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1 Introduction
We present a Ky Fan type inequality of mixed kind for vector-valued multifunctions. We
use it for proving our first type minimax theorem for vector-valued multifunctions. It is a
generalization of the classical Sion minimax theorem for scalar functions (in the compact
case), as well as, a generalization of a theorem of Tanaka for vector-valued functions.

We use a vector-valued variant for multifunctions of Ky Fan type inequality, described
in the another presentation of us in this volume, in order to derive our second type minimax
theorerns for vector-valued multifunctions, which is stronger than the first one and uses a
special notion of convexity for multifunctions.

The theory of vector optimization has been intensively developed in recent years, as
currently the interest is focused on vector-valued multifunctions. Important parts of this
theory are the minimax problems and saddle point problems, which have their one specific
features with respect to the real-valued case. For a development of such vector-valued
problerns we refer to [TI-T5] and references therein. The vector-valued, set-valued case
proposes more possibilities for definitions of saddle points. In this paper we prove also
a Nash equilibrium theorem for vector-valued multifunctions using scalarization and Ky
Fan’s inequality. As a corollary we obtain a loose saddle point theorem for convex-concave
rnultifunctions (with respect to a specified definition). An advantage in our loose saddle
point theorems with respect to the existing ones in the literature (see [K-K], [L-V]) is that
our conditions are explicit.
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2Scalar and vector-valued Ky Fan type inequality
of mixed kind

Proposition 2. 1 (Scalar Ky Fan type inequality of mixed kind). Assume that the
functions $f,$ $g:K\cross Karrow \mathrm{R}$ , where $K$ is a compact convex nonempty subset of topological
vector space, satisfy the properties:

(i) $f(\cdots , y),$ $g(x, \cdot)$ are lower semicontinuous for every $x,$ $y\in K$ ;
(ii) $f(x, \cdot),$ $g(\cdot, y)$ are quasi-concave for every $x,$ $y\in K$ .
(iii) $\min\{f(x, y),$ $g(x, y))\leq 0$ $\forall x,$ $y\in K$ .
Then there exist $x_{0},$ $y_{0}\in K$ such that

$\min\{\sup_{y\in K}f(X_{0}, y),\sup_{x\in K}g(x,$
$y_{0)\}}\leq 0$ .

Proof. Define the function

$h( \tilde{x},\tilde{y}, x, y)=\min\{f(\tilde{x}, y), g(x,\tilde{y})\}$ .

It is easy to see that $h(\cdot, \cdot, x, y)$ is lower semicontinuous on $K\cross K$ and $h(\tilde{x},\tilde{y}, \cdot, \cdot)$ is
quasiconvex on $K\cross K$ . Applying the clasical scalar Ky Fan’s inequality (see for instance
[A-E] $)$ , we obtain the result. $\blacksquare$

Let $\mathrm{Y}$ be a Banach space, $C\subset Y$ a closed convex cone with nonempty interior and $E$

a topological vector space.

Definition 2. 2 The multivalued mapping $F$ : $Earrow 2^{Y}$ is called $C$ -properly quasiconvex
if for every two points $x_{1},$ $x_{2}\in X$ and every $\lambda\in[0,1]$ we have either

$F(\lambda x_{1}+(1-\lambda)x_{2})$ $\subset$ $F(x_{1})-c$ or
$F(\lambda x_{1}+(1-\lambda)x_{2})$ $\subset$ $F(x_{2})-c$ .

If-F is $C$ -properly quasiconvex, then $F$ is called $C$ -properly quasiconcave, which is equiv-
alent to $(-C)$ -properly quasiconvex mapping.

Definition 2. 3 We shall say that the multifunction $F:Earrow 2^{Y}$ is $C$ -lower semicontin-
uous at $x_{0}$-, if for every $y\in F(x_{0})$ and every open $V\ni \mathrm{O}$ there exists an open $U\ni x_{0}$ such
that $(y+V+C)\cap F(x)=\emptyset$ for every $x\in U$ .

Definition 2. 4 The multifunction $F$ is called $C$ -upper semicontinuous at $x_{0}$ , if for every
$y\in C\cup(-C)$ such that $F(x_{0})\subset y+\mathrm{i}\mathrm{n}\mathrm{t}C$, there exists an open $U\ni x_{0}$ such that $F(x)\subset$

$y+\mathrm{i}\mathrm{n}\mathrm{t}C$ for.eve$ryX$,
$\in U$ .

