || if

Vee R"IneNVEeN [k>n = [|£-&] <& (2)
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A sequence {&;}ien approximately converges to £ € V' if and only if {é,-}ieN converges to
€ € V. A sequence {&}ien, where & € fin(V, || - ||), is S-|| - ||-Cauchy if

Vee R" Ine NVk,IeN [ki>n = ||&-¢&| <e] (3)

A sequence {&}ien is S-|| - ||-Cauchy if and only if the sequence {£;};en is Cauchy.

A subset X C fin(V, ||-||) is S-|| - |[-complete if for any S-|| - ||-Cauchy sequence {&;}ien,
there exists £ € X such that {¢;} approximately converges to £ in the norm || - ||. The
subset X is S-|| - ||-complete if and only if X is complete in V, where X = {£|€ € X}.

The following results, called the hull completeness theorem, is a fundamental property
of an internal normed space (V, || - ||). See Hurd and Loeb [3] for detail. '

Theorem 2.1. The subspace fin(V) is S-complete in || - ||.
Corollary 2.2. (The Hull Completeness Theorem) V is a Banach space.

Let H be an internal Hilbert space, and T : H — H an internal bounded linear
operator such that the bound [|T']] is finite. The bounded operator T:H — H, called the
standard part of T, is defined by the relation T2 = Tz for any z € fin(H).

For further information on nonstandard real analysis, we refer to Stroyan and Luxem-
burg [3] and Hurd and Loeb [2]. ' :

3. Several definitions of standard parts

We give several equivalent definitions of the standard part of an internal bounded self-
adjoint operator which is not S-bounded.

The following lemma, which is a basic property for self- adjointness, is used to give the
first definition of standard parts (see [8]). ~

Lemma 3.1. Let A be a symmetric operator on a Hilbert space H. Then, A z'vs self-
adjoint if and only if Rng(A +£1) = H. ’

Let H be an internal Hilbert space, and A an internal bounded self-adjoint operator
on H. Let K = Ker([(A+)7']")*. Using the unitarity of (A +i)(A i)™, we can easily
check that Ker([(A —4)7!]")* = K. |

Proposition 3.2. There ezists the unique (possibly unbounded) self adjoint: operator

S on K satisfying .
(S —l—i)_ =[(A+44)"* ]AUC. ‘ (4)

Proof. We see ||(A+1i)7!{] < oo, and [(A +1)~']" is an bounded normal operator on
#H. The operator T':= [(A+1)7']" ]/C is a bijection from K to [(A +14)"}]"K. Hence the
inverse T~ from [(A+1i)"']"K to K is defined. Clearly the operator S = T~ — i satisfies
the equation (4). )

We will show that S is symmetric. Let z;,z2 € Dom(S) (= [(A +1)7!]"K). Then,
we can show that there exist & € x; such that A& € Sz; (i = 1,2) as follows. There



121

are y; € K and 7, € H such that (S +i)"ly; = [(A+ i)"Y y; = z; and 7; € 3. Let
& = (A+1)7'n. Then & € z; and (A+14)& =n; € y; = (S + 1)a;. Hence A € Su;.
Thus, (z1, Szs) = °(£1, A&y) = °(A&, &) = (Sxy,x9). Therefore, S is symmetric.

To prove the self-adjointness, it is sufficient to show Rng(S +14) = Rng(S —4) = K by
Lemma 3.1. Clearly Rng(S + i) = Rng(T~!) = K. Let € Dom(S), ¢ € z and A¢ € Sz.
Then we have

(j_—}_;)A(S+i)33:(j;:(A—Fi)f)A_:(S—i)x. - (5)
Thus, by the equation (4) with Ker([(A —1)7!]")+ = /@7 we have
(S =) =[(A-)7 K. (6)

Therefore, we can show Rng(S —i) = K in the similar way to the proof of Rng(S+1) = K.
The uniqueness of S is clear. QED

Definition 3.3. Under the condition of Proposition 3.2, define the self-adjoint oper-
ator st1(A) on K by (st1(4) +4)~' = [(A+19)7!"|K.

The operator sty (A) is called the standard part of A. We see that st;(A) = A when A4 is
S-bounded.

