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Abstract: We consider four variants of Fan’s type inequality for vector-valued
multifunctions in topological vector spaces with respect to a cone preorder in the
target space, when the functions and the cone possess various kinds of semicontinuity
and convexity properties. In order to establish these results, firstly we prove a two-
function result of Simons directly by the scalar Fan’s inequality, after that, by its help
we derive a new two-function result, which is the base of our proofs. As a consequence
of our Fan’s type inequalities we obtain that this new two-function result is equivalent
to the scalar Fan’s inequality.
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1. Introduction.

This paper is concerned with vector-valued variants of the following type of inequality:
if $f(x, x)\leq 0$ for all $x$ , then

$\min_{y\in X_{x}}\sup_{\in X}f(x, y)\leq 0$ ,

which is equivalent to the famous Fan’s minimax inequality (this equivalence was proved by
Takahashi [8, Lemma 1] firstly). This inequality is one of the main tools in the nonlinear and
convex analysis, equivalent to Brouwer’s fixed point theorem, Knaster-Kuratowski-Mazurkiewicz
theorem, and so on. As an analytical instrument, in many situations it is more appropriate
and applicable than other main theorems in nonlinear analysis. We refer to [2] for various type
equivalent theorems in nonlinear analysis.

In this paper we show four kinds of vector-valued Fan’s type inequality for multifunctions.
One of them (Theorem 3.1) generalizes the main result of Ansari-Yao in [1], namely, the existence
result in the so-called Generalized Vector Equilibrium Problem. Any of our Theorems 3.1-3.4
implies the classical Fan inequality, while the main result in [1] does not imply it in its full
generality, but only for continuous functions. Our proofs are quite different from that in [1] and
are based on the classical scalar Fan inequality. More precisely, in the proofs we use a new result
(see Theorem 2.3) which follows from a two-function result of Simons [7, Theorem 1.2] (used in
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Fig. 1:
$f(x, y^{*})\not\subset \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ .

Fig.2: Fig.3: Fig.4:
$f(x, y^{*})\cap$ int $C(x)=\emptyset$ . $f(x, y^{*})\cap(-C(x))\neq\emptyset$ . $f(x, y^{*})\subset(-C(x))$ .

[7] to derive Fan’s inequality), which we prove directly by Fan’s inequality. For a simple proof of
the classical Fan inequality, based on Brouwer’s fixed point theorem, we refer to [3] and ??.

Our main tool in this paper (Theorem 2.3) is a slightly more general form of a two-function
result of Simons [7, Corollary 1.6] and as a consequence of our results, it implies the classical Fan
inequality.

The proofs of the main results (Theorems 4.1-4.4) use Theorem 2.3 for special scalar func-
tions possessing semicontinuity and convexity properties, inherited by the semicontinuity and the
convexity properties of the multifunctions. The four types of Fan’s $\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}\cdot \mathrm{c}\mathrm{a}\mathrm{n}$ be regarded as
generalizations of the classical Fan’s inequality by substituting the nonpositivity of of the scalar
function $(f(x, y)\leq 0)$ by various types of set relations between the images of multifunction and
cone; see Figures 1-4.

2. Fan’s inequality and a new two-function result.

Theorem 2.1 (Fan). Let $X$ be a nonempty compact convex subset of a topological vector space
and $f$ : $X\cross Xarrow \mathrm{R}$ be quasiconcave in its first variable and lower semicontinuous in its second
variable. Then

$\min_{y\in X_{x}}\sup_{\in X}f(x, y)\leq\sup_{x\in X}f(x, x)$ .

Theorem 2.2 (Simons [7, Theorem 1.2]). Let $Z$ be a nonempty compact convex subset of a
topological vector space, $f$ : $Z\cross Zarrow \mathrm{R}$ lower semicontinuous in its second variable, $g:Z\cross Zarrow \mathrm{R}$

quasiconcave in its first variable, and $f\leq g$ on $Z\cross$ Z. Then

$\min_{y\in Z_{x}}\sup_{\in Z}f(x, y)\leq\sup_{z\in Z}g(z, z)$
.

Proof. Define the function co $f$ as a quasiconcave envelope of $f$ with respect to the first variable:

co $f(x, y):= \sup\{\min_{1i\in\{,\ldots,n\}}f(x_{i}, y):x=\sum_{i=1}^{n}\lambda_{i^{X_{i},X_{i}}}\in Z, \lambda_{i}\geq 0, \sum_{i=1}^{n}\lambda_{i}=1, n\in \mathrm{N}\}$ ,

where $\mathrm{N}$ is the set of the natural numbers. This function satisfies the conditions of Fan’s
$\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}\mathrm{l}$

and applying the latter, we obtain the result.
Now we prove our main tool in this paper. Its proof is similar to that of [7, Corollary 1.6].

Theorem 2.3. Let $X$ be a nonempty compact convex subset of a topological vector space, $a$ :
$X\cross Xarrow \mathrm{R}$ lower semicontinuous in its second variable, $b$ : $X\cross Xarrow \mathrm{R}$ quasiconvex in its
$se\backslash cond$ variable, and

$x,$ $y\in X$and $a(x, y)>0\Rightarrow b(y, x)<0$.

$Su\backslash$ppose that $\inf_{x\in X}b(x, x)\geq 0$ . Then there exists $z\in X$ such that $a(x, z)\leq 0$ for all $x\in X$ .

Proof. The proof is straightforward ffom Theorem 2.2 by defining $f(x, y)=1$ if $a(x, y)>0$
and $f(x, y)=0$ otherwise; $g(x, y)=1$ if $b(y, x)<0$ and $g(x, y)=0$ otherwise. 1
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3. Definitions and auxiliary results.

Further let $E$ and $Y$ be topological vector spaces and $F,$ $C$ : $Earrow 2^{Y}$ two multivalued mappings
and let for every $x\in E,$ $C(x)$ be a closed convex cone with nonempty interior. We introduce
two types of cone-semicontinuity for set-valued mappings, which are regarded as extensions of
the ordinary lower semicontinuity for real-valued functions; see [5].