Theorem 2. 5 (Ky Fan type inequality of mixed kind for multifunctions). Sup-
pose that $E_{1}$ and $E_{2}$ are topological vector spaces, $X\subset E_{1}$ is a nonempty convex compact
subset, $K\subset E_{2}$ is a nonempty convex compact subset, $C$ is closed convex strongly pointed
cone with nonempty interior in a Banach space $Y$ and $F,$ $G:X\cross Karrow 2^{Y}$ are $multif\dot{u}nc-$

tions satisfying the following conditions:
(i) $G(x, \cdot)$ is $C$ -quasiconvex for every $x\in X$ , and $F(\cdot, y)$ is $C$ -properly quasiconvex

for every $y\in K$ ;
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(ii) $G(\cdot, y)$ is $-C$ -lower semicontinuous for every $y\in K$ , and $F(x, \cdot)$ is -C-upper
semicontinuous for every $x\in X$ .

(iii) for every $x\in X,$ $y\in K$ we have: either $G(x, y)\cap$ (-int$C$ ) $=\emptyset$ or $F(x, y)\not\subset$ -int$C$

Then there exist $x_{0}\in X,$ $y_{0}\in K$ such that for every $x\in X,$ $y\in K$ we have: either
$c(x_{0}, y)\cap(-\mathrm{i}\mathrm{n}\mathrm{t}C)=\emptyset$ or $F(x, y\mathrm{o})\not\subset$ -int$C$ .

Proof. Define

$\varphi((x, y),$ $(x’, y’)):= \inf\{f(x, y’), g(X’, y))\}$ ,

where
$f.(x, y)=- \inf_{k\in BzF}\sup_{\in(xy)},h(k, x, Z)$

,

$g(x, y)=- \inf_{Bk\in}\inf_{z\in G(xy)},h(k, x, z)$

and $B$ is an open base of $C$ . Using Lernmas 3.1, 3.3 of [G-T1] we obtain that $\varphi((\cdot, \cdot),$ $(x’, y’))$

is lower sernicontinuous for every $x’,$ $y’\in K$ , and by Lemmas 3.2, 3.4 in [G-T1], $\varphi((x, y),$ $(\cdot, \cdot))$

is quasi-concave for every $x\in X,$ $y\in K$ . We have also $\varphi((x, y),$ $(x, y))\leq 0$ for every
$x,$ $y\in K$ . Applying Proposition 2.1 we obtain the result. $\blacksquare$

We shall denote by $\sup A$ (resp. inf $A$ ), where $A\subset \mathrm{Y}$ , the set of all efficient points of
the set $\overline{A}$ (the norrn closure of $A$ ) with respect to $C$ (resp. with respect to $-C$), $\mathrm{i}.\mathrm{e}$ .

$\sup A=\{a\in\overline{A} : (a+C)\cap A=\{a\}\}$ ;

inf $A=\{a\in\overline{A} : (a-C)\cap A=\{a\}\}$ .

Recall that $A$ is bounded with respect to $C$ , if the set $(a+C)\cap A$ is bounded for every
$a\in A$ . A classical lernrna of R. Phelps [Ph], which is equivalent to Ekeland’s variational
principle and which we shall use in the sequel, states that $\sup A\neq\emptyset$ (resp. inf $A\neq\emptyset$ ), if
$A$ is bounded with respect to $C$ (resp. with respect to $-C$).

We shall say that the rnultivalued rnapping $F:Xarrow 2^{Y}$ , where $X$ is topological space,
is bounded with respect to $C$ , if for every $x\in X$ and every $y\in F(x)$ the set $(y+C)\cap F(x)$

is bounded.

3 Minimax theorems
Theorem 3. 1 (Minimax theorem I). Suppose that $E_{1}$ and $E_{2}$ are topological vector
spaces, $X\subset E_{1}$ is $nor\iota e\gamma npty$ convex cornpact subset, $K\subset E_{2}$ is a $nor\iota empty$ convex compact
subset, $C$ is closed convex $stro\gamma\iota gly$ pointed $cor\iota e$ with $no\mathcal{T}bempty$ interior in a Banach space $Y$

and $F,$ $G:X\cross Karrow 2^{Y}$ are rnultifunctions, $bou\gamma\iota ded$ with respect to $C$ and-C respectively,
and $satisf\dot{y}ing$ the $to\iota\iota_{\mathit{0}}wir\iota g$ conditions:

(i) $G(x, \cdot)$ is $c- quasi_{Con}veX$ for every $x\in X,$ $and-F(\cdot, y)$ is $C$ -properly quasiconvex
for every $y\in K$ ;

(ii) $G(\cdot, y)$ is $-C$ -lower sernicontinuous for every $y\in K$ , and $F(x, \cdot)$ is C-upper
sernicontinuous for$\cdot$ every $x\in X$ .

