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1. Introduction

Let $E$ be a Banach space and $K$ be a bounded closed convex subset of $E$ . We say

that $K$ has the $\Phi \mathrm{p}$ ( $=fixed$ point property) if every nonexpansive mapping $T:Karrow K$

(i.e. $||Tx-Ty||\leq||x-y||$ for every $x,$ $y\in K$) has a fixed point. The Banach space $E$

has the weak $\Phi \mathrm{p}$ if every weakly compact convex subset $K\subseteq E$ has the $\mathrm{f}\mathrm{p}\mathrm{p}$ .

It is well known (Schauder’s Theorem) that compact convex subsets of a Banach

space has the $\Phi \mathrm{p}$ . In particular, any Banach space $E$ having the Shur property (i.e.

weakly compact subsets of $E$ are norm compact) has the weak $\Phi \mathrm{p}$ . It is well-known

(Browder’s Theorem [2]) that uniformly convex Banach spaces have the weak $\mathrm{f}\mathrm{p}\mathrm{p}$ .

A closed bounded convex subset $K$ of $E$ is said to have normal structure if every

non-trivial convex subset $H$ of $K$ contains a point $x_{0}$ such that

$\sup\{||x_{0}-y|| : y\in H\}<$ diam $(H)$ .

Here diam $(H)= \sup\{||x-y|| : x, y\in H\}$ denotes the diameter of $H$. In [7], W. Kirk

established the following fundamental existence theorem for nonexpansive mappings:

Theorem (W. Kirk [7]). If $K$ is a nonempty, weakly compact, convex subset of a Banach

space and suppose $K$ has normal structure. Then every nonexpansive mapping $T:Karrow$

$K$ has a fixed point.
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A dual Banach space is said to have weak*-normal structure if every bounded closed

convex subset of $E$ has normal structure. In [12] $\mathrm{T}.\mathrm{C}$ . Lim introduced the notion of

weak*-normal structure and proved that the dual Banach space $E=\ell_{1}=c_{0}^{*}$ has this

property, and hence the weak*-fpp [12, Theorem 1] (i.e. every weak*-compact convex

subset of $E$ has the $\mathrm{f}\mathrm{p}\mathrm{p}$ ). In [11], Chris Lennard proved that $T(H)$ , the trace class

operator on a Hilbert space $H$, has the weak*-normal structure when $\mathcal{T}(H)$ is identified

as the dual of $C(H)$ , the space of compact operators on $H$.

It is the purpose of this note to report on some open problems and progress concerning

the weak*–fpp and other related geometries properties for the Fourier Stieltjes algebra

of the locally compact group. It contains part of our talk given in the Symposium on

Nonlinear and Convex Analysis held in August, 2000 held in Kyoto University. We would

like to thank Professor Wataru Takahshi for kindly inviting me to the symposium and his

warm hospitality, and for providing us with the most stimulating and ffiendly mathematical

environment during our stay in Kyoto.

2. Fixed Point Property and Kadec-Klec Type Properties

A dual Banach space $E$ is said to have the weak* Kadec-Klee property $(KK^{*})$ if

whenever $(x_{n})$ is a sequence in the unit ball of $E$ that converges to the weak*-topology

on $x$ , and sep $(x_{n})>0$ , where

$\sup((x_{n}))\equiv\sup\{||x_{n}-x_{m}||;n\neq m\}$

then $||x_{n}||<1$ . We say that $E$ has the strong weak*-Kadec property $(SKK^{*})$ if the

weak*-topology and the norm topology agree on the unit sphere of $E$ . It is known that

a dual Banach space which is locally uniformly convex has property $SKK^{*}$ , and that a

space with property $SKK^{*}$ has the Radon-Nikodym property.

A dual Banach space $E$ is said to have quasi-weak* normal structure if each
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weak*-compact convex subset $K$ of $E$ there exists $x\in K$ such that

$||x-y||<$ diam $(K)$

for all $y\in K$, (see [15]) the following relationship between $(SKK^{*})$ and quasi-weak*

normal structure was established in [8]:

Theorem 2.1 [8]. Let $E$ be a dual Banach space. If $E$ has the property $SKK^{*}$ , then

$E$ has quasi-weak* normal structure.

Theorem 2.1 was used to show [8, Theorem 2] that if $H$ is a Hilbert space, then

$T(H)$ , the trace class operators on $H$, regarded as the dual Banach space of $C(H)$ , the

space of compact linear operators on $H$, has the quasi-weak* normal structure.