Denote $B(x)=(\mathrm{i}\mathrm{n}\mathrm{t}C(x))\cap(2S\backslash \overline{S})$ (an open base of int $C(x)$ ), where $S$ is a neighborhood
of $0$ in $\mathrm{Y}$ , and define the function $h(k, x, y)= \inf\{t : y\in tk-C(x)\}$ , Note that $h(k, x, \cdot)$ is
positively homogeneous and subadditive for every fixed $x\in E$ and $k\in$ int $C(x)$ . Moreover, we
use the following notations $h(k, y)= \inf${ $t$ : $y\in$ tk–C}, and $B=C\cap(2S\backslash \overline{S})$ , where $C$ is
a convex closed cone and $S$ is a neighborhood of $0$ in $Y$ . Note again that $h(k, \cdot)$ is positively
homogeneous and subadditive for every fixed $k\in \mathrm{i}\mathrm{n}\mathrm{t}C$ .

Firstly, we prove some inherited properties from cone-semicontinuity.

Definition 3.1. Let $\hat{x}\in E$ . The multifunction $F$ is $C(\hat{x})$ -upper semicontinuous at $x_{0}$ , if for
every $y\in C(\hat{x})\cup(-C(\hat{x}))$ such that $F(x_{0})\subset y+\mathrm{i}\mathrm{n}\mathrm{t}C(\hat{x})$ , there exists an open $U\ni x_{0}$ such that
$F(x)\subset y+\mathrm{i}\mathrm{n}\mathrm{t}C(\hat{x})$ for every $x\in U$ . If $Y$ is a Banach space, we shall say that $F$ is $(-C)^{c}$ -upper
semicontinuous at $x_{0}$ , if for any $\in>0$ and $k\in C$ such that $(k+\in B_{Y}-C)\cap F(x_{0})=\emptyset$ , there
exists $\delta>0$ such that $(k+\in B_{Y}-C)\cap F(x)=\emptyset$ for every $x\in B(x_{0}; \delta)$ .

Definition 3.2. Let $\hat{x}\in E$ . The multifunction $F$ is $C(\hat{x})$ -lower semicontinuous at $x_{0}$ , if for
every open $V$ such that $F(x_{0})\cap V\neq\emptyset$ , there exists an open $U\ni x_{0}$ such that $F(x)\cap(V+$
int $C(\hat{x}))\neq\emptyset$ for every $x\in U$ . If $Y$ is a Banach space, we shall say that $F$ is $C(\hat{x})$ -lower
$serr\iota icontinuous$ at $x_{0}$ , if for any $\in>0$ and $y_{0}\in F(x_{0})$ there exists an open $U\ni x_{0}$ such that
$F(x)\cap(y_{0}+\in B_{Y}+C(\hat{x}))\neq\emptyset$ for every $x\in U$ , where $B_{Y}$ denotes the open unit ball in Y.

Remark 3.1. In the two definitions above, the corresponding notions for single-valued function
are equivalent to the ordinary one of lower semicoIltinuity for real-valued function whenever
$Y=\mathrm{R}$ and $C=[0, \infty)$ . When the cone $C(\hat{x})$ consists only of the zero of the space, the notion
in Definition 3.2 coincides with that of lower semicontinuous set-valued mapping. Moreover, it
is equivalent to the cone-lower semicontinuity defined in [5], based on the fact of $V+\mathrm{i}\mathrm{n}\mathrm{t}C(\hat{x})=$

$V+C(\hat{x})$ ; see [9, Theorem 2.2].

Proposition 3.1 If for some $x_{0}\in E,$ $A\subset \mathrm{i}\mathrm{n}\mathrm{t}C(x_{0})$ is a compact subset and multivalued map-
ping $W(\cdot):=Y\backslash \{\mathrm{i}\mathrm{n}\mathrm{t}C(\cdot)\}$ has a closed graph, then there exists an open set $U\ni x_{0}$ such that
$A\subset C(x)fo\mathit{7}^{\cdot}$ every $x\in U$ . In particular $C$ is lower semicontinuous.

Proof. Assume the coIltrary. Then there exists a net $\{x_{i}\}$ converging to $x_{0}$ such that for every
$i$ there exists $a_{i}\in A\backslash C(x_{i})$ . Since $A$ is compact, we may assume that $a_{i}arrow a\in A$ . Since $W$ has
a closed $\mathrm{g}\mathrm{T}\mathrm{a}\mathrm{p}\mathrm{h}$ , it follows that $a\in W(x_{0})$ , which is a contradiction. 1
Lemma 3.1. Suppose that rnultifunction $W$ : $Earrow 2^{Y}$ defined as $W(x)=Y\backslash \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ has a
closed graph. If the rnultifunction $F$ is $(-C(x))$ -upper semicontinuous at $x$ for each $x\in E$ , then
the function $\varphi_{1}|x$ (the restriction of

$\varphi_{1}(x).--\inf_{k\in B(x)_{y\in F^{1}(x)}}\mathrm{s}^{\backslash }\mathrm{u}\mathrm{p}h(k, x, y)$

to the set $X$) is upper $sernicontir\iota uous$, if $(F, X)$ satisfies the properiy $(P)$ ;

$(P)$ for every $x\in X$ there exisis an open $U\ni x$ such that the set $F(U\cap X)$ is precompact in
$Y$ , that is, $\overline{F(U\cap X)}$ is compact.

If the rnapping $C$ is constant-valued, then $\varphi_{1}$ is upper semicontinuous.
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Proof. Assume that $(F, X)$ has property $(P)$ . Let $\in>0$ and $x_{0}\in X$ be given. By the definition
of $\varphi_{1}$ there exists $k_{0}\in B(x_{0})$ such that

$\sup$ $h(k_{0}, x_{0}, y)<\varphi_{1}(x_{0})+\in$ .
$y\in F^{\gamma}(x_{0})$

Since $\sup_{y\in F^{\urcorner}(x_{0})}h(k_{0}, x_{0}, y)=\inf\{t:F(x_{0})\subset tk_{0}-C(x_{0})\}$ , we can take

$\inf\{t:F(x_{0})\subseteq tk_{0}-C(x_{0})\}<t_{0}<\varphi_{1}(x_{0})+\in$.