(iii) for every $x\in X,$ $y\in K$ and every two vectors $z_{1},$ $z_{2}\in \mathrm{Y}$ satisfying $z_{1}-z_{2}\not\in C_{;}$

we have
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either $[G(x, y)-z1]\cap(-\mathrm{i}\mathrm{n}\mathrm{t}C)=\emptyset$ , or $z_{2}-F(X, y)\not\subset$ -int$C$ .
Then for every $z_{1}$ such that
$(a)$ $z_{1}$ –int$C \supset\sup\bigcup_{x\in X}$ inf $\bigcup_{y\in K}c(x, y)$ ,

and for every $z_{2}$ such that
$(b)$ $z_{2}+ \mathrm{i}\mathrm{n}\mathrm{t}C\supset\inf\bigcup_{y\in K}\sup\bigcup_{x\in X}F(X, y)$,

we have $z_{1}-z_{2}\in C$ .

Proof. Assume the contrary. By (ii) it folows that $G(\cdot, y)-z_{1}\mathrm{i}\mathrm{s}-C$ -lower sernicon-
tinuous and $z_{2}-F(x, \cdot)$ is $-C$-upper semicontinuous. By (i) it follows that $G(x, \cdot)-z_{1}$ is
$C$-quasiconvex and $z_{2}-F(\cdot, y)$ is $C$-properly quasiconvex. So, using (iii) we apply Theorem
2.5 and obtain that there exist points $x_{0},$ $y_{0}$ such that for every $x\in X,$ $y\in K$ we have:

either $(G(x_{0}, y)-z1)\cap(-intC)=\emptyset$

or $z_{2}-F(X, y0)\not\subset-intC$ .
Assume that there exists $x\in X$ such that

$z_{2}-F(x, y\mathrm{o})\subset$ -int$C$ .

Then
$(G(x_{0}, y)-z_{1})\cap$ (-int$C$ ) $=\emptyset$ $\forall y\in K$ .

This. implies
$( \inf\bigcup_{y\in K}G(x0, y))\cap$ ( $z_{1}$ –int$C$ ) $=\emptyset$ . (1)

It is easy to see, using Phelps lemma (see [Ph]) that for any set $S$ which is bounded with
respect to $C$ , we have

$S \subset\sup s-^{c}$ (2)

So, for $S= \inf\bigcup_{y\in K}c(x_{0,y})$ , by (2) we have (using $(\mathrm{a})$ )

inf $\bigcup_{y\in K}G(x0, y)$ $\subset$ $\sup\bigcup_{x\in X}\inf\bigcup_{y\in K}G(X, y)-c$

$\subset$ $z_{1}-\mathrm{i}\mathrm{n}\mathrm{t}C-c$

$=$ $z_{1}-\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{C}$ ,

which is a contradiction with (1). Therefore

$z_{2}-F(X, y\mathrm{o})\not\subset$ -int$C$ $\forall x\in X$ .

This implies
$\sup\bigcup_{x\in X}F(x, y0)\not\subset z_{2}+\mathrm{i}\mathrm{n}\mathrm{t}C$ (3)

By (b) and (2) we obtain

$z_{2}+\mathrm{i}\mathrm{n}\mathrm{t}C$ $=$ $z_{2}+\mathrm{i}\mathrm{n}\mathrm{t}C+C$

$\supset$ $\inf\bigcup_{y\in K}\sup\bigcup_{x\in X}F(X, y)+C$

$\supset$ $\sup\bigcup_{x\in X}F(X, y\mathrm{o})$ ,

which is a contradiction with (3). $\blacksquare$

Definition 3. 2 A multifunction $F:Earrow 2^{Y}$ is called (in the sense of [K-T-H, Definition
3. 6])
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$(a)type-(\mathrm{V})C$ -properly quasiconvex if for every two points $x_{1},$ $x_{2}\in X$ and every $\lambda\in[0,1]$

we have either $F(\lambda x_{1}+(1-\lambda)x_{2})\subset F(x_{1})-c$ or $F(\lambda x_{1}+(1-\lambda)x_{2})\subset F(x_{2})-C$;

