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Some historical background on topological groups

Theorem (Pontryagin?): If the space of a topological group is a $T_{0}$-space, then it is
automatically Tychonoff.

Theorem (Markov [1941]): There exists a topological group the space of which is not
normal.

Theorem (Birkhoff-Kakutani $[1930\mathrm{s}]$ ): A topological group is metrizable if and only
if it is first countable.

Theorem: Every locally compact group has a Haar measure. (This allows for integra-
tion on it.)

Theorem: Let $G$ be a locally compact abelian group, $g\in G$ and $g\neq 0$ . Then there
exists a continuous group homomorphism $\pi$ : $Garrow \mathrm{T}$ from $G$ into the torus group $\mathrm{T}$

such that $\pi(g)\neq 0$ .

Theorem ( $\mathrm{p}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}- \mathrm{w}_{\mathrm{e}}\mathrm{y}1$-van Kampen): Let $G$ be a locally compact group, $g\in G$ and
$g\neq 1_{G}$ where $1_{G}$ is the identity element of $G$ . Then there exist a natural number $n$

and a continuous group homomorphism $\pi$ : $Garrow \mathrm{U}(n)$ from $G$ into the group $\mathrm{U}(n)$ of
unitary $n\cross n$ matrices over the complex number field such that $\pi(g)\neq I$ . (Here $I$ is the
identity matrix of $\mathrm{U}(n).)$ A cardinal $\tau$ is Ulam nonmeasurable provided that for every
ultrafilter $F$ on $\tau$ with the countable intersection property there exists $\alpha\in\tau$ such that
$\mathcal{F}=\{A\subseteq\tau:\alpha\in A\}$ .

Theorem (Varopolous [1964]): Let $G$ and $H$ be locally compact groups, and let
$\pi$ : $Garrow H$ be a group homomorphism. Assume that:

(i) $|G|$ is an Ulam nonmeasurable cardinal, and

(ii) yr is sequentially continuous, i.e. for every sequence $S\subseteq G$ the image $\pi(S)$ is also
a convergent sequence.

Then $\pi$ is continuous.

Theorem (Comfort-Remus [1994]): Let $G$ be a compact group that is either abelian
or connected. Suppose also that every sequentially continuous group homomorphism
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$\pi$ : $Garrow H$ from $G$ into any compact group $H$ is continuous. Then $|G|$ is an Ulam
measurable cardinal.

Theorem (Pasynkov [1961]): ind $G=\mathrm{I}\mathrm{n}\mathrm{d}G=\dim G$ for a locally compact group $G$ .

Note: Locally compact groups are paracompact (Pasynkov).

A continuous image of a Cantor cube $\{0,1\}^{\kappa}$ is called a dyadic space.

Theorem (Kuz’minov [1959]): Compact groups are dyadic.

A compact space $X$ is said to be Dugundji if any continuous function $f:Aarrow X$

defined on a closed subset $A$ of a Cantor cube $\{0,1\}^{\kappa}$ has a continuous extension
$F:\{0,1\}^{\kappa}arrow X$ .

Since we can choose the above $f$ to be onto, Dugundji spaces are dyadic.

Theorem ( $\check{\mathrm{C}}$ oban $[1970\mathrm{s}]$ ): Let $X$ be a compact $G_{\delta}$-subset of some topological group.
Then $X$ is a Dugundji space.

Theorem (Hagler, Gerlits and Efimov [1976/77]): An infinite compact group $G$ con-
tains a homeomorphic copy of the Cantor cube
$\{0,1\}^{w(c})$ .

As a corollary, one gets a particular version of Shapirovskii’s theorem about mappings
onto Tychonoff cubes:

Theorem: Every infinite compact group $G$ admits a continuous map onto a Tychonoff
cube $[0,1]^{w}(G)$ .

Recall that a space $X$ is $\sigma$ -compact if it is a union of countable family of its compact
subspaces.

A space $X$ is $ccc$ provided that $X$ does not have an uncountable family of non-empty
pairwise disjoint open subsets.