Since $F$ is $(-C(x_{0}))$ -upper semicontinuous at $x_{0}$ , there exists an open $U\ni x_{0}$ such that

$F(x)\subset t_{0}k_{0}$ –int $C(x_{0})$ for every $x\in U$.

By Proposition 3.1 and property $(P)$ , for $t_{0}<t’<\varphi_{1}(x_{0})+\in$ , there exists an open $U_{1}\subset U$ such
that

$F(x)\subset t’k_{0}-intC(x)$ and $k_{0}\in B(x)$ for every $x\in U_{1}\cap X$ .

Then

$\varphi_{1}.(x)$ $=$ inf $\sup h(k, x, y)$
$k\in B(x)_{y\in F^{7}(x)}$

$\leq$ $\sup$ $h(k_{0}, x, y)$

$y\in t’k0-C(x)$

$=$ $t’h(k_{0}, x, k_{0})+$ $\sup$ $h(k_{0}, x, y)$

$y\in-C(x)$

$\leq$ $t’$

$\leq$ $\varphi_{1}(x_{0})+\in$ .

The proof of the second statement (when $C$ is constant-valued) is similar, but in this case there
is no need to use Proposition3.1 and property $(P)$ . 1
Lemma 3.2. Suppose that the multifunction $F$ is $-C(x)$ -lower semicontinuous for each $x\in E$

and the multifunction $W$ : $Earrow 2^{Y}$ defined by $W(x)=Y\backslash \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ has a closed graph. Then the
function $\varphi_{2}|x$ (the restriction of

$\varphi_{2}(x):=\inf_{k\in B(x)}\inf_{y\in F(x)}h(k, x, y)$

to the set $X$) is upper semicontinuous, if $(F, X)$ satisfies the property $(P)$ . If the mapping $C$ is
constant-valued, then $\varphi_{2}$ is upper semicontinuous.

Proof. Let $\in>0$ and $x_{0}\in E$ be given. By the definition of $\varphi_{2}$ , for $t_{0}\in(\varphi_{2}(x_{0}), \varphi_{2}(x_{0})+\in)$

there exists $k_{0}\in B(x_{0}),$ $k_{0}\in$ int $C(x_{0})$ , and $z_{0}\in F(x_{0})$ such that $z_{0}-t_{0}k_{0}\in$ -int $C(x_{0})$ . By
Proposition 3.1, there exists an open set $U_{1}\ni x_{0}$ such that

$z_{0}-t_{0}k_{0}\in$ -int $C(x)$ and $k_{0}\in \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ for every $x\in U_{1}$ .

Therefore
$h(k_{0}, x, z_{0})\leq t_{0}$ for every $x\in U_{1}$ . (3.1)

Let $\gamma<\in/2$ . By $(-C(x_{0}))$ -lower semicontinuity of $F$ , there exists an open set $U_{2}\subset U_{1},$ $x_{0}\in$

$U_{2}$ such that

$G(x).–F(x)\cap$ [ $z_{0}+\gamma k_{0}$ –int $C(x_{0})$ ] $\neq\emptyset$ for every $x\in U_{2}$ . (3.2)

Hence
$G(U_{2}\cap X)\subset z_{0}+\gamma k_{0}$ –int $C(x_{0})$
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and
$\overline{G(U_{2}\cap X)}\subset z_{0}+2\gamma k_{0}$ –int $C(x_{0})$ .

By Proposition 3.1 there exists an open $U_{3}\subset U_{2},$ $U_{3}\ni x_{0}$ such that

$\overline{G(U_{2}\cap X)}\subset z_{0}+2\gamma k_{0}$ –int $C(x)$ for every $x\in U_{3}$ .

This implies
$F(x)\cap$ ( $z_{0}+2\gamma k_{0}$ –int $C(x)$ ) $\neq\emptyset$ for every $x\in U_{3}\cap X$ .

Take $x\in U_{3}\cap X$ and $y_{x}\in F(x)\cap$ ( $z_{0}+2\gamma k_{0}$ –int $C(x)$ ). Therefore $y_{x}=z_{0}+2\gamma k_{0}+c_{x}$ , where
$c_{x}\in$ -int $C(x)$ . We obtain

$\varphi_{2}(x_{0})+\in$ $\geq$ $t_{0}$

$\geq$ $h(k_{0}, x, z_{0})$ (by (3.1))
$=$ $h(k_{0}, x, y-2\gamma k_{0}-c_{x})$

$\geq$ $h(k_{0}, x, y)-h(k_{0}, x, 2\gamma k_{0})-h(k_{0}, x, c_{x})$ (by subadditivity of $h(k_{0},$ $x,$ $\cdot)$ )
$\geq$ $h(k_{0}, x, y)-2\gamma$

$\geq$ $\varphi_{2}(x)-\in$ .

Hence
$\varphi_{2}(x_{0})+2\in\geq\varphi_{2}(x)$ for every $x\in U_{3}\cap X$ .

The proof of the second statement (when $C$ is constant-valued) is similar, but in this case there
is no need to use Proposition 3.1 and property $(P)$ . 1
Lemma 3.3. Suppose that $Y$ is a Banach space and the multifunction $F$ : $Earrow 2^{Y}$ is $(-C)^{c}-$

upper semicontinuous and locally bounded (it means that for every point $x_{0}\in E$ there exisis an
open set $U\ni x_{0}$ and $p>0$ such thai $F(x)\subset pB_{Y}$ for every $x\in U$ , where $B_{Y}$ denotes the
open unit ball in $Y$). Suppose that the multifunction $C$ has a closed graph and the cone $C(x)$

has a compact base $B(x)=(2\overline{B_{Y}}\backslash B_{Y})\cap C(x)$ for every $x$ . Then the function $\varphi_{2}$ is lower
semicontinuous.