$(b)type-(\mathrm{i}\mathrm{i}\mathrm{i})C$ -properly quasiconvex if for every two points $x_{1},$ $x_{2}\in X$ and every $\lambda\in$

$[0,1]$ we have either $F(x_{1})\subset F(\lambda x_{1}+(1-\lambda)X_{2})+C$ or $F(x_{2})\subset F(\lambda x_{1}+(1-\lambda)X_{2})+C$ .

$If-F$ is $type-(v)$ [resp. $type-(iii)$] $C$ -properly quasiconvex, then $F$ is said be $type-(v)$ [resp.
$type-(iii)]C$-properly quasiconcave, which is equivalent to $type-(v)$ [resp. $type-(iii)\mathit{1}(-C)-$

properly quasiconvex mapping.

The following theorem is a generalization (in the compact case) of a scalar two-function
result of Simon [ $\mathrm{S}$ , Theorem 1.4], which in turn is a generalization of Sion’s minimax
theorern [Si].

Theorem 3. 3 (Minimax theorem II). Suppose that $E_{1}$ and $E_{2}$ are topological vector
spaces, $X\subset E_{1}$ is a nonempty convex compact subset, $K\subset E_{2}$ is a nonempty convex
compact subset, $C$ is closed convex strongly pointed cone with nonempty interior in a
Banach space $Y$ and $F,$ $G:X\cross Karrow 2^{Y}$ are multifunctions, bounded with respect to $C$ and
$-C$ respectively, such that the set $\bigcup_{y\in K}\sup\bigcup_{x\in X}F(x, y)$ is bounded with respect to-C and
the set $\bigcup_{x\in X}\inf\bigcup_{y\in K}c(X, y)$ is bounded with respect to C. Suppose that $F$ and $G$ satisfy
the following conditions:

(i) $G(x, \cdot)$ is $type-(\mathrm{i}\mathrm{i}\mathrm{i})C$ -properly quasiconvex on $K$ for every $x\in X_{f}$.

and $F(\cdot, y)$ is $type-(\mathrm{i}\mathrm{i}\mathrm{i})C$ -properly quasiconcave on $K$ for every $y\in K$ ;
(ii) $G(\cdot, y)$ is $-C$ -lower semicontinuous for every $y\in K$ , and $F(x, \cdot)$ is C-lower

semicontinuous for every $x\in X$ .
(iii) $F(x, y)-G(x, y)\subset-C$ for every $x\in X,$ $y\in K$ .
Then there exist two points

$z_{1} \in\sup\bigcup_{x\in X}\inf\bigcup_{y\in K}G(X, y)$

and
$z_{2} \in\inf\bigcup_{y\in K}\sup\bigcup_{x\in x^{F()}}x,$$y$

such that $z_{1}-z_{2}\in C$ .

For the proof of this theorem we need the following result.

Theorem 3. 4 ([G-T] Theorem 4.4). Let $K$ be a nonempty convex subset of a topo-
logical vector space $E,$ $Y$ a Banach space, and $F:K\cross Karrow 2^{Y}$ a multifunction. Assume
that

1. $C$ : $Karrow 2^{Y}$ is a multifunction with a closed graph such that $C(x)$ is closed convex
cone with compact base $B(x)=(2\overline{B}_{Y}\backslash B_{Y})\cap C(x)$ for every $x$ ;

2. for every $x,$ $y\in K,$ $F(\cdot, y)$ is $C(x)$ -lower semicontinuous and locally bounded;

3. there exists a multifunction $G:K\cross Karrow 2^{Y}$ such that

$(a)$ for every $x\in K,$ $G(x, x)\subset-C(x)$ ,

$(b)F(x, y)\not\subset-C(x)$ implies $G(x, y)\not\subset-C(x)$ ,
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$(c)G(x, \cdot)$ is $type-(\mathrm{i}\mathrm{i}\mathrm{i})C(x)$ -properly quasiconcave on $K$ for every $x\in K$ ;

4. there exists a nonempty compact convex subset $D$ of $K$ such that for every $x\in K\backslash D$ ,
there exists $y\in D$ with $F(x, y)\not\subset-C(x)$ .