Theorem (Tkachenko [1981]): A a-compact group is $\mathrm{c}\mathrm{c}\mathrm{c}$ .

A space is pseudocompact if every real-valued continuous function defined on it is
bounded.

Theorem (Comfort and Ross [1966]): Let $G$ be a dense subggroup of a compact group
$K$ . Then the following conditions are equivalent:

(i) $G$ is pseudocompact,

(ii) $G\cap B\neq\emptyset$ for every non-empty $G_{\delta}$-subset $B$ of $K$ .

Corollary (Comfort and Ross [1966]): The product of any family of pseudocompact
groups is pseudocompact.

A (Hausdorff) topological group $(G, \mathcal{T})$ is called minimal provided that for every
Hausdorff group topology $\mathcal{T}’$ on $G$ with $\mathcal{T}’\subseteq \mathcal{T}$ one has $\mathcal{T}’=\mathcal{T}$ .
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Clearly, compact groups are minimal.

Theorem (Prodanov, Stoyanov [1984]): A minimal abelian group $G$ is totally bounded,
i.e. $G$ is (isomorphic to) a subgroup of some compact topological group.

Generating dense subgroups of topological groups:
Suitable sets

If $X$ is a subset of a group $G$ , then $\langle X\rangle$ denotes the smallest subgroup of $G$ that
contains $X$ .

Let $X$ be a subspace $X$ of a topological group $G$ .

We say that $X$ algebraically generates $G$ provided that $\langle X\rangle=G$ .

We say that $X$ topologically generates $G$ if $\langle X\rangle$ is dense in $G$ .

A compact connected abelian group $G$ has weight less than or equal to the continuum
if and only if it is monothetic; that is, there exists an element $g\in G$ such that $G$ is
topologically generated by the subset $\{g\}$ .

This result was improved by Hofmann and Morris [1990] by showing that a compact
connected group $G$ can be topologically generated by two elements if and only if the
weight of $G$ is less than or equal to the continuum.

Clearly, neither finite nor countable subsets of a topological group $G$ with weight
greater than the continuum can generate a dense subgroup of $G$ . This fact led Hofmann
and Morris to introduce the concept of suitable set as a way to define the notion of
topological generating sets which are in some sense ”close” to finite sets:

Definition (Hofmann and Morris [1990]): A subset $S$ of a topological group $G$ is
said to be suitable for $G$ if $S$ is discrete in itself, generates a dense subgroup of G. and
$S\cup\{1_{G}\}$ is closed in $G$ , where $1_{G}$ is the identity of $G$ .

Theorem (Hofmann and Morris [1990]): Every locally compact group has a suitable
set.

Theorem (Comfort, Morris, Robbie, Svetlichny, and Tka\v{c}enko [1998]):
Each metric group has a suitable set. A topological group $G$ is almost metrizable

if there exists a compact subgroup $K$ of $G$ such that the space of left cosets $G/K$ is
metrizable.

Theorem (Okunev and Tkachenko [1998]): An almost metrizable group has a suitable
set.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): A topological group representable
as a countable union of closed metrizable subspaces has a suitable set.
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Corollary (Dikranjan, Tkachenko, Tkachuk [1999]): A free (abelian) topological group
over a metric space has a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Suppose that a topological group
$G$ is a countable union of its metrizable subspaces. Does $G$ have a suitable set?

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): Every topological group with a
a-discrete network has a suitable set.

Corollary (Dikranjan, Tkachenko, Tkachuk [1999]): Every topological group with a
countable network (i.e. a cosmic group) has a suitable set.

Corollary (Dikranjan, Tkachenko, Tkachuk [1999]): Stratifiable groups have suitable
sets.

From the above results it follows that all countable groups have suitable sets. In fact,
even more can be said for countable groups:

Theorem (Comfort, Morris, Robbie, Svetlichny, and Tka\v{c}enko [1998]):
Every countable topological group $G$ has a closed discrete subspace $S$ that algre-

braically generates $G$ .
Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): A separable a-compact group has
a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Does every a-compact group of
size $<c$ have a suitable set?