Definition 3.4. Let A be an internal bounded operator on H, an internal Hilbert
space. Define fin(A) C H by

fin(A) = {¢ € finH| A € finH}. (7)

Definition 3.5. Let A be an internal bounded self-adjoint operator on H. Let K be
the closure of the subspace [fin(A)] = {£|€ € fin(A)} of H. Define the self-adjoint operator
sta(A) on K by .

eitst:(4) = eitA|C. t e R, (8)

We see that {eﬁ?‘v@}teR is one-parameter unitary group, since K is invariant under ¢4
for all £ € R. We also see that it is strongly continuous as follows. Let £ € fin(A). Then,
we have ||(*d/dt)e wAL|| = |liet AE|| < oo, where *d/dt is the internal differentiation. This

implies that e’t"‘f is continuous with respect to ¢ € R. Thus, eitA ig strongly continuous
on fin(A)~++. Hence by Stone’s theorem, sty(A) is uniquely defined.
If A is S-bounded, sto(A) coincides with A defined in Section 2. This is seen from the

following:
Proposition 3.6. Let A be an internal S-bounded self-adjoint operator. Then,
eith = ¢itA, 9)

for allt € R.
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Proof. For any infinitesimal ¢ € *R{, -

el A — ) id, | (10)
hélds, because |
e €0 1) = il = e S Gedy ol < (el
= e el — 1)~ ||4]| = 0. - "
T hus,‘ by the permanence principle,
V6 € Ry, Je € Ry, t| < e= |71 = 1) —4A| < 5. (11)
Hence, we have
lim lle~ (e“A I - zA|| =0. (12)

Thus we have (d/dt)e”A|t _o = iA, where d/dt is the usual differentiation. Because
(e’tA)teR is one-parameter unitary group, it follows that eitA = ¢itA QED

Let E(-) be an internal projection-valued measure on *R, i.e., for each internal Borel
set @ C *R, E(Q2) is an orthogonal projection on # such that

(1) E(¢) =0, E(*R)=1 o | _

(2) If Q = U, Qn, with Q, N Q= ¢ if 0 # m, then E(Q) = s-limy_, o >N L E(Q)

(3) B(@)E() = B N ). o |

For r € *R, let H, = Rng(E(-r,r)), the range of E((—r,7)). Let D(E)

UreR+ H,N ﬁn?-{, D(F) is called the standardization domain of E(-). Clearly, D/(E')Ll =

Al

(Urers Ho)tt :
For a € R, deﬁne the orthogonal projection Eg(—o0,a] by
Eg(—00,a] = sup{E(-K,a+ e]|D( )t K, e € RT} (13)
= slim E(-n,a+ HD( )t (14)
Then we see

s-lim Est(—oo,a]r =0 - (15)
s-ellign Eg(—oco,a+¢€ = Eg(-00,a (16)
a < b= Ey(—00,a] < Eg(—00,1). | (17)

Hence, Eq(—00, -] defines a projection-valued measure on R.

Definition 3.7. For any internal bounded self-adjoint operator A, define the self-
adjoint operator sts(A) on D(E)*+ by

sta(4) = [ MEu(). oy
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Proposition 3.8. Let A be an internal bounded self-adjoint operator, and E(-) the
internal projection-valued measure associated with the spectral decomposition of A. Then

D(E)** = fin(A) . (19)

Proof. D(E)*+ C fin(A)~* is clear. To prove D(E)*L D fin(A)~1L, it is sufficient
to show that for any & € fin(A)~ there is a sequence &, € D(E) (n € N) such that
&n — &. Let z, = E(—n,n)z (n € *N). Notice that ||A(z — z,,)|| > n||lz — z,]|. Suppose
|t — zn|| > € for all n € N. By the permanence principle, there is N € *N, such
that ||z — zn|| > €. Hence, ||A(z — x,)|| > Nljr — zn|| > Ne ~ oo. This contradicts
lA(z — zn)|| < |Az]| < c0. QED

Theorem 3.9. Let A be an internal bounded self-adjoint operator. Then,
sta(A) = / AEq (N, (20)
and hence sta(A) = st3(A).
Proof. Tt is sufficient to show
(2, exp(itsty(4))3) = [ (5, dEy(V)3) (21)

for all £ € fin(A)~++. Define the internal Borel measure u by u(d)\) = (z, E(d\)z). Let
Ly denote the Loeb measure of p, and L'ir the Borel measure on R defined by L'u(Q) =
Lu(st™1[Q2]). We can check that L'y is well-defined (i.e., st™'[Q] is Lu-measurable for any
Borel set 2 C R). We also see that Lu is supported by fin*R, since Luy(*R \ fin*R) <
°(z, EC*R\ (—=n,n))z) = °||(1 — E(—n,n))z||* < (1/n?)°||Az||? for all n € N. Therefore