Then, the solutions set

$S=$ {$x\in K:F(x,$ $y)\subset-C(x)$ , for all $y\in K$ }

is a nonempty and compact subset of $D$ .

Proof of Theorem 3.3. Define the mapping $H:X\cross K\mathrm{x}X\mathrm{x}Karrow 2^{Y}$ by

$H(\tilde{x},\tilde{y}, x, y)=F(x,\tilde{y})-^{c(}\tilde{x},$ $y)$ .

Applying Theorem 3.4 for $H$ we obtain that there exists $x_{0},$ $y_{0}$ such that

$H(x_{0}, y_{0}, x, y)\subset-C$ $\forall x\in X,$ $\forall y\in K$ ,

whence
$\sup\bigcup_{x\in X}F(x, y_{0})-\inf\bigcup_{y\in K}G(x0, y)\subset-C$ . (4)

By (2) we obtain

$\sup\bigcup_{x\in X}F(x, y\mathrm{o})\subset\inf\bigcup_{y\in K}\sup\bigcup_{x\in X}F(x, y)+C$

and
$\inf\bigcup_{y\in K}c(x_{0,y})\subset\sup\bigcup_{x\in X}\inf_{Ky\in}\cup G(x, y)-C$ .

Therefore, by (4) there exist

$z_{1} \in\sup\bigcup_{x\in X}\inf_{y\in K}\cup G(x, y),$
$c_{1}\in C$

and
$z_{2} \in\inf\bigcup_{yK}\in \mathrm{s}\mathrm{u}\mathrm{p}x\in X\cup F(x, y),$

$C_{2}\in C$

such that
$z_{2}+c_{2}-(_{Z}1^{-c_{1})}\in-C$ ,

which implies
$z_{1}-z_{2}\in C+c_{1}+C_{2}\subset C$ . $\blacksquare$

4 Nash equilibrium and loose saddle point theorems

Definition 4. 1 The multifunction $F$ : $E\supset Xarrow 2^{Z}$ , where $X$ is a convex nonempty
subset, is called $C$ -convex, if for every $x,$ $y\in X,$ $\lambda\in[0,1],$ $u\in\lambda F(x)+(1-\lambda)F(y)$ there
exists $v\in F(\lambda x+(1-\lambda)y)$ such that $u-v\in C.$ If $F$ is $-C$ -convex, then $F$ is called
C-concave.

Let $k^{0}\in intC$ be fixed. Define the functions

$h(x)= \inf\{t\in \mathrm{R}:x\in tk^{0}-C\}$ ,

$\varphi(x)=\inf h(F(x))$ ,

$\psi(x)=\sup h(F(x))$ .
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It is easy to see that $h$ is continuous and sublinear (see [Taml], [Tam2]).

Lemma 4. 2 Let the multifunction $F$ : $E\supset Xarrow 2^{Z}$ be $C$ -convex. Then the function $\varphi$

is convex.

Proof. Let $x_{1},$ $x_{2}\in X$ . By definition of $\varphi$ and $h$ , for every $\in>0$ there exist
$z_{i}\in F(x_{i}),$ $t_{i}\in \mathrm{R},$ $i=1,2$ such that

$z_{i}-t_{i}k0\in-C$ (5)

and
$t_{i}<\varphi(x_{i})+\mathit{6}$ .

By definition of $C$-convex multifunction,

$\exists v\in F(\lambda x_{1}+(1-\lambda)x_{2})$ : $\lambda z_{1}+(1-\lambda)z2\in v+C$. (6)

By (5) we have

$-C\ni\lambda(z_{1}-t_{1}k^{0})+(1-\lambda)(Z2^{-}t2k^{0})=\lambda z_{1}+(1-\lambda)_{Z_{2^{-}}}(\lambda t_{1}+(1-\lambda)t_{2})k^{0}$. (7)

By (6) and (7) we have

$v$ $\in$ $\lambda_{Z_{1}+}(1-\lambda)z_{2}-C$

$\subseteq$ $(\lambda t_{1}+(1-\lambda)t_{2})k0-^{c-^{c}}$

$=$ $(\lambda t_{1}+(1-\lambda)t2)k0_{-}C$ .