Theorem (Comfort, Morris, Robbie, Svetlichny, and Tka\v{c}enko [1998]):
Let $G$ be the free (abelian) topological group of $\beta \mathrm{N}\backslash \mathrm{N}$ . Then $G$ does not have a

suitable set. In particular, a a-compact group need not have a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Does every a-compact group has
a dense subgroup with a suitable set?

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): If $G$ is a topological group with
a suitable set, then $d(G)\leq l(G)\cdot\psi(G)$ . In particular, a non-separable Lindel\"of group
of countable pseudocharacter does not have a suitable set.

A space is submetrizable if it has a weaker metric topology.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): There exists a submetrizable
Lindel\"of non-separable linear topological space $L$ of countable tightness. Thus, $L$ does
not have a suitable set.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): Under some additional set-theoretic
assumptions (diamond) there exists a hereditarily Lindel\"of non-separable linear topo-
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logical space $L$ of countable tightness. Thus no dense additive subgroup of $L$ has a
suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Can one construct in ZFC a
topological group which does not contain a dense subgroup with a suitable set?

A space $X$ is $\omega$ -bounded if the closure of each countable subset of $X$ is compact.

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): There exists an $\omega$-bounded group
$G$ without a suitable set. Moreover, each power $G^{\kappa}$ of $G$ does not have a suitable set.

Question: In ZFC, does there exists a separable (pseudocompact) group without a
suitable set?

Theorem (Dikranjan, Tkachenko, Tkachuk [1999]): A locally separable non-pseudocomapct
group has a suitable set.

Question (Dikranjan, Tkachenko, Tkachuk [1999]): Does there exists an $\omega$-bounded
topological group of size $c$ without a suitable set?

Generating dense subgroups of topological groups:
Topologically generating weight

We use $w(X)$ to denote the weight of a topological space $X$ , i.e. the smallest size of
a base for the topology of $X$ if such a base is infinite, or $\omega$ otherwise.

Define

$agw(G)= \min${$w(X):X$ is closed in $G$ and algebraically generates $G$}
and

$tgw(G)= \min${$w(F)$ : $F$ is closed in $G$ and topologically generates $G$}.

We will call $agw(G)$ an algebraically generating weight of $G$ and $tgw(G)$ a topologically
generating weight of $G$ .

Clearly $tgw(G)\leq agw(G)\leq w(G)$ . While the definition of algebraically generating
weight appears to be more natural than that of topologically generating weight, it does
not lead to anything new for compact groups:

Theorem (Arhangel’skii): $agw(G)=w(G)$ holds for every compact group $G$ .

For an infinite cardinal $\tau$ define $\sqrt{\tau}$ to be the smallest infinite cardinal $\kappa$ with $\tau\leq\kappa^{\omega}$ .
Clearly, $\sqrt{\tau}\leq\tau$ .

Theorem (Dikranjan and Shakhmatov [1998]): $tgw(G)=\sqrt{w(c(G))}\cdot w(G/c(G))$ for
every compact group $G$ , where $c(G)$ is the connected component of $G$ .
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Corollary (Dikranjan and Shakhmatov [1998]): $tgw(G)–w(G)$ for a totally discon-
nected compact group $G$ .

Corollary (Dikranjan and Shakhmatov [1998]): $tgw(G)=\sqrt{w(G)}$ for every connected
compact group $G$ . A super-sequence is a compact space with at most one non-isolated
point.

Suitable sets in compact groups are precisely super-sequences, so Hofmann-Morris’
theorem justifies an introduction of the following cardinal number for a compact group
$G$ :

seq $(G)= \omega\cdot\min${ $|S|$ : $S\subseteq G$ is a super-sequence topologically generating $G$}.
Clearly $tgw(G)\leq seq(G)\leq w(G)$ .

Theorem (Dikranjan and Shakhmatov [1998]): $tgw(G)=seq(G)$ for every compact
group $G$ .

