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Minimax Theorems for Vector-Valued
Multifunctions *

PANDO GR. GEORGIEVfand TAMAKI TANAKA (me )t

1 Introduction

We present a Ky Fan type inequality of mixed kind for vector-valued multifunctions. We
use it for proving our first type minimax theorem for vector-valued multifunctions. It is a
generalization of the classical Sion minimax theorem for scalar functions (in the compact
case), as well as, a generalization of a theorem of Tanaka for vector-valued functions.

We use a vector-valued variant for multifunctions of Ky Fan type inequality, described
in the another presentation of us in this volume, in order to derive our second type minimax
theorems for vector-valued multifunctions, which is stronger than the first one and uses a
special notion of convexity for multifunctions.

The theory of vector optimization has been intensively developed in recent years, as
currently the interest is focused on vector-valued multifunctions. Important parts of this
theory are the minimax problems and saddle point problems, which have their one specific
features with respect to the real-valued case. For a development of such vector-valued
problems we refer to [T1-T5] and references therein. The vector-valued, set-valued case
proposes more possibilities for definitions of saddle points. In this paper we prove also
a Nash equilibrium theorem for vector-valued multifunctions using scalarization and Ky
Fan’s inequality. As a corollary we obtain a loose saddle point theorem for convex-concave
multifunctions (with respect to a specified definition). An advantage in our loose saddle
point theorems with respect to the existing ones in the literature (see [K-K], [L-V]) is that
our conditions are explicit.
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2 Scalar and vector-valued Ky Fan type inequality
of mixed kind

Proposition 2.1 (Scalar Ky Fan type inequality of mixed kind). Assume that the
functions f,g: K x K — R, where K is a compact convex nonempty subset of topological
vector space, satisfy the properties:

(i) f(---,y),9(z,-) are lower semicontinuous for every x,y € K;

(i) f(z,-),g(-,y) are quasi-concave for every z,y € K.

(iii) min{f(z,y), 9(z,y)) <0 Vz,y € K.

Then there exist xy,yo € K such that

min{sup f(zo,y),sup g(z,y0)} <O.
yeK zeK

Proof. Define the function

hZ,7,z,y) = min{f(Z,y), 9(x,7)}

It is easy to see that h(-,-,z,y) is lower semicontinuous on K x K and h(Z,7,-,-) is
quasiconvex on K x K. Applying the clasical scalar Ky Fan’s inequality (see for instance
[A-E]), we obtain the result. = ‘

Let Y be a Banach space, C C Y a closed convex cone with nonempty interior and £
a topological vector space.

Definition 2.2 The multivalued mapping F : E — 2Y is called C-properly quasiconvex
if for every two points x1,z, € X and every A € [0, 1] we have either

F(/\.’IIl + (1 — )\)112) C F(.’L‘l) -C or
F()\(L‘l -+ (1 — )\)132) C F(IEz) —C.

If —F is C-properly quasiconvez, then F is called C-properly quasiconcave, which is equiv-
alent to (—C)-properly quasiconver mapping.

Definition 2.3 We shall say that the multifunction F : E — 2Y is C-lower semicontin-

uous at T, if for every y € F(xy) and every open V 3 0 there exists an open U > xy such
that (y +V +C)NF(z) =0 for every x € U.

Definition 2.4 The multifunction F is called C-upper semicontinuous at x,, if for every
y € CU (=C) such that F(zy) C y + intC, there ezists an open U 3 xy such that F(z) C
y + intC for every x € U.

Theorem 2.5 (Ky Fan type inequality of mixed kind for multifunctions). Sup-
pose that E; and E5 are topological vector spaces, X C E; is a nonempty convex compact
subset, K C Ey is a nonempty convexr compact subset, C is closed convez strongly pointed
cone with nonempty interior in a Banach space Y and F,G : X x K — 2Y are multifunc-
tions satisfying the following conditions: '

(i) G(z,-) is C-quasiconvez for every x € X, and F(-,y) is C-properly quasiconvex
for everyy € K;
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(i) G(,y) 1s —C-lower semicontinuous for every y € K, and F(x,-) is —C-upper
semicontinuous for every x € X.
(iii) for every x € X,y € K we have: either G(z,y)N(—intC) = 0 or F(z,y) ¢ —intC

Then there exist o € X,y € K such that for every x € X,y € K we have: either
G(zo,y) N (=intC) =0 or F(z,y0) ¢ —intC .