Proof. Firstly we shall prove that the function $g(k, x):= \inf_{y\in F(x)}h(k, x, y)$ is lower semicon-
tinuous. It is easy to see that

$g(k, x)= \inf\{t:(tk-C(x))\cap F(x)\neq\emptyset\}$

(if $(tk-C(x))\cap F(x)=\emptyset$ for every $t$ , we put $g(k,$ $x)=+\infty$). Take $(k_{0}, x_{0})\in Y\cross E$ and let
$\{x_{i}\},$ $\{k_{i}\}$ be sequences such that $x_{i}arrow x_{0}$ and $k_{i}arrow k_{0}$ . Let $\lim$ inf $h(k_{i}, x_{i})=l$ . There exists a
subsequence $\{(k_{i_{n}}, x_{i_{n}})\}$ of $\{(k_{i}, x_{i})\}$ such that $k_{i_{n}}arrow k_{0}\in B(x_{0})$ and $l= \lim g(k_{i_{n}}, x_{i_{n}})$ . Assume
that $l<g(k_{0}, x_{0})$ . Then there exists $\in>0$ such that

$l+\in<g(k_{0}, x_{0})-\in$ . (3.3)

By the definition of $g$ , there exists

$y_{i}\in F(x_{i})\cap[(g(k_{i}, x_{i})+\in)k_{i}-C(x_{i})]$ $\forall i\in \mathrm{N}$ .

Hence
$y_{i}=[g(k_{i}, x_{i})+\in]k_{i}-c_{i}$ (3.4)

for some $c_{i}\in C(x_{i})$ . By the locally boundedness of $F$ and from the compactness of $B(x_{0})$ , we
obtain that the sequence $\{c_{i}\}$ is precompact. Then by (3.4), passing to limits and using the fact
that $C$ has a closed graph, we obtain

$\lim y_{i}=y_{0}=(l+\in)k_{0}-c_{0}$ , (3.5)
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where $c_{0}\in C(x_{0})$ . Since $F(x_{0})$ is bounded and $B(x_{0})$ is compact, the distance between the sets
$F(x_{0})$ and $[g(k_{0}, x_{0})-\in]k_{0}-C(x_{0})$ is positive, so there exists $\alpha>0$ such that

$([g(k_{0}, x_{0}) - \in]k_{0}+\alpha B_{Y}-C(x_{0}))\cap F(x_{0})=\emptyset$ .

By the $(-C)^{c}$-upper semicontinuity of $C$ we obtain that for some index $i_{0}\in \mathrm{N}$ ,

$y_{i}\not\in[g(k_{0}, x_{0})-\in]k_{0}+\alpha B_{Y}-C(x_{0})$ $\forall i>i_{0}$ .

Hence passing to limit, by (3.3) we obtain $y_{0}\not\in[l+\in]k_{0}-C(x_{0})$ , which is a contradiction with
(3.5). So we proved the lower semicontinuity of $g$ at $(k_{0}, x_{0})$ . Now, we apply Proposition 3.1.21
in [2] and finish the proof. I
Lemma 3.4. Suppose that $Y$ is a Banach space and the multifunction $F$ : $Earrow 2^{Y}$ is $C(x)-$

lower semicontinuous for each $x\in E$ and locally bounded. Suppose that the multifunction $C$ has
a closed graph and the cone $C(x)$ has a compact base $B(x)=(2\overline{B_{Y}}\backslash B_{Y})\cap C(x)$ for every $x$ .
Then the function $\varphi_{1}$ is lower semicontinuous.

Proof. Firstly we shall prove that the function $g(k, x):= \sup_{y\in F(x)}h(k, x, y)$ is lower semicon-
tinuous. Take $(k_{0}, x_{0})$ and let $\{x_{i}\},$ $\{k_{i}\}$ be sequences such that $x_{i}arrow x_{0}$ and $k_{i}arrow k_{0}$ . Let $\in>0$

be given. There exists $y_{0}\in F(x_{0})$ such that

$h(k_{0}, x_{0}, y_{0})>g(k_{0}, x_{0})-\in$ . (3.6)

Since $F$ is $C$-lower semicontinuous, for $\beta>0$ there exists index $i_{0}$ such that

$F(x_{i})\cap[y_{0}+\beta B_{Y}+C(x_{0})]\neq\emptyset$ $\forall i>i_{0}$ .

Take $y_{i}\in F(x_{i})\cap[y_{0}+\beta B_{Y}+C(x_{0})]$ . Hence

$y_{i}=y_{0}+\beta b+c_{i}$ , (3.7)

where $c_{i}\in C(x_{0})$ and $b\in B_{Y}$ . Since $y_{i}\in[h(k_{i}, x_{i}, y_{i})+\in]k_{i}-C(x_{i})$ , we have $y_{i}\in[g(k_{i}, x_{i})+$

$\in]k_{i}-C(x_{i})$ , and hence

$-y_{0}-\beta b-c_{i}+[g(k_{i}, x_{i})+\epsilon]k_{i}\in C(x_{i})$ . (3.8)

By the locally boundedness of $F$ , from (3.7) and the compactness of $B(x_{0})$ , we obtain that
the sequence $\{c_{i}\}$ is precompact. Let $\lim$ inf $h(k_{i}, x_{i}, y_{0})=l$ . Without loss of generality (taking
subsequences) we may suppose that $k_{i}arrow k_{0}\in B(x_{0})$ and $l= \lim g(k_{i}, x_{i})$ . Then by (3.8), passing
to limits and using the assumption that $C$ has a closed graph, we obtain $y_{0}+\beta b\in(l+\in)k_{0}-C(x_{0})$ .
Hence by (3.6), $g(k_{0}, x_{0})-\in\leq h(k_{0}, x_{0}, y_{0})\leq l+\in+\alpha$ , where $\alpha=h(k_{0}, x_{0}, -\beta b)$ . $\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}\in>0,$ $\beta$

are arbitrarily small (therefore $\alpha$ is arbitrarily small too, by continuity of $h(k_{0},$ $x_{0},$
$\cdot)$ ), we obtain

$h(k_{0}, x_{0}, y_{0})\leq l$ . This proves lower semicontinuity of $g$ at $(k_{0}, x_{0})$ . Now, we apply Proposition
3.1.21 in [2] and finish the proof. 1

Next, we show some inherited properties from cone-quasiconvexity.