For topological spaces $X$ and $\mathrm{Y}$ we use $C(X, \mathrm{Y})$ to denote the family of all continuous
maps from $X$ to Y. No topology is assumed on $C(X, \mathrm{Y})$ .

For topological groups $G$ and $H$ we will use $\mathrm{H}\mathrm{o}\mathrm{m}(G, H)$ to denote the family of all
continuous homomorphisms from $G$ to $H$ . No topology is assumed on $\mathrm{H}\mathrm{o}\mathrm{m}(c, H)$ .

Lemma 1: Let $X$ be a subset of a topological group $G$ . Assume that $X$ topologically
generates $G$ . Then $|\mathrm{H}\mathrm{o}\mathrm{m}(G, H)|\leq|C(X, H)|$ for every topological group $H$ .

$Proof$. Define a map $f$ : $\mathrm{H}\mathrm{o}\mathrm{m}(G, H)arrow C(X, H)$ by $f(\pi)=\pi|_{X}$ for $\pi\in \mathrm{H}\mathrm{o}\mathrm{m}(c, H)$ .
We claim that $f$ is an injection. Indeed, assume that $\pi,$ $\varpi\in \mathrm{H}\mathrm{o}\mathrm{m}(c, H)$ and $f(\pi)=$

$f(\varpi)$ . Then $\pi|_{X}=\varpi|_{X}$ . Since both $\pi$ and $\varpi$ are group homomorphisms from $G$ to $H$ ,
one has $\pi|_{\langle X\rangle}=\varpi|_{\langle X\rangle}$ . Since $\langle X\rangle$ is dense in $G$ , continuity of $\pi$ and $\varpi$ implies now
that $\pi=\varpi$ .

PROOF OF THE TOTALLY DISCONNECTED CASE

Lemma 2: Let $X$ be a totally disconnected compact space and $H$ be a discrete space.
Then $|C(X, H)|\leq w(X)$ .

Let $X$ be a closed subset of $G$ that topologically generates $G$ . Since $G$ is compact
and totally disconnected, it is profinite, i.e. its topology is determined by the family
of all continuous homomorphisms into finite discrete groups. Let $H$ be one of these
discrete groups.

Since $G$ is totally disconnected, so is $X$ . Therefore $|C(X, H)|\leq w(X)$ by Lemma 2.

We also have $|\mathrm{H}\mathrm{o}\mathrm{m}(G, H)|\leq|C(X, H)|$ since $X$ topologically generates $G$ (Lemma
1).

Since there are only countably many pairwise non-isomorphic finite discrete groups
$H$ , it now follows that $w(G)\leq\omega\cdot w(X)=w(X)$ .

PROOF OF THE INEQUALITY $\sqrt{w(G)}\leq tgw(G)$
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Lemma 3: Let $X$ be a compact space and $H$ be a separable metric space. Then
$|C(X, H)|\leq w(X)^{\omega}$ .

Theorem: $\sqrt{w(G)}\leq tgw(G)$ for every compact group $G$ .

Proof.$\cdot$ Let $G$ be a compact group. By Peter-Weyl-van Kampen theorem the topology
of every compact group is determined by the set of its homomorphisms into the compact
metric group $H= \prod_{n}\mathrm{U}(n)$ , where $\mathrm{U}(n)$ is the group of unitary $n\cross n$ matrices over
the complex number field.

Therefore $w(G)\leq|\mathrm{H}\mathrm{o}\mathrm{m}(G, H)|$ .
Let $X$ be a closed subspace of $G$ that topologically generates $G$ and satisfies the

equality $w(X)=tgw(G)$ . From Lemmas 1 and 3 we have the following:

$|\mathrm{H}\mathrm{o}\mathrm{m}(G, H)|\leq|C(X, H)|\leq w(X)^{\omega}=tgw(G)^{\omega}$ .