(%, exp(itsta(A))2) = (&, eitAz)
— °<:E,€itA.’L'>

0 * it
= " A (A
[ L€ du(Y)
= e dLp(X
[ o €7dLu())
= [ Pl ().
[ e un)
On the other hand, for a,b € R with a < b,
L'p(a,b) = Lu( | (a+e,b—¢)
ecR+
= lii’(l;l (z,E(a+¢€b—¢)x)
= lilr(r)l(fs, E(a+€,b—€)i)
= (Z, s—ljgn E(a+eb— e)a?)‘
= (&, Ey(a,b)i).
Hence, L'u(Q) = (&, B4 (Q)#) for any Borel set 2 C R. QED
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Let C € R be a positive constant, and h be an internal Borel function from *R to *C
satisfying the following properties:

h(z) = h(y) if =y for all z,y with |z, |y| < oo,
|h(z)| < C  forall z € *R.
Define the function A : R — C by
hz) = °h(z),

for z € R. We see that h is injective and continuous. Let A be an internal bounded
self-adjoint operator. Notice that h(A) is an S-bounded internal normal operator.

Theorem 3.10. There exists the unique self-adjoint operator B on fin(A)~++ such
that
h(B) = h(A)|fin(A)~*++. (22)

Moreover, B equals to st3(A).

Proof. By the argument similar to the proof of Theorem 3.9, we can show

—

(&, h(A)2) = /R AL (N

[ OV, dEa(N)2)

I

for any % € fin(A)~++. Thus,

—

WA fin(4)~ - = [ BBV,

Because h is injective, the unique self-adjoint operator B satisfying (22) is st3(4) =
Jr AdE4(N). QED

Corollary 3.11. Definition 3.3, 8.5 and 3.7 are equivalent, that is, st;(A) = sta(A4) =
St3(A).

Proof. Let h(z) =1/(z +1). QED

In section 2, A is defined only when A is an internal S-bounded self-adjoint operator.
Now we can extend the definition so as to include the case where A is an internal bounded
self-adjoint operator which is not S-bounded; A := st;(A) = sty(A) = st3(A).

Definition 3.12. Let A be an internal linear operator on an internal Hilbert space
H. Let D be an (external) subspace of finH. A is standardizable on D if D C fin(A) and
if for any x,y € D, x =~ y implies Az =~ Ay. In this case, define the operator Ap with
domain D = {&|z € D}, called the standard part of A on D, by

Apt =Az, zeD. (23)
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" Clearly, ‘A is standardizable on D if and only if D C fin(A), and if A =~ 0 for all
£ e D with £ = 0. : , , :

Lemma 3:13. An interiial bounded operator A is standardizable on fin(A*A).

Proof. First, we prove fin(A*A) C fin(A) as follows. Suppose that £ € fin(A). Let
E(-) be the internal spectral projection-valued mesure -of the self-adjoint operator A*A.
Then, || €] = (€, A*A€) = (€, E[0, 114" A€) + (€, (- B0, 1)A"AE) < (€, E[0, 114" A€) +
(&, (I — E[0,1])(A*A)%¢) < (&, E[0,1]A*AL) + ||A* A¢]|* < oo. Thus, £ € fin(A4). Second,
suppose z ~ 0 and [|A*Az|| < co. Then, [|Az|]® = (z, A*Az) < ||:13||||A*Ax|| ~ 0. QED

Corollary 3.14. If D C finH is invariant under A and A*, A is standardizable on
D. |

‘The operator B in the above proof is called a hyperfinite extension of A [6].
We use the following lemma in the proof of Theorem 3.16.

Lemma 3.15. Let A be a symmetric operator with domain D C H, a Hilbert space.
Let D; C D be a dense linear sebset of’H_and suppose that A|Dy is essentially self-adjoint.
Then, A is essentially self-adjoint and A = A|D;.