Proof. Define

o((z,y), («',y") = inf{f(z, V), 9(z", 9))},

where
' f(z,y) = —inf sup h(k,z,z),

k€B ;e F(z,y)

g(z,y) = —inf inf h(k,z,2)

keB zeG(z,y)

and B is an open bdse of C. Using Lemmas 3.1, 3.3 of [G-T1] we obtain that ¢((-,-), (', ¥'))
is lower semicontinuous for every 2/, 4’ € K, and by Lemmas 3.2, 3.4 in [G-T1}, ¢((z,y), ( )
is quasi-concave for every z € X,y € K. We have also ((z,y),( y)) < 0 for every
z,y € K. Applying Proposition 2.1 we obtain the result. =

We shall denote by sup A (resp. inf A), where A C Y, the set of all efficient points of
the set A (the norm closure of A) with respect to C (resp. with respect to —C), i.e.

sapA={a€A:(a+C)NA={a}};

infA={a€A:(a-C)NA={a}}.

Recall that A is bounded with respect to C, if the set (a +C)N A is bounded for every
a € A. A classical lemma of R. Phelps [Ph], which is equivalent to Ekeland’s variational
principle and which we shall use in the sequel, states that sup A # 0 (resp. inf A # (), if
A is bounded with respect to C (resp. with respect to —C).

We shall say that the multivalued mapping F : X — 2¥, where X is topological space,
is bounded with respect to C| if for every z € X and every y € F(z) the set (y+C)NF(x)
is bounded.

3 Minimax theorems

Theorem 3.1 (Minimax theorem I). Suppose that Ey and E; are topological vector
spaces, X C Fp is nonempty convex compact subset, K C Ey is a nonempty conver compact
subset, C is closed convex strongly pointed cone with nonempty interior in a Banach space Y
and F,.G : X x K — 2Y are multifunctions, bounded with respect to C and —C respectively,
and satisfying the following conditions:

(i) G(z,-) is C-quasiconvez for every z € X, and —F(-,y) is C-properly quasiconvex
for everyy € K;

(i) G(-,y) is —C-lower semicontinuous for every y € K, and F(xz,-) is C-upper
semicontinuous for every r € X.

(111) for every x € X,y € K and every two vectors z1,2y € Y satisfying 21 — 2o & C,
we have
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either [G(z,y) — z1] N (—intC) = 0, or 2z — F(z,y) ¢ —intC.
Then for every z, such that
(a) 2z —intC D sup Ugzex inf Uyex G(z,y),
and for every zy such that
(b) 22+ intC D inf Uyek sup Uzex F(z,y),
we have z; — zy € C.

Proof. Assume the contrary. By (ii) it folows that G(-,y) — 21 is —C-lower semicon-
tinuous and z; — F'(z, ) is —C-upper semicontinuous. By (i) it follows that G(z,-) — 2; is
C-quasiconvex and zy — F'(+,y) is C-properly quasiconvex. So, using (iii) we apply Theorem
2.5 and obtain that there exist points zy, ¥y such that for every x € X,y € K we have:

either (G(zy,y) — z1) N (—intC) =0

or zg — F(z,yy) ¢ —intC.

Assume that there exists z € X such that

29 — F(x,90) C —intC.
Then : ‘
(G(zg,y) — 21) N (—intC) =0 Vy € K.

This. implies .
(inf Uyex G (2o, y)) N (2 — intC) = 0. (1)

It is easy to see, using Phelps lemma (see [Ph]) that for any set S which is bounded with
respect to C, we have '
SCsupS—-C (2)

So, for S = inf Uye kG (20,y), by (2) we have (using (a))

inf UyeG(o,y) C supUgex inf UyexG(z,y) — C
C z—intC - C

= 21— il’ltc,
which is a contradiction with (1). Therefore
29 — F(z,y) ¢ —intC  Vz € X.

This implies
sup Ugex F(z, ) € 23 + intC (3)
By (b) and (2) we obtain
"zg +intC = 2o+ intC +C
D infUyek supUzex F(z,y) + C
D supUgzex F(z, 1),

which is a contradiction with (3). =

Definition 3.2 A multifunction F : E — 2" is called (in the sense of [K-T-H, Definition
3.6])
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(a) type-(v) C-properly quasiconvez if for every two points z1,z, € X and every A € [0, 1]
we have either F(Azy + (1 — A)xg) C F(z1) — C or F(Az1 + (1 — N)xp) C F(z2) — C;

(b) type-(iii) C-properly quasiconvez if for every two points T, € X and every A €
[0, 1] we have either F(z,) C F(Az1+(1—=A)z2)+C or F(x3) C F(Az1+(1—X)z2)+C.

If —F is type-(v) [resp. type-(iii)] C-properly quasiconvez, then F is said be type-(v) [resp.
type-(iii)] C-properly quasiconcave, which is equivalent to type-(v) [resp. type (i11)] (—C)-
properly quasiconver mapping.