Hence

$h(v)$ $\leq$ $\lambda t_{1}+(1-\lambda)t_{2}$

$<$ $\lambda\varphi(X_{1})+(1-\lambda)\varphi(x_{2})+2\Xi$ .

Therefore

$\varphi(\lambda x_{1}+(1-\lambda)x_{2}):=\mathrm{i}\mathrm{I}\mathrm{l}\mathrm{f}z\in F^{\mathfrak{j}}(\lambda x_{1+}(1-\lambda)x_{2})h(_{Z})\leq\lambda\varphi(X_{1})+(1-\lambda)\varphi(x_{2})+2\mathcal{E}$ .

Since $\epsilon j>0$ is arbitrarily srnall, we obtain

$\varphi(\lambda x_{1}+(1-\lambda)x_{2})\leq\lambda\varphi(x_{1})+(1-\lambda)\varphi(x2)$. $\blacksquare$

Definition 4. 3 The $\gamma nultif\dot{u}nCtionF:Earrow 2^{Z}$ will be called $(C, k^{0})$ -upper semicontinu-
ous at $x_{0},$ if for every $\epsilon>0$ there exists an open $U\ni x_{0}$ such that

$[(\varphi(x_{0})-\in)k^{0}-c]\cap F(x)=\emptyset$ $\forall x\in U$.

Lemma 4. 4 If $F$ is $-C$ -lower sernicontinuous, then $\varphi$ is upper semicontinuous.

Proof. Let $x_{0}\in E,$ $\in>0$ be fixed and $y_{0}\in F(x_{0})$ be such that

$h(y_{0})< \inf h(F(x0))+\in$ .
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By continuity of $h$ , there exists an open $V\ni \mathrm{O}$ such that

$h(v)<\in$ $\forall v\in V$.

By definition $\mathrm{o}\mathrm{f}-C$-lower semicontinuity, there exists an open $U\ni x_{0}$ such that

$F(x)\cap(y_{0}+V-C)\neq\emptyset$ $\forall x\in U$.

Let $y\in F(x)\cap(y_{0}+V-C)$ . Then $y=y_{0}+v-c$ for some $v\in V,$ $c\in C$ and we can write

$\varphi(x)$ $=$
$y’\in F^{\mathrm{t}}\mathrm{i}\mathrm{I}1\mathrm{f}(x)h(y’)$

$\leq$ $h(y)$

$\leq$ $h(y_{0})+h(v)+h(-c)$ (by sublinearity of $h$ )
$\leq$ $\varphi(X_{0})+2_{6}$ .

Lemma 4. 5 If $F$ is $(C, k^{0})$ -upper $serr\iota iContirluous$ , then $\varphi$ is lower semicontinuous.

Proof. Let $x_{0}\in E,$ $y\in F(x_{0})$ and $x\in U$ , where $U$ is given by the definition of
$(C, k^{0})$ -upper sernicontinuity of $F$ at $x_{0}$ . Let $z\in F(x)$ . Then by definition we have:

$0$ $\leq$ $\mathrm{i}\mathrm{I}\mathrm{l}\mathrm{f}\{t:z-tk^{0}\in(\varphi(x_{0})-\in)k^{0}-^{c\}}$

$=$ $\inf\{t:z-(t+\varphi(x_{0})-\in)k^{0}\in-C\}$

$=$ $\in-\varphi(x_{0})+\inf\{t:z-tk^{0}\in-C$

$=$ $\epsilon-\varphi(X_{0})+h(Z)$ .

Hence $\varphi(x_{0})\leq h(z)+\in$ , and $z\in F(x)$ is arbitrary, this irnplies $\varphi(x_{0})\leq\varphi(x)+\in$ . $\blacksquare$

Below we prove a Nash equilibriurn type theorern and a loose saddle point theorem.
The proofs are based on scalarization via the previous lernrnas and on the Ky Fan inequality.

Let $E_{1},$ $E_{2}$ be topological vector spaces, $Z$ be a Banach space, $X\subset E_{1},$ $Y\subset E_{2}$ be
convex compact nonempty subsets and $C_{i}\subset Z$ be closed convex cones with nonempty
interiors, $k_{i}^{0}\in \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{C}_{i},$ $i=1,2$ .