Theorem 3.16. Let A be an internal _self—adjomt operator on H, and E(-) the
projector-valued spectral measure of A. Then,

~ ~

A = AD(E) == /:iﬁn(Az) (24)

Proof. We can show that AD(E) is essentially self-adjoint e.g. by Nelson’s analytic
" vector theorem. Hence, it has one and only one self-adjoint extension, its closure. Thus,
it is sufficient to show that A is an extension of Ap (B)- If E( r,r) =& (reRT, € €
), then Ey(—s,s)é = € (s € R*,s > r). Thus, Apé = AE = [*[2,MEN)] "€ =
fjs AdEst(/\)g = f)\dEst( )f Stg( ) = Af Therefore A = AD(E)- AD(E) = Aﬁn(AZ)
follows from D(E) C fin(A?) and Lemma 3.15. QED

4. The domain of A

_Deﬁnition 4.1. For an internal bounded self-adjoint operator A on M, define D(A)
" D(A) = {£ € finH | for allt € R, e "MIA¢ ~ A€ € finH}.

Clelarly, D(A) is a subspace of H. |

Prc‘)p“osition 4.2. An internal bounded self-adjoint operator A is standardizable on
D(A). | o
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Proof. Let £ € D(A) and ||£]| & 0. We can easily check |[e "4l A|| < oo for all ¢t > 0,
t# 0. Hence, °||Ag|| < °lle 4l Ag||+ °||(1 —e ) A¢]||. By the S-boundedness of ™41 4,
the first term equals 0, and by the definition of D(A), the second term equals 0. Thus we
have °||A¢|| =0. QED

The following lemmas are easily shown.

Lemma 4.3. Let f: *N —> *R* be internal and increasing. If f(M) < oo for same
M ~ o0, then
lim °f(n) < occ.

n—0o0

Lemma 4.4. Under the same condition to Lemma 4.3, there is K ~ oo such that for

all L ~ oo,
fK)=f(L) i L<K.

Proposition 4.5. Let & € fin(H). For sufficiently large t ~ 0,
e~tle e D(A). (25)

Proof. Applying Lemma 4.4 to f(n) = ||e”14/" A¢||, we find that for sufficiently small
K ~ooand L ~ oo, e MK A¢ ~ e IAI/L A¢. Thus, for sufficiently large s ~ 0 and ¢ ~ 0,
e *1AlAE ~ et A¢. Hence for all z =~ 0, z > 0, '

e—x|A]Ae—t|A[€ _ 6_ (z+t) IA[Aé ~ Ae_”/”f.
Therefore, e~!14l¢ € D(A). QED

Theorem 4.6. Let E(-) be the spectral resolution of A and Ex = E(—K,K) for
K € *R*. For any & € fin(A),
£ € D(A) iff A=~ EgAE  for all K ~ oo. (26)

Remark. The right-hand condition is equivalent to
Jim /(7 ~ Bi) €] = 0. 1)
KeR
Proof. Suppose that & € fin(A) and A(I — Ex)& =~ 0 for all K ~ oo. For any ¢ =~ 0,
there exists a K ~ oo such that tK ~~ 0. Thus,
le~Ag — Ag|® ~ |l ER AL — Exc Ag]?

I .
= [ A= MBI

= [l = AP B el

K
< sup e -1 [ AdB(Ng]?

[A<K
= sup |e”™ — 17| B Ag|”
A <K
0.

Q
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Hence £ € D(A).
Conversely, suppose £ € D(A) (C fin(A)). Applying Lemma 4.4 to f(n) = ||E,AE]|,
we see that for sufficiently small K ~ co and L ~ oo (L < K),

IELAE|| ~ || Ex AL].

Thus, (Ex — EL) A ~ 0, since | ELAS — Eg AE||* = ||Ex A€|]> — | ELAE||* = 0. Let t € Ry
satisfy tK ~ oo so that

| Ex A& — e Ag||
K .
= I Aa-eMdBWeE - | e PAB ()]

(- ‘oo,—I(.')U(I\", *00)

IA

[ A= e B + et L 4¢]
~ [0 - e MaENE.

Let L ~ oo satisfy tL = 0, so that the above

1[5 2 —eMasel + 1 A1 — e M)dE()E]
L (-K,K)\(-L,L

)
|1 — e "Il A8l + [[(Ex — EL) AL
0.

IN

R IA

Thus, for sufficiently small K ~ oo and for any ¢ =~ 0 such that {K ~ oo,
ExAf =~ e 1AL x AS.

Since ||A¢ — Ex AE|| > ||AE — ExAEl| > 0 if K < K', we have Ex AL ~ A holds for any
K' ~ 0. QED

Proposition 4.7. Let £ € fin(A). Then, Ex§ € D(A) for sufficiently small K ~ co.