The following theorem is a generalization (in the compact case) of a scalar two-function
result of Simon [S, Theorem 1.4], which in turn is a generalization of Sion’s minimax
theorem [Si].

Theorem 3.3 (Minimax theorem II). Suppose that E; and E, are topological vector
spaces, X C Ejy is a nonempty convexr compact subset, K C FE, is a nonempty convex
compact subset, C is closed conver strongly pointed cone with nonempty interior in a
Banach space Y and F,G : X x K — 2Y are multifunctions, bounded with respect to C and
—C respectively, such that the set Uye g sup Uzex F'(2,y) is bounded with respect to —C and
the set Ugex inf Uyex G(z,y) is bounded with respect to C. Suppose that F' and G satisfy
the following conditions:

(i) G(z,-) is type-(iii) C-properly quasiconver on K for every x € X;

and F(-,y) is type-(iii) C-properly quasiconcave on K for every y € K;

(i) G(,y) is —C-lower semicontinuous for every y € K, and F(x,-) is C-lower
semicontinuous for every r € X.

(iii) F(z,y) — G(z,y) C —C for everyz € X,y € K.

Then there exist two points

21 € sup Ugex inf Uye G (2, y)

and
Zy € inf Uyek SUp UIEXF(:E’ y)

such that z; — z9 € C.
For the proof of this theorem we need the following result.

Theorem 3.4 ([G-T] Theorem 4.4). Let K be a nonempty conver subset of a topo-
logical vector space E, Y a Banach space, and F : K x K — 2¥ a multifunction. Assume
that

1. C: K — 2Y is a multifunction with a closed graph such that C(z) is closed convex
cone with compact base B(z) = (2By \ By) NC(z) for every x;

2. for every z,y € K, F(-,y) is C(x)-lower semicontinuous and locally bounded;
3. there exists a multifunction G : K x K — 2¥ such that

(a) for every x € K,G(z,z) C —C(x),

(b) F(z,y) ¢ —C(z) implies G(z,y) ¢ —C(z),
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4. there exists a nonempty compact convez subset D of K such that for every z € K\D,

there exists y € D with F(z,y) ¢ —C(z).
Then, the solutions set
S={reK:F(z,y) C -C(z), forallye K}

is a nonempty and compact subset of D. |

Proof of Theorem 3.3. Define the mapping H : X x K x X x K — 2" by

H(%,9,2,y) = F(z,9) — G(z,y).
Applying Theorem 3.4 for H we obtain that there exists zg, yo such that
H(zy,y,2,y) C —C Vz € X,Vy € K,

-whence
sup Ugex F'(z, o) — inf Uyex G (20, y) C —C.

By (2) we obtain
sup Ugex F' (2, ¥0) C inf Uyek supUgex F(z,y) + C

and
inf Uyex G (20, y) C sup Ugzex 12111’( UG(z,y) — C.
Yy

Therefore, by (4) there exist
21 € sup Ugex inf UG(z,y),c € C
yeK

and
2y € inf Uyeg supUF'(z,y),c2 € C
rzeX

such that
29+ e — (21 — 1) € —C,

which implies
z21—2€C+c+cCC. m

4 Nash equilibrium and loose saddle point theorems

Definition 4.1 The multifunction F : E D X — 2% where X is a conver nonempty
subset, is called C-convez, if for every x,y € X, A € [0,1],u € AF(z) + (1 — N\)F(y) there
ezists v € F(Az + (1 — A)y) such that u —v € C. If F is —C-convez, then F 1is called

C-concave. |
Let k% € intC be fixed. Define the functions

h(z) =inf{t e R:z € tk’ — C},
¢(x) = inf h(F(z)),
¥(z) = sup h(F(z)).
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It is easy to see that h is continuous and sublinear (see [Taml1}, [Tam2]).

Lemma 4.2 Let the multifunction F : E D X — 2% be C-conver. Then the function ¢
1S convez.

Proof. Let z;,29 € X. By definition of ¢ and h, for every € > 0 there exist
Z; € F(a:i),ti S R,Z =1,2 such that

Z; — tiko € ~C’ (5)

and
ti < o(x;) + €.

By definition of C-convex multifunction,
e FAz;+(1=Nzg): Asn+ (1= ANz €v+C. (6)
By (5) we have
~C 3 Mz — tk®) + (1= A) (22 — 02k°) = A2y + (1 = N)zp — (A1 4+ (1 = Nt)k°.  (7)
By (6) and (7) we have

€ A +(1-XNz—-C
C M+ (1-Nt)*-—C-C
(At + (1 — Ntp)k® — C.

Hence

h(v) < M+ (1 - N
< Ap(z1) + (1 — Np(zg) + 2.