Theorem 4. 6 (Nash equilibrium). Let the $rr\iota ultifu\gamma\iota Cti_{\mathit{0}}nsF_{i}$ : $X\cross Yarrow 2^{Z}$ be $(C_{i}, k_{i}^{0})-$

upper semicontinuous. Assume that $F_{1}(\cdot, y)$ is $C_{1}$ -corbvex for every $y\in Y,$ $F_{1}(x, \cdot)is-C_{1}-$

lower semicontinuous for every $x\in X,$ $F_{2}(x, \cdot)$ is $C_{2}$ -convex for every $x\in X$ and $F_{2}(\cdot, y)$

is $-C_{2}$ -lower semicontinuous for every $y\in$ Y. Then there exists a Nash equilibrium,
$(x_{0}, y\mathrm{o})\in X\cross Y$ , which means

$F_{1}(x, y\mathrm{o})\cap$ [inf $h(F_{1}(x0,$ $y_{0}))k_{1}^{0}-\mathrm{i}\mathrm{n}\mathrm{t}C_{1}$ ] $=\emptyset$ $\forall x\in X$ ,

$F_{2}(x_{0}, y)\cap$ [inf $h(F_{2}(x0,$ $y_{0}))k^{0}\mathrm{i}2^{-}\mathrm{n}\mathrm{t}C_{2}$ ] $=\emptyset$ $\forall y\in Y$.

Proof. Define

$f(x, y, \overline{x}, \overline{y})=\inf h(F_{1}(x, y))$ –inf $h(F_{1}( \overline{x}, y))+\inf h(F_{2}(x, y))$ –inf $h(F_{2}(x, \overline{y}))$

By Lemma 4.2, $f(x, y, \cdot, \cdot)$ is concave for every $x\in X,$ $y\in Y$ and by Lemmas 4.4, 4.5,
$f(\cdot, \cdot, \overline{x}, \overline{y})$ is lower semicontinuous for every $\overline{x}\in X,$ $\overline{y}\in Y$ . By Ky Fan’s ineqiality (see
[A-E, Theorem 6.3.5] $)$ there exists $(x_{0}, y_{0})\in X\cross Y$ such that

$( \overline{x},\overline{y})\in\sup f(_{X}0, y_{0}, \overline{x}, \overline{y})X\cross Y\leq 0$
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Putting $\overline{y}=y_{0}$ we obtain

inf $h(F_{1}(x_{0}, y \mathrm{o}))\leq\inf h(F_{1}(x, y_{0}))$ $\forall x\in X$ , (8)

and $\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}_{\overline{X}}=x_{0}$ we obtain

inf $h(F_{2}(X0,$ $y_{0))} \leq\inf h(F_{2}(X0, y))$ $\forall y\in Y$. (9)

But (8) irnplies
$F_{1}(x, y\mathrm{o})\cap$ [$\inf h(F1(x0,$ $y\mathrm{o}))k_{1}^{0}$ –int$C_{1}$ ] $=\emptyset$

and (9) implies
$F_{2}(x_{0}, y)\cap$ [inf $h(F_{2}(x0,$ $y_{0}))k^{0}\mathrm{i}2^{-}\mathrm{n}\mathrm{t}C_{2}$ ] $=\emptyset$ ,

which finishes the proof. $\blacksquare$

In the special case when $F_{1}=-F_{2}$ and $C_{1}=C_{2}=C,$ $k_{1}^{0}=k_{2}^{0}=k^{0}$ , we obtain the
following loose saddle point theorem.

Theorem 4. 7 (Loose saddle point theorem). Suppose that the multifunction $F$ :
$X\cross Yarrow 2^{Z}$ have compact images and is $(C, k^{0})$ -lower semicontinuous and $(-C, -k^{0})-$

lower semicontinuous, $F(\cdot, y),$ $y\in Y$ is $C$ -convex and $C$ -lower semicontinuous, $F(x, \cdot),$ $x\in$

$X$ is $C$ -concave and $-C$ -lower semicontinuous. Then there exists a loose saddle point
$(X_{0_{)}y\mathrm{o}})\in X\cross Y$, namely there exist $z_{1},$ $z_{2}\in F(x_{0}, y\mathrm{o})$ , such that

( $z_{1}$ –int$C$ ) $\cap F(x, y\mathrm{o})=\emptyset\forall x\in X$,

$(z_{2}+\mathrm{i}\mathrm{n}\mathrm{t}C)\cap F(x_{0}, y)=\emptyset\forall y\in Y$.
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