Proof. Applying Lemma 4.4 to f(n) = ||E,AE||, we find that for sufficiently small
K,L ~ 0o, ExA¢ ~ EpAE. Thus, if L ~ oo, L < K, then ||(1 — EL)ExAE|| = |[(Ex —
Ep)AE|| ~ 0. If L > K, clearly (1 — E)EgA§ = 0. Hence for all L ~ oo, ExAL ~
EExA€. Thus Ex€ € D(A) by Theorem 4.6. QED

Corollary 4.8. [fin(A)]” = [D(A)]", i.e., if £ € fin(A), then there is n € D(A) such
that n ~ &.

Example We have seen that the following relations hold:
fin(A?) C D(A) C fin(4) C finH,
[fin(A%)] C [D(A)} = [fin(A)] C A,
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[fin(A%)] = [D(APH = [fin(A) C H.

An example of A such that fin(A) \ D(A) # 0 is given as follows. Let v be an
infinite hypernatural number, and H = *C¥, v-dimensional internal Hilbert space. Define
the internal self-adjoint operator A on H by A(zi,zo,...,z,) = (x1,2%9,...,vx,). Let
£=1(0,0,...,0,v7!). Then we see & € fin(A) \ D(A) from Theorem 4.6.

We also find D(A) \ fin(A2%) # 0; let n = (172,27%,...,v72), then we easily see €
D(A) \ fin(A?). Moreover we find 7 € [D(A)]"\ [in(A?)]". In fact, if #' ~ 7, then
A% || > limnoe °f|A2E,n|| = limnoe °||A’Epn|| = limnoe /n = co. Thus, we have
7 ¢ [fin(A%)]" by Theorem 4.6.

Theorem 4.9. Let £ € fin(A), then

. . e_t[AI — ]_ - —_—
€€ D(A) iff lggx (fé) = —|A|¢. (28)
t3£0

Proof. Suppose that the right-hand side does not hold. In other words, suppose that

1 e~tAl -1 o
356R+VneN3te*R,0<t<;z—/\ (—-———t—+|A[)§ > €. (29)

By permanence,
1 e~t4l — 1 :

38€R+3N€*Nm3t€*R,0<t<ﬁ/\ (——t——+lA|)§ > €. (30)

That is, there is positive infinitesimal ¢ such that t~!(e "4l — 1)€ % —|A|¢.
Thus, for some 71 € fin(H),

§R<77, il%l;—l—é> # R(n, —|A[¢).

Let f(t) = R(n,e I¢). By the mean value theorem, for some s € *R with 0 < s <7,

_ o-tlal _
pio= 1020 gy, S5 2 v -1

Therefore, by the difinition of D(A), we have £ € fin(A) \ D(A).
Conversely, suppose £ € fin(4)\D(A). Then, there is positive infinitesimal ¢, satisfying
el Ale 2 |AJE. Let n = (|A| — el A|)¢ (€ fin(H)). Then this is equivalent to

(e A % (1Al (@3]

Let f(z) = (n,e 2l4¢) (x € *RY). We see that f' is increasing and —co < f’ < 0, and
hence f is decreasing and 0 < f < co. The relation (31) is equivalent to

f(to) # £(0), | (32)
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We have f(z) > f'(to)(z — to) + f(to). Thus we have.

o5 MBS, S =) 10 =10, -
Let F(z) = [f'(to)(@ — to) + f(to) — £(0))/x, then for c € *R*,
Fleto) = (1) (1~ )+ %&’)—[}i@ (34)

By the mean value theorem and —oco < f'(z) < 0, we have |(f(z) — f(0))/z| < co. Hence
F(cty) = f'(to) for all ¢ ~ 0o. Thus, by (32) and (33),

f(cto) — 1(0) >

0> S > Fleto) 7 1/(0), (35)

for all ¢ ~ co. Thus there is ¢ € R such that for sufficiently large z = 0, &);—ﬂ—o—)—f’(O) >

e. By the permanence principle, for sufficiently small z € R¥, f—(“lim — f'(0) > e. We
can check the relations ‘

(n (52 e) - 12210, (oo~ o !

x

for z > 0. Therefore, using the increasingness of (e~=llAl=1)

[z, x, we have

zl0 '
%0

lim ° <n, ig-c%[—:—lé> 7 (1, —|A8)-

QED

~ Theorem 4.10. Let A be an internavl‘ bounded self-adjoint operator. Then, A =
AD(A)-

Proof. By Theorem 3.16 and Lemma 3.15, it suffices to show that AD(A) is a closed
extension of flﬁn(Az). If £ € fin(A?), for any K ~ oo, ||(1 — Ex)A£|| < =[|(1 = Ex)A%]|| <
%Il A%€|| ~ 0. Hence £ € D(A), and hence AD(A) is an extension of Aﬁn(Az).