Therefore $\sqrt{w(G)}\leq\sqrt{tgw(G)^{\omega}}\leq tgw(G)$ .
STRONGLY TOPOLOGICALLY FINITELY GENERATED GROUPS

Recall that a topological group $G$ is topologically finitely generated provided that
there exists a finite subset of $G$ topologically generating $G$ .

Definition (Dikranjan and Shakhmatov): We say that a topological group $G$ is strongly
topologically finitely generated provided that for every open set $U$ containing the identity
element of $G$ one can find a finite set $F\subseteq U$ such that $F$ topologically generates $G$ .

Lemma 4: Let $G$ be a topologically finitely generated group that has no proper
open subgroups. Then $G$ is strongly topologically finitely generated. $Proof$. Let
$D=\langle g_{1}, \ldots, g_{n}\rangle$ be a dense finitely generated subgroup of $G$ .

Let $U$ be an open neighbourhood of $e$ in $G$ . Then the subgroup $H=\langle D\cap U\rangle$ of $D$

is $\mathrm{o}\mathrm{b}\mathrm{v}\mathrm{i}\mathrm{o}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{y}\underline{\mathrm{o}_{\mathrm{P}^{\mathrm{e}\mathrm{n}}} }$in $D$ , hence also closed in $D$ . On the other hand, its $\mathrm{c}\mathrm{l}\mathrm{o}\mathrm{S}\mathrm{u}\mathrm{r}\mathrm{e}\overline{H}$ in
$G$ contains $D\cap U\supseteq\overline{U}$ since $U$ is open and $D$ is dense in G. $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{f}_{0}\mathrm{r}\mathrm{e}\overline{H}$ is an open
subgroup of $G$ . Our hypothesis $\mathrm{g}\mathrm{i}_{\mathrm{V}\mathrm{e}\mathrm{S}}\overline{H}=G$ .

Now closedness of $H$ in $D$ yields $H=\overline{H}\cap D=G\cap D=D$ . We have proved in this
way that $D=H$.

Let $i=1,$ $\ldots,$
$n$ . Since

$g_{i}\in D=H=\langle D\cap U\rangle$ ,

there exists a finite subset $F_{i}\subseteq D\cap U$ such that $g_{i}\in\langle F_{i}\rangle$ . Clearly the finite set set
$F= \bigcup_{i=1}^{n}F_{i}$ generates the whole group $D$ and $F\subseteq U$ . Since $D$ is dense in $G,$ $F$

topologically generates $G$ .
Lemma 5: Let $G$ be a metric (not necessarily compact!) group that is strongly topo-
logically finitely generated. Then for every infinite cardinal $\tau$ one has seq $(c^{\tau})\omega\leq\tau$ .
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$\mathrm{p}_{roO}f.\cdot$ Fix an infinite cardinal $\tau$ , and let $\{U_{n} : n\in\omega\}$ be a decreasing open base at
the identity element $e$ of $G$ . For each $n\in\omega$ use the hypothesis of our lemma to fix a
finite set $F_{n}=\{g_{i}^{n} : i<m_{n}\}\subseteq U_{n}$ such that $\langle F_{n}\rangle$ is dense in $G$ .

For $f\in\tau^{\omega}$ and $n\in\omega$ let $f|n\in\tau^{n}$ be the restriction of the function $f$ to $n=$

$\{0,1, \ldots, n-1\}$ .
For $n\in\omega,$ $i<m_{n}$ and $\phi\in\tau^{n}$ we define a point $x_{n,i,\phi}\in G^{\tau^{\omega}}$ as follows:

for each $f\in\tau^{\omega}$ let $X_{n,i,\phi}(f)=g_{i}^{n}$ if $f|n=\phi$ and $X_{n,i,\phi}(f)=e$ otherwise. Then

$X=\{X_{n},i,\emptyset : n\in\omega, i<mn’\phi\in \mathcal{T}^{n}\}$

is a subset of $G^{\tau^{\omega}}$ of size at most $\tau$ .
CLAIM 1. For every open set $W$ which contains the identity element $e$ of $G^{\tau^{w}}$ the

set $X\backslash W$ is at most finite.