Definition 3.3. A multifunction $F$ : $Earrow 2^{Y}$ is called $C$ -quasiconvex, if the set {$x\in E$ :
$F(x)\cap(a-C)\neq\emptyset\}$ is convex for every $a\in Y.$ $\mathrm{I}\mathrm{f}-F$ is $C$-quasiconvex, then $F$ is said to be
$C$-quasiconcave, which is equivalent to $(-C)$ -quasiconvex mapping.

Remark 3.2. The above definition is exactly that of Ferro type $(-1)$ -quasiconvex mapping in
[6, Definition 3.5].

Definition 3.4. A multifunction $F:Earrow 2^{Y}$ is called (in the sense of [6, Definition 3.6])
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(a) $type-(\mathrm{i}\mathrm{i}\mathrm{i})C$-properly quasiconvex if for every two points $x_{1},$ $x_{2}\in X$ and every $\lambda\in[0,1]$ we
have either $F(x_{1})\subset F(\lambda x_{1}+(1-\lambda)x_{2})+C$ or $F(x_{2})\subset F(\lambda x_{1}+(1-\lambda)x_{2})+C$.

(b) $type-(\mathrm{v})C$ -properly quasiconvex if for every two points $x_{1},$ $x_{2}\in X$ and every $\lambda\in[0,1]$ we
have either $F(\lambda x_{1}+(1-\lambda)x_{2})\subset F(x_{1})-C$ or $F(\lambda x_{1}+(1-\lambda)x_{2})\subset F(x_{2})-C$;

If $-F$ is type-(iii) [resp. type-(v)] $C$-properly quasiconvex, then $F$ is said be type-(iii) [resp.
type-(v) $]$ $C$-properly quasiconcave, which is equivalent to type-(iii) [resp. type-(v)] $(-C)$ -properly
quasiconvex mapping.

Remark 3.3. The convexity of (b) above is exactly that of C-quasiconvex-like multifunction in
[1].

Lemma 3.5. If the multifunction $F$ : $Earrow 2^{Y}$ is $type-(\mathrm{v})C$ -properly quasiconvex, ihen the
function

$\psi_{1}(x):=$ inf $\sup h(k, y)$
$k\in B_{y\in F(x)}$

is quasiconvex.

Proof. By definition, for every $\lambda\in[0,1]$ and every $x_{1},$ $x_{2}\in X$ we have: either $F(\lambda x_{1}+(1-$

$\lambda)x_{2})\subset F(x_{1})-C$ or $F(\lambda x_{1}+(1-\lambda)x_{2})\subset F(x_{2})-C$. Assume that $F(\lambda x_{1}+(1-\lambda)x_{2})\subset F(x_{1})-C$ .
Then

$\psi_{1}(\lambda x_{1}+(1-\lambda)x_{2})$ $:=$ $\inf_{k\in B}\sup\{h(k, y) : y\in F(\lambda x_{1}+(1-\lambda)x_{2})\}$

$\leq$ $\inf_{k\in B}\sup\{h(k, y) : y\in F(x_{1})-C\}$

$=$ inf $\sup$ $h(k, y-c)$
$k\in B_{y\in F()}$

$\leq$ inf $\sup(h(k, y)+h(k, -c))$ (by subadditivity of $h(k,$ $\cdot)$ )
$k\in B_{y\in F^{\backslash }(x)}$

$\leq$ $\psi_{1}(x_{1})$

$\leq$ $\max\{\psi_{1}(x_{1}), \psi_{1}(x_{2})\}$ .

Analogously we proceed in the second case, when $F(\lambda x_{1}+(1-\lambda)x_{2})\subset F(x_{2})-C$. 1
Lemma 3.6. If $F$ is $C$ -quasiconvex, then for every $k\in B$ the function

$\psi_{2}(x;k):=\inf\{h(k, y) : y\in F(x)\}$

is quasiconvex.

Proof. By the definition of $\psi_{k}$ , for every $\in>0$ and $x_{1},$ $x_{2}\in E$ there exist $z_{i}\in F(x_{i}),$ $t_{i}\in \mathrm{R}$

such that

$z_{i}-t_{i}k\in-C$ , (3.9)

and
$t_{i}<\psi_{k}(x_{i})+\in,$ $i=1,2$ . (3.10)

Since $s_{1}k-C\subset s_{2}k-C$ for $s_{1}\leq s_{2}$ , by (3.9), we have $z_{i} \in t_{i}k-C\subset\max\{t_{1}, t_{2}\}k-C$ . Hence,
by the $C$-quasiconvexity of $F$ , for every $\lambda\in[0,1]$ there exists $y\in F(\lambda x_{1}+(1-\lambda)x_{2})$ such that
$y \in\max\{t_{1}, t_{2}\}k-C$ , which means

$h(k, y)$ $\leq$ $\mathrm{r}\mathrm{n}\mathrm{a}\mathrm{x}\{t_{1}, t_{2}\}$

$<$ $\max\{\psi_{k}(x_{1}), \psi_{k}(x_{2})\}+\in$
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(by 3.10) and since, the definition, we have

$\psi_{k}(\lambda x_{1}+(1-\lambda)x_{2})=\inf\{h(k, y) : y\in F(\lambda x_{1}+(1-\lambda)x_{2})\})$

$\mathrm{a}\mathrm{n}\mathrm{d}\in>0$ is arbitrarily small, we obtain $\psi_{k}(\lambda x_{1}+(1-\lambda)x_{2})\leq\max\{\psi_{k}(x_{1}), \psi_{k}(x_{2})\}$. I
Lemma 3.7. If the multifunction $F$ : $Earrow 2^{Y}$ is $type-(\mathrm{v})C$-properly quasiconcave, then the
function $\psi_{2}(x;k)$ is quasiconcave, where $k\in \mathrm{i}\mathrm{n}\mathrm{t}C$ .