To prove that AD(A) is closed, it suffices to show that D(A4) = [D(A)]" is complete in
the norm | - [|4 defined by [|{]l4 = ||¢]| + [|A{]|. Define the internal norm || - |4 on H by
1€1la = NIl + [ AZ]|. We can check ||¢]l.a = °[I£]|.4 for & € D(A).

- By Theorem 2.1, fin(A) is S-||-|| a-complete. Hence, if the sequence {&;}ien C D(A) (C
fin(A)) is S-|| - || a-Cauchy, then there is £ € fin(A) such that {&} approximately converges
to & in the norm || - || 4. This & is shown to be in D(A) as follows. Regarding Theorem 4.6,
and & € D(A) (i < 00), this relation leads to °||(I — Ex) A&, || = lim, o0 °||(I— Ex) A& =
0, for any K ~ oo. Therefore, from Theorem 4.6, we have £ € D(A) and hence any Cauchy

— ——

sequence in D(A) converges in D(A) in the norm || - ||4. QED
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Theorem 4.11. The domain D(A) is mazimal. That is, if D(A) C §-C fin(H) and
A is standardizable on S, then'S = D(A). C

Proof. Suppose that D(A) € S C fin(#H) and that A is standardizable on S. Let
n € S. By Corollary 4.8 and 1 € fin(A), there is £ € D(A) such that £ =~ 7. By
the definition of D(A) and the standardizability on S, for all positive infinitesimal ¢,
e~ An ~ e 1AL ~ AL & An, since |le”"4l|| < 1. Thus, n € D(A). QED

Prop051t10n 4.12. Let A be an internal positive operator on H. Then, for any n €
fin(Az), ‘
inf °(€,4) = inf *(n, EaAn) (36)

Proof. Suppose n =~ . If a < 00, (n, E,An) = (€, E,AL) < (€, AE), that is,
Ve € RY, Va < 0o, (n, E,An) < (€, A€) +¢,
Thus, by the permanence principle,
Ve € RT, 3K ~ o0, Vo < K, (n,E An) < <§ AE) +
By saturation,
JK ~ o0, Ve € RT, YVa < K, (n, EaAn) < (£, AE) +¢

Hence we have }
K ~ oo, °(n,ExAn) < °(€, AE).

It follows that infe, °(€, AE) > infauce (0, EaAn).
On the other hand, we see that for all & ~ oo, || — En||? < a™||A2(n — E.n)|)? <
a~Y|Azn||2 ~ 0. Hence,

Yo ~ 00, mf (&, AE) < (Ean, AE,n) = °(n, E,An).

Thus it follows that infe, °(€, A¢) <infaue °(n, EoAn). QED
Proposition 4.13. Let A be an internal positive operator and n € fin(A). Then,

inf (¢, A€) = (i, A7) (37)

Proof. From Proposition 4.12, we see inf¢, °(¢, AE) = infy 0o °(1, EoAn). By Theo-

rem 4.10 and Proposition 4.7, for sufficiently small o ~ 00, °(n, E,An) = °(Eqn, AE.n) =
(Ean, AEqn) = (f), Af). QED

Definition 4.14. Let A be a internal bounded positive operator, and D C fin(A?).
The sespuilinear form (-, A-) is standardizable on D if (&, Am) ~ (&, An) for all
§1,62,m,me € D with & =~ & and m = 1.
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Proposition 4.15. Let D be a subspace of fin(H) and A > 0. Then, (-, A-) is stan-
dardizable on D if and only if A3 is standardizable on D.

Proof. Suppose that A7 is star}dar.dizable on D. Then Aéf = Aén for any £,n € D
with € ~ . Thus, (£, A¢) = ||Az¢|]? = ||A%n]]®> = (n, An). Conversely, suppose that
(-, A-) is standardizable on D. Then for any §,7 € D with £ =~ 7, ]‘[Aég — A%nH? =

1
Az (¢ = n)||? = (€ —=n,A({ —n)) = 0. QED

__Corollary 4.16. The set D(Az) is a mazimal domain of (-, A), and °(€, An) =
(A€, A7) for any €,n € D(A3).
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