Claim 1 implies that $X\cup\{e\}$ is a super-sequence.

Proof of Claim 1. Since $W$ contains a finite intersection of sets of the form

$V_{fn},=\{x\in G^{\tau}\omega : x(f)\in U_{n}\}$ ,

it suffices to prove that, for each $f\in\tau^{\omega}$ and for every $n\in\omega,$ $x(f)\in U_{n}$ for all but
finitely many $x\in X$ , i.e., the set $\{x\in X:x(f)\not\in U_{n}\}$ is finite.

So let $f\in\tau^{\omega}$ and $n\in\omega$ . Our construction implies that if $k\in\omega,$ $j<m_{k},$ $\phi\in\tau^{k}$

and $X_{k,j,\phi(f)}\not\in U_{n}$ , then:
(i) $k<n$ (because $n\leq k$ implies $U_{k}\subseteq U_{n}$ ), and
(ii) $f|k=\phi$ (because $f|k\neq\phi$ implies $x_{k,j,\phi}(f)=e\in U_{n}$).

There are only finitely many of such $x_{k,j,\phi}$ , and the result follows.

CLAIM 2. For every finite subset $F$ of $\tau^{\omega}$ there exists $n\in\omega$ (depending on $F$ )
such that, for each $f\in F$ , the finite set

$\{x_{n,i,f|nn} : i<m\}\subseteq x$

satisfies the following two properties:

(i) $\langle\{xi,f|n(n,f) : i<m_{n}\}\rangle$ is dense in $G$ ,

(ii) $x_{n,i,f|n}(f/)=e$ whenever $f’\in F\backslash \{f\}$ .
From Claim 2 it immediately follows that, for every finite set $F\subseteq\tau^{\omega}$ , the projection

of
$\langle\{x_{n,i,f|}n : f\in F, i<m_{n}\}\rangle$

(where $n$ is as in Claim 2) onto the subproduct $G^{F}$ is dense in $G^{F}$ . Since

$\{_{X_{n,i,f|}}n : f\in F, i<mn\}\subseteq X$ ,
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this implies that $\langle X\cup\{e\}\rangle$ is dense in $G^{\tau^{\omega}}$ . Proof of Claim 2. There exists $n\in\omega$ such
that $f’|n\neq f’’|n$ whenever $f’,$ $f”\in F$ and $f’\neq f’’$ . We will show that this $n$ works.

Indeed, let $f\in F$ . By our construction, one has $x_{n,i,f|n}(f)=g_{i}^{n}$ for all $i<m_{n}$ , so

$\{x_{n,i_{1}f|}n(f) : i<m_{n}\}=$ {gi $i$
n

$<$: $m_{n}$ },

and the latter set generates a dense subgroup of $G$ . This implies (i).

Again by our construction, $f’\in F\backslash \{f\}$ implies $f’|n\neq f|n$ and so $x_{n,i,f|n}(f’)=e$ .
This gives (ii).

PROOF OF THE CONNECTED CASE

Theorem: (Universal compact connected group of a given weight)

There exists a sequence $\{L_{n} : n\in\omega\}$ of compact connected simple Lie groups $L_{n}$

such that every compact connected group of weight $\leq\tau$ is a quotient group of the group

$c_{\tau}=( \hat{\mathrm{Q}})^{\tau}\cross\prod_{n}L_{n}^{\mathcal{T}}$
,

where $\hat{\mathrm{Q}}$ is the Pontryagin dual of the discrete group $\mathrm{Q}$ of rational numbers. (Note that
$G_{\tau}$ is a connected group of weight $\tau.$ )

Theorem: seq $(G)\leq\sqrt{w(G)}$ for a compact connected group $G$ .
Proof: Let $\tau=\sqrt{w(G)}$. By the above theorem, $G$ is a quotient group of the group

$H=( \hat{\mathrm{Q}})^{w}(c)\cross\prod_{n}L_{n}^{w(G})$

for a suitable sequence $\{L_{n} : n\in\omega\}$ of compact connected simple Lie groups $L_{n}$ . Since
$w(G)\leq\tau^{\omega},$ $H$ is a natural quotient group (under projection map) of the group $K^{\tau^{\omega}}$ ,
where

$K=( \hat{\mathrm{Q}})\mathrm{x}\prod_{n}L_{n}$ .