Therefore

p(Az1 + (1 = A)z») oo ayay ME) S A0(@1) + (1 = Ap(22) + 26

Since € > 0 is arbitrarily small, we obtain
p(Az1 + (1 = A)za) < Ap(z) + (1= A)p(zz). =

Definition 4.3 The multifunction F : E — 2% will be called (C, k°)-upper semicontinu-
ous at xy, if for every € > 0 there exists an open U 3 xy such that

[(p(zy) — )k —CINF(z) =0 VzeU.
Lemma 4.4 If F is —C-lower semicontinuous , then ¢ is upper semicontinuous.
Proof. Let 2y € E,e > 0 be fixed and yy € F(x() be such that

h(yo) <inf h(F(z0)) + €.
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By continuity of h, there exists an open V' 3 0 such that
h(v) <e VYveV.
By definition of —C-lower semicontinuity, there exists an open U 3 z; such that
Fz)N(yo+V -C)#0 Yz eU.
Let y € F(z)N(yo+V —C). Then y = yo+ v — ¢ for some v € V, ¢ € C and we can write

z) = inf h
ple) = inf hy)
< h(y)
< h(yo) + h(v) + h(—c) (by sublinearity of h)
< o(xg) + 2e.
Lemma 4.5 If F is (C, k°)-upper semicontinuous , then ¢ is lower semicontinuous.

Proof. Let xy € E,y € F(flio) and z € U, where U is given by the definition of
(C, k°)-upper semicontinuity of F' at z¢. Let z € F(z). Then by definition we have:

0 < inf{t:z—tk" € (p(xo) — )k’ — C}
= inf{t:z — (t + () — )k’ € —C}
= ¢ —p(x) +inf{t:z—-tk’ € -C
€ — (o) + h(z).
Hence ¢p(z9) < h(z) +¢, and z € F(z) is arbitrary, this implies p(z¢) < ¢(z) +¢. »

Below we prove a Nash equilibrium type theorem and a loose saddle point theorem.
The proofs are based on scalarization via the previous lemmas and on the Ky Fan inequality.

Let E, E, be topological vector spaces, Z be a Banach space, X C E;,Y C E, be
convex compact nonempty subsets and C; C Z be closed convex cones with nonempty
interiors, k! € intC;,i = 1,2.

Theorem 4.6 (Nash equilibrium). Let the multifunctions F; : X xY — 27 be (C;, k?)-
upper semicontinuous . Assume that Fi(-,y) is C1-conver for everyy € Y, Fy(z,-) is —C;-
lower semicontinuous for every x € X, Fy(x,-) is Co-convex for every x € X and B y)
is —Cy-lower semicontinuous for every y € Y. Then there exists a Nash equilibrium,
(zo,%0) € X x Y, which means

Fy(z,y0) N [inf B(Fy (20, 10))k) — intCi] =0 Vr € X,
Fy(mg,y) N [inf h(Fy (g, yo)) ks — intCy] =0 Vy €Y.
Proof. Define
Flz,y,%,7) = inf h(F(z,y)) — inf h(F\(T,y)) + inf h(Fy(z,y)) — inf h(Fy(z, 7))

By Lemma 4.2, f(z,y,-,-) is concave for every z € X,y € Y and by Lemmas 4.4, 4.5,
f(,-,T,7) is lower semicontinuous for every T € X,7 € Y. By Ky Fan’s ineqiality (see
[A-E, Theorem 6.3.5]) there exists (zo,y0) € X x Y such that

sup f(xﬂay(hfa g) S 0
FF)EXXY
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Putting ¥ = yo we obtain

inf h(Fy(zo,y0)) < inf h(Fi(z,y0)) Vz € X, (8)
and putting T = xy we obtain

inf h(F5(zo, yo)) < inf h(Fy(z0,y)) VyeY. (9)

But (8) implies
Fl(.CL', y[)) N [mfh(Fl (330, yo))k‘(l) - iIltC1] = @

and (9) implies
Fy(zo,y) N [inf h(F2 (20, yo)) kg — intCy] = 0,

which finishes the proof. =
In the special case when Fy = —F, and C; = Cy = C,k? = k3 = k°, we obtain the
following loose saddle point theorem.

Theorem 4.7 (Loose saddle point theorem). Suppose that the multifunction F :
X xY — 27 have compact images and is (C, k°)-lower semicontinuous and (—C, —k°)- .
lower semicontinuous, F(-,y),y € Y is C-convez and C-lower semicontinuous, F(z,-),z €
X 148 C-concave and —C-lower semicontinuous. Then there erists a loose saddle point
(w0, 0) € X XY, namely there exist z1, 29 € F(x9, 1), such that

(z1 —intC) N F(z,y) =0 Ve X,

(22 +intC) N F(zg,y) =0 Vy €Y.
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