A dual Banach space $E$ has the weak* uniform Kadec-Klee property $(UKK^{*})$ if

for every $\epsilon>0$ there is a $0<\delta<1$ such that whenever $A$ is a subset of the closed

unit ball of $E$ containing a sequence $(x_{n})$ with sep $((x_{n}))>\in$ then there is an $x$ in

the weak*-closure of $A$ such that $||x||\leq\delta$.

In [3], van Dust and Sims define the notion of $UKK^{*}$ and show that if a dual Banach

space has the property $UKK^{*}$ , then $E$ has the weak* normal structure (i.e. every

$w^{*}$ -compact convex subset has normal structure). In particular $E$ has the weak* $\mathrm{f}\mathrm{p}\mathrm{p}$ .

We summarize the relationships among the various concepts in the following diagram

$UKK^{*}$ $\Rightarrow$ $KK^{*}$ $\Leftarrow$ $SKK^{*}$

$\mathrm{Y}||$
$\mathrm{Y}||$

weak* normal structure $\Rightarrow$ quasi-weak* normal structure
$\mathrm{Y}||$

weak* $\Phi \mathrm{p}$

In general, $SKK^{*}\Leftrightarrow UKK^{*}$ , $SKK^{*}\Leftrightarrow \mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}^{*}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}1$ structure, and quasi-weak*

normal structure $\Leftrightarrow \mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}^{*}$ normal structure (see [8] and [9]).

Let $G$ be a locally compact group and $M(G)$ be the space bounded regular Borel
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measures on $G$ with the total variation norm. Let $C_{0}(G)$ be the Banach space of all

continuous functions $f$ : $Garrow \mathbb{C}$ vanishing at infinity with the supremum norm. Then as

well known $M(G)$ may be identified the continuous dual of $C_{0}(G)$ .

Theorem 2.2 ([9]). Let $G$ be a locally compact group, the following are equivalent:

(a) $G$ is discrete

(b) $M(G)$ has property $UKK^{*}$

(c) $M(G)$ has property $SKK^{*}$

(d) $M(G)$ has property $KK^{*}$

(e) $M(G)$ has weak* normal structure

(f) $M(G)$ has weak* $\mathrm{f}\mathrm{p}\mathrm{p}$ .

Problem 1. When does $M(G)$ have quasi-weak* normal structure?

In a remarkable paper of C. Lennard [11], he showed that $\mathcal{T}(H)$ has the property

$UKK^{*}$ . Consequently $\mathcal{T}(H)$ has weak*-normal structure. This answers affirmatively a

question raised by Lau and Mah in [9].

Let $G$ be a locally compact group, and let $B(G)$ denote the Fourier Stieltjes algebra

of $G$ , i.e. $B(G)$ is the subalgebra of $CB(G)$ (bounded complex-valued continuous

functions on $G$ ) consisting of all functions $\phi$ of the form

$\phi(x)=\langle\pi(x)h, k\rangle$ $h,$ $k\in H_{\pi}$

where $\{\pi, H_{\pi}\}$ is a continuous unitary representation on $G$ . Then $B(G)$ is a commu-

tative Banach algebra with pointwise multiplication and norm

$|| \phi||=\sup\{|\int f(t)\phi(t)d\lambda(t)|,$ $f\in L^{1}(G),$ $|||f|||\leq 1\}$

where $\lambda$ is a fixed left Haar measure on $G$ , $|||f|||= \sup\{||\pi(f)||;\pi$ is a representation of

$L^{1}(G)\}$ . Then $B(G)$ is the continuous dual of $C^{*}(G)$ , the completion of $(L^{1}(G), |||\cdot|||)$ .
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In the case that $G$ is abelian, then $B(G)=\sim M(\hat{G})$ , and $C^{*}(G)=\sim C_{0}(\hat{G})$ , where $\hat{G}$ is

the dual group of $G$ (see [4] for details).

Theorem 2.3 ([9]). If $G$ is a compact, then $B(G)$ has $UKK^{*}$ .

The following theorem was proved for the case when $G$ is amenable in [9, Theo-

rem 5], and more recently for all $G$ :

Theorem 2.4 ([1]). Let $G$ be a locally compact group. Then $G$ is compact if and only

if $B(G)$ has $SKK^{*}$ .

The following problem still remains open:

Problem 2. Does any of the following properties on $B(G)$ imply $G$ is compact?

(i) $UKK^{*}$

(ii) weak* normal structure

(iii) weak* $\Phi \mathrm{p}$ .

The following follows ffom Lemma 3.1 in [10]:

Proposition 2.5 ([10]). If $B(G)$ has the Radon Nikodym Property, then $B(G)$ has the

weak $\Phi \mathrm{p}$ .