Proof. By definition, for every $\lambda\in[0,1]$ and every $x_{1},$ $x_{2}\in X$ we have either $F(\lambda x_{1}+(1-\lambda)x_{2})\subset$

$F(x_{1})+C$ or $F(\lambda x_{1}+(1-\lambda)x_{2})\subset F(x_{2})+C$ . Assume that $F(\lambda x_{1}+(1-\lambda)x_{2})\subset F(x_{1})+C$ .
Then

$\psi_{1}(\lambda x_{1}+(1-\lambda)x_{2}; k)$ $=$ $\inf\{h(k, y) : y\in F(\lambda x_{1}+(1-\lambda)x_{2})\}$

$\geq$ $\inf\{h(k, y+c) : y\in F(x_{1}), c\in C\}$

$\geq$ $\inf\{h(k, y)-h(k, -c) : y\in F(x_{1}), c\in C\}$

$\geq$ $\inf\{h(k, y) : y\in F(x_{1})\}$

$=$ $\psi_{1}(x_{1};k)$

$\geq$ $\min\{\psi_{1}(x_{1};k), \psi_{1}(x_{2)}k)\}$ .

Analogicaly we proceed in the second case, when $F(\lambda x_{1}+(1-\lambda)x_{2})\subset F(x_{2})+C$. I
Lemma 3.8. If the rnultifunction $F$ : $Earrow 2^{Y}$ is $type-(\mathrm{i}\mathrm{i}\mathrm{i})C$-properly quasiconcave, then the
function

$\psi_{1}(x;k):=\sup\{h(k, y) : y\in F(x)\}$

is quasiconcave, where $k\in \mathrm{i}\mathrm{n}\mathrm{t}C$ .

Proof. By definition, for every $\lambda\in[0,1]$ and every $x_{1},$ $x_{2}\in X$ we have either $F(x_{1})\subset$

$F(\lambda x_{1}+(1-\lambda)x_{2})-C$ or $F(x_{2})\subset F(\lambda x_{1}+(1-\lambda)x_{2})-C$ .
Assume that $F(x_{1})\subset F(\lambda x_{1}+(1-\lambda)x_{2})-C$ . Then

$\psi_{2}(x_{1}; k)$ $=$ $\sup\{h(k, y) : y\in F(x)\}$

$\leq$ $\sup\{h(k, y-c) : y\in F(\lambda x_{1}+(1-\lambda)x_{2}), c\in C\}$

$\leq$ $\sup\{h(k, y)+h(k, -c) : y\in F(\lambda x_{1}+(1-\lambda)x_{2}), c\in C\}$

$\leq$ $\sup\{h(k, y) : y\in F(\lambda x_{1}+(1-\lambda)x_{2})\}$

$=$ $\psi_{2}(\lambda x_{1}+(1-\lambda)x_{2};k)$ ,

and hence $\min\{\psi_{2}(x_{1}; k), \psi_{2}(x_{2}; k)\}\leq\psi_{2}(\lambda x_{1}+(1-\lambda)x_{2}; k)$ .
Analogicaly we proceed in the second case, when $F(x_{2})\subset F(\lambda x_{1}+(1-\lambda)x_{2})-C$. I

4. Set-valued Fan’s inequalities.
$\mathrm{N}\mathrm{o}\mathrm{w}|\mathrm{w}\mathrm{e}$ state the main results in this paper. The following theorem is a generalization of that in
[1]. The main difference between our result and that in [1] is the condition (iii), but it allows us
to recover the classical Fan inequality, when $Y$ is the real line. The result in [1] recovers it only
for c\={o}ntinuous functions.

Theorem 4.1 Let $K$ be a nonempty convex subset of a topological vector space $E,$ $Y$ be a topo-
logical vector space. Let $F:K\cross Karrow 2^{Y}$ be a multifunction. Assume that

(i) $C$ : $Karrow 2^{Y}$ is a muliifunction such that for every $x\in K,$ $C(x)$ is a closed convex cone in
$Y$ with int $C(x)\neq\emptyset$ ;
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(ii) $W$ : $Karrow 2^{Y}$ is a multifunction defined as $W(x)=Y\backslash \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ , and the graph of $W$ is
closed in $K\cross Y$ ;

(iii) for every $x,$ $y\in K,$ $F(\cdot, y)$ is $C(x)$ -upper semicontinuous at $x$ with closed values on $K$ and
if the mapping $C$ is $noi$ constant-valued, then the mapping $F(\cdot, y)$ maps the compact subsets
of $K$ into precompact subsets of $Y$ ;

(iv) there exists a multifunction $G:K\cross Karrow 2^{Y}$ such that

(a) for every $x\in K,$ $G(x, x)\not\subset \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ ,

(b) for every $x,$ $y\in K,$ $F(x, y)\subset \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ implies $G(x, y)\subset \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ ,

(c) $G(x, \cdot)$ is $type-(\mathrm{v})C(x)$ -properly quasiconcave on $K$ for every $x\in X$ ,

(d) $G(x, y)$ is compact, if $G(x, y)\subset \mathrm{i}\mathrm{n}\mathrm{t}C(x)_{i}$

(v) there exists a nonempty compact convex subset $D$ of $K$ such that for every $x\in K\backslash D$ , there
exists $y\in D$ with $F(x, y)\subset \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ .

Then, the solutions set

$S=$ {$x\in K$ : $F(x,$ $y)\not\subset \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ , for all $y\in K$}

is a nonempty and compact subset of $D$ .

Proof. Put

$a(x, y):=- \inf_{k\in By)_{z\in-F(y,x)}}$ $k\in Bx)_{z\in-G(x,y)}\mathrm{f}$
$\sup$ $h(k, y, z)$ , $b(x, y):=$ inf $\sup$ $h(k, x, z)$ .

It is easy to check that

$a(x, y)>0$ if and only if $F(y, x)\subset \mathrm{i}\mathrm{n}\mathrm{t}C(y)$

by using the compactness of $\overline{F(x,y)}$ , and also $b(y, x)$ $<0$ if $G(y, x)\subset$ int $C(y)$ by using
condition (d), and then $a(x, x)\leq 0$ and $b(x, x)\geq 0$ .

Denote
$S_{y}:=\{x\in D : F(x, y)\not\subset \mathrm{i}\mathrm{n}\mathrm{t}C(x)\}$ . (4.1)

Since $a(y, \cdot)$ is lower semicontinuous (by Lemma 3.1), the set $S_{y}$ is closed. Let $Y_{0}$ be a finite
subset of $K$ . Denote by $Z$ the closed convex hull of $Y_{0}\cup D$ . Obviously $Z$ is compact and convex.
Lemmas 3.1, 3.5 and condition (iv) (b) show that the conditions of Theorem 2.3 are satisfied.

Now we apply Theorem 2.3 and obtain a point $z\in Z$ such that $a(y, z)\leq 0$ for every $y\in Z$ ,
which means

$F(z, y)\not\subset \mathrm{i}\mathrm{n}\mathrm{t}C(z)$ for every $y\in Z$ . (4.2)

The conditions (v) and (4.2) imply that $z\in D$ . Relation (4.1) implies that $\cap\{S_{y} : y\in Y_{0}\}\neq$

$\emptyset$ . So we proved that the family $\{S_{y} : y\in K\}$ has finite intersection property. Since $D$ is
compact, $\cap\{S_{y} : y\in K\}\neq\emptyset$ , which means that there exists $x_{0}\in K$ such that $F(x_{0}, y)\not\subset$

int $C(x_{0})$ for every $y\in K$ . So we proved that $S$ is nonempty, and since $S$ is a closed subset of
$D$ , the proof is completed. I
Theorem 4.2. Let $K$ be a nonempty convex subset of a topological vector space $E,$ $Y$ a topo-
logical vector space, and $F:K\cross Karrow 2^{Y}$ a multifunction. Assume that

(i) $C$ : $Karrow 2^{Y}$ is a multifunction such that for every $x\in K,$ $C(x)$ is a closed convex cone in
$Y$ with int $C(x)\neq\emptyset$ ;
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(ii) $W$ : $Karrow 2^{Y}$ is a multifunction defined as $W(x)=Y\backslash \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ , for every $x\in K$ such that
the graph of $W$ is closed in $K\cross Y$ ;

(iii) for every $x,$ $y\in K,$ $F(\cdot, y)$ is $C(x)$ -lower semicontinuous with closed values on $K$ and if
the mapping $C$ is not constant-valued, then the mapping $F(\cdot, y)$ , for every $y\in K$ , maps the
compact subsets of $K$ into precompact subsets of $Y$ ;

(iv) there exists a multifunction $G:K\cross Karrow 2^{Y}$ such that

(a) for every $x\in K,$ $G(x, x)\cap$ int $C(x)=\emptyset$ ,

(b) for every $x,$ $y\in K,$ $F(x, y)\cap$ int $C(x)\neq\emptyset$ implies $G(x, y)\cap$ int $C(x)\neq\emptyset$ ,

(c) $G(x, \cdot)$ is $C(x)$ -quasiconcave on $K$ for every $x\in K$ ;

(v) there exists a nonempty compact convex subset $D$ of $K$ such ihat for every $x\in K\backslash D$ , there
exists $y\in D$ with $F(x, y)\cap \mathrm{i}\mathrm{n}\mathrm{t}C(x)\neq\emptyset$ .

Then, the solutions set

$S=$ { $x\in K$ : $F(x,$ $y)\cap(\mathrm{i}\mathrm{n}\mathrm{t}C(x))=\emptyset$ , for all $y\in K$ }

is a nonempty and compact subset of $D$ .

Proof. Put

$a(x, y):=- \inf_{k\in By)}\inf_{z\in-Fy,x)}h(k, y, z)$ , $b(x, y):= \inf_{z\in-Gx,y)}h(k(x), x, z)$ ,

where the function $k$ is any fixed selection of the multivalued mapping $xrightarrow \mathrm{i}\mathrm{n}\mathrm{t}C(x)$ , i.e., $k(x)\in$

int $C(x)$ for every $x\in K$ . It is easy to check that

$a(x, y)>0$ if and only if $F(y, x)\cap(\mathrm{i}\mathrm{n}\mathrm{t}C(y))\neq\emptyset$ ,

$b(y, x)<0$ if and only if $G(y, x)\cap(\mathrm{i}\mathrm{n}\mathrm{t}C(y))\neq\emptyset$ ,

$a(x, x)\leq 0$ , $b(x, x)\geq 0$ .

Lemmas 3.2, 3.6 and condition (iv) $(b)$ show that the conditions of Theorem 2.3 are satisfied.
Further the proof is the same as that of Theorem 4.1, but in this case $S_{y}:=\{x\in D$ :

$F(x, y)\cap \mathrm{I}$

(int $C(x)$ ) $=\emptyset\}$ .