Remark 2.6. If $G$ is the Fell’s group (which is the natural semi-direct product of the

p–adic numbers with the compact group of p–adic units for a fixed prime $p$ ) then $G$ is

non-compact, totally disconnected and has countable dual; $B(G)$ has the Radon-Nikodym

property [14, Remark 4.6]. So $B(G)$ has the weak $\mathrm{f}\mathrm{p}\mathrm{p}$ . However we do not know if $B(G)$

has the weak* fpp for this $G$ .

Let $G$ be a locally compact group and $1<p<\infty$ . For $f\in L^{1}(G)$ , let $\rho(f)$

be the operator on $L^{p}(G)$ defined by $\rho(f)(h)=f*h$ , $h\in L^{p}(G)$ . Let $PF_{p}(G)$ be

the norm closure of $\{\rho(f);f\in L^{1}(G)\}$ in $B(L^{\mathrm{p}}(G))$ . Then $PF_{p}(G)\subseteq A_{p}(G)^{*}$ , where
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$A_{p}(G)$ is the Figa-Talamanca-Herz algebra (see [6] or [13]) consisting of all functions $f$

on $G$ which can be represented as $f= \sum_{n=1}^{\infty}v_{n}*u_{n}\vee$ as absolutely and uniformly convergent

sums such that $\sum_{n=1}^{\infty}||v_{n}||_{p’}||u_{n}||_{p}<\infty$ , $\frac{1}{p}+\frac{1}{p},$ $=1$ , where $u_{n}(x)\vee=u_{n}(x^{-1})$ , $x\in G$ ,

$u_{n}\in L^{p}(G)$ , $v_{n}\in L^{p’}(G)$ . We define norm $||f||_{A_{p}}= \inf\{\sum||v_{n}||_{p’}||u_{n}||_{p}\}$ over all

such representations. Let $B_{p}(G)$ be all complex-valued functions $u$ on $G$ such that

$uv\in A_{p}(G)$ for each $v\in A_{p}(G)$ . It then follows by the closed graph theorem that

$||u||_{M}= \sup\{||uv||_{A_{p};}||v||_{A_{p}}\leq 1\}$ is finite. We equip $B_{p}(G)$ with this multiplier norm.

Then $B_{p}(G)\subseteq CB(G)$ , the space of bounded complex-valued continuous functions on $G$ ,

and $B_{p}(G)$ becomes in this way a translation invariant Banach algebra with pointwise

multiplication. If $G$ is amenable, $B_{p}(G)$ is isometrically isomorphic to the dual space of

$PF_{p}(G)$ , and in this case, $B_{2}(G)=B(G)$ , $PG_{2}(G)=C^{*}(G)$ defined earlier (see [6] for

details).

The following was proved in [9, Theorem 5] for the case $p=2$ :

Proposition 2.7. Let $1<p<\infty$ . If $G$ is amenable and $B_{p}(G)$ has property $SKK^{*}$ ,

then $G$ is compact.

Proof. Suppose $B_{p}(G)$ has property $SKK^{*}$ . Since $G$ is amenable, $A_{p}(G)$ has a

bounded approximate unit $(\phi_{\alpha})$ , $||\phi_{\alpha}||\leq 1$ ([$6$ , Theorem 6]. Let $\theta$ be a weak*-cluster

point of $\{\phi_{\alpha}\}$ in $B_{p}(G)$ . By passing to a subnet if necessary, we may assume that $\phi_{\alpha}$

converges to $\theta$ in the weak*-toplogy. If $x\in G$ , let $\psi\in A_{p}(G)$ such that $\psi(x)=1$

(see [6, Proposition 3]). Since multiplication in $B_{p}(G)$ is separately continuous in the

weak* topology, and $||\phi_{\alpha}\psi-\psi||arrow 0$ , it follows that $\psi=\psi\theta$ . Hence $\theta(x)=1$ . Conse-

quently $\theta\equiv 1$ . Now since $||\phi_{\alpha}||arrow||\theta||=1$ , the net $\overline{\phi}_{\alpha}=\phi_{\alpha}/||\phi_{\alpha}||$ has norm 1, and

$\overline{\phi}_{\alpha}arrow\theta$ in the weak* topology. Now if $B_{p}(G)$ has $SKK^{*}$ , $||\overline{\phi}_{\alpha}-\theta||arrow 0$ . Hence

$1\in A_{p}(G)\subseteq C_{0}(G)$ . Consequently $G$ is compact.

$\square$
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Problem 3. If $G$ is compact, does $B_{p}(G)$ have property $UKK^{*}$ or weak*-normal

structure, or weak* $\mathrm{f}\mathrm{p}\mathrm{p}$?
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