Theorem 4.3. Let $K$ be a nonempty convex subset of a topological vector space $E,$ $Y$ a Banach
space, and $F:K\cross Karrow 2^{Y}$ a multifunction. Assume that

(i) $C:Karrow 2^{Y}$ is a multifunction with a closed graph and $C(x)$ is a closed convex cone with
’ a compact base $B(x)=(2\overline{B_{Y}}\backslash B_{Y})\cap C(x)$ for every $x$ ;

(ii) for every $y\in K,$ $F(\cdot, y)$ is $(-C)^{c}$ -upper semicontinuous and locally bounded;

(iii) there $\mathrm{e}$xists a multifunction $G:K\cross Karrow 2^{Y}$ such that

(a) for every $x\in K,$ $G(x, x)\cap(-C(x))\neq\emptyset$ ,

(b) for every $x,$ $y\in K,$ $F(x, y)\cap(-C(x))=\emptyset$ implies $G(x, y)\cap(-C(x))=\emptyset$ ,

(c) $G(x, \cdot)$ is $type-(\mathrm{v})C(x)$ -properly quasiconcave on $K$ for every $x\in K_{f}$.

(iv) there exists a nonempty compact convex subset $D$ of $K$ such that for every $x\in K\backslash D$ , there
exists $y\in D$ with $F(x, y)\cap(-C(x))=\emptyset$ .
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Then, the solutions set

$S=$ {$x\in K$ : $F(x,$ $y)\cap(-C(x))\neq\emptyset$ , for all $y\in K$}

is a nonempty and compact subset of $D$ .

Proof. Put

$a(x, y):=$ inf inf $h(k, y, z)$ , $b(x, y):=-$ inf inf $h(k, x, z)$ .
$k\in B(y)z\in F(y,x)$ $k\in B(x)z\in G(x,y)$

It is easy to check that

$a(x, y)\leq 0$ if and only if $F(y, x)\cap(-C(y))\neq\emptyset$ ,

$b(y, x)\geq 0$ if and only if $G(y, x)\cap(-C(y))\neq\emptyset$ ,

$a(x, x)\leq 0$ and $b(x, x)\geq 0$ .
Lemmas 3.3, 3.7 and condition (iii) (b) show that the conditions of Theorem 2.3 are satisfied.
Denote $S_{y}:=\{x\in D : F(x, y)\cap(-C(x))\neq\emptyset\}$ . Since $a(y, \cdot)$ is lower semicontinuous (by
Lemma 3.3), the set $S_{y}$ is closed. Let $Y$ be a finite subset of $K$ . Denote by $Z$ the intersection of
$K$ and the linear hull of $Y\cup D$ . Obviously $Z$ is compact and convex. Now we apply Theorem 2.3
and obtain a point $z\in Z$ such that

$a(y, z)\leq 0$ for every $y\in Z$ (4.3)

which means
$F(z, y)\cap(-C(x))\neq\emptyset$ for every $y\in Z$ . (4.4)

Assumption (iv) and condition (4.4) imply that $z\in D$ , and condition (4.4) implies also $\cap\{S_{y}$ :
$y\in Y\}\neq\emptyset$ . So the family

$\{S_{y} : y\in K\}$
has finite intersection property. Since $D$ is

$\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}$

$\cap\{S_{y} : y\in K\}\neq\emptyset$ , which completes the proof.

Theorem 4.4. Let $K$ be a nonempty convex subset of a topological vector space $E,$ $Y$ a Banach
space, and $F:K\cross Karrow 2^{Y}$ a multifunction. Assume that

(i) $C:Karrow 2^{Y}$ is a multifunction with a closed graph such that $C(x)$ is a closed convex cone
with a cornpact base $B(x)=(2\overline{B}_{Y}\backslash B_{Y})\cap C(x)$ for every $x_{i}$

(ii) for every $x,$ $y\in K,$ $F(\cdot, y)$ is $C(x)$ -lower semicontinuous and locally bounded;

(iii) there exists a rnultifunction $G:K\cross Karrow 2^{Y}$ such that

(a) for every $x\in K,$ $G(x, x)\subset-C(x)$ ,

(b) for every $x,$ $y\in K,$ $F(x, y)\not\subset-C(x)$ irnplies $G(x, y)\not\subset-C(x)$ ,
(c) $G(x, \cdot)$ is $type-(\mathrm{i}\mathrm{i}\mathrm{i})C(x)$ -properly quasiconcave on $K$ for every $x\in K$ ;

(iv) there exists a nonernpty compact convex subset $D$ of $K$ such that for every $x\in K\backslash D$ , ihere
exists $y\in D$ with $F(x, y)\not\subset-C(x)$ .

Then, the solutions set

$S=$ {$x\in K:F(x,$ $y)\subset-C(x)$ , for all $y\in K$}

is a nonernpty and cornpact subset of $D$ .
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Proof. Put

$a(x, y):= \inf_{k\in B(y)}\sup_{z\in F(y,x)}h(k, y, z)$
, $b(x, y)$

$:=- \mathrm{i}\mathrm{r}\mathrm{l}\mathrm{f}\sup_{z\in G(x,y)}h(k, x, z)k\in B(x)$
.

It is $\mathrm{e}a\mathrm{s}\mathrm{y}$ to check that

$a(x, y)\leq 0$ if and only if $F(y, x)\subset-C(y)$ ,

$b(y, x)\geq 0$ if and only if $G(y, x)\subset-C(y)$ ,
$a(x, x)\leq 0$ and $b(x, x)\geq 0$ .

Lemrnas 3.4, 3.8 and condition (iii) (b) show that the conditions of Theorem 2.3 are satisfied.
Further the proof is the sarne as that of Theorern 4.3, but in this case $S_{y}:=\{x\in D$ : $F(x, y)\subset$

$-C(x)\}$ . 1

5. Conclusions.

We have presented four type generalizations of the scalar Fan’s inequality in the following setting:
(i) set-valued maps with vector-valued images instead of scalar functions;

(ii) two-function type instead of single function type;

(iii) parametric ordering structure instead of fixed ordering structure;

(iv) cornplete extensions including the result of [1].

As a corollary from any of Theorems 4.1-4.4, we obtain that Theoreni 2.3 irnplies the scalar Fan
inequality.
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