Therefore seq $(G)\leq seq(H)\leq seq(K^{\tau^{\omega}})$ .

Since $K$ is connected, it has no proper open subgroups. Since $K$ is also topologically
finitely generated, $K$ is strongly topologically finitely generated (Lemma 4).

Therefore seq $(K^{\tau}\omega)\leq\tau$ by Lemma 5.

Finally, seq $(G)\leq seq(K^{\tau^{\omega}})\leq\tau=\sqrt{w(G)}$.

Applications of Michael’s selection theorem to proving results
about (mostly compact) topological groups
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Uspenskii [1988] was the first to notice how Michael’s selection theorem can be
applied to get a simple topological proof of the classical result of Kuzminov that compact
groups are dyadic. Recall that a set-valued map $F:\mathrm{Y}arrow Z$ is a map which assigns a
non-empty closed set $F(y)\subseteq Z$ to every point $y\in \mathrm{Y}$ .

This set-valued map is lower semicontinuous if

$V=\{y\in \mathrm{Y} : F(y)\cap U\neq\emptyset\}$

is open in $\mathrm{Y}$ for every set $U$ open in $Z$ .
A selection for a set-valued map $F$ : $Yarrow Z$ is a a (single-valued) continuous map

$f$ : $\mathrm{Y}arrow Z$ such that $f(y)\in F(y)$ for all $y\in \mathrm{Y}$ .

Theorem (Michael [1956]): Every lower semicontinuous set-valued map $F$ : $\mathrm{Y}arrow Z$

from a zero-dimensional compact space $\mathrm{Y}$ into a complete metric space (in particular,
compact metric space) $Z$ has a selection.

Lemma: Suppose that $H$ and $H’$ are topologcal groups, $G$ is a subgroup of the product
$H\cross H’,$ $\varphi$ : $H\cross H’arrow H$ and $\pi$ : $H\cross H’arrow H’$ are projections onto the first and second
coordinates respectively. Assume also that:

(i) the restriction $\varphi|G$ : $Garrow\varphi(G)$ of $\varphi$ to $G$ is an open map,

(ii) the restriction $\pi|_{G}$ : $Garrow\pi(G)$ of $\pi$ to $G$ is a closed map, and

(iii) the subgroup $\pi(G)$ of $H’$ is a complete metric group.

Then for every compact zero-dimensional space $\mathrm{Y}\subseteq\varphi(G)$ there exists a homeomor-
phic embedding $f$ : $\mathrm{Y}arrow G$ such that $(\varphi\circ f)(y)=y$ for every $y\in$ Y. Proof: Define
$Z=\pi(G)$ and note that $G\subseteq H\cross Z$ .

For $y\in \mathrm{Y}$ define $F(y)=\{z\in Z:(y, z)\in G\}$ .
The set $G\cap(\{y\}\cross H’)$ is closed in $G$ , so from (ii) it follows that

$F(y)=\pi(c\mathrm{n}(\{y\}\mathrm{x}H’))$

is closed in $Z=\pi(G)$ .
For $y\in \mathrm{Y}$ , since $y\in \mathrm{Y}\subseteq\varphi(G)$ , we have $F(y)\neq\emptyset$ . Therefore $F$ : $\mathrm{Y}arrow Z$ is a

set-valued map.

We claim that $F$ is lower semicontinuous. Indeed, let $U$ be an open subset of $Z$ . We
have to check that the set

$V=\{y\in \mathrm{Y} : p(y)\cap U\neq\emptyset\}$

is open in Y. To see this note that the set $G\cap(H\cross U)$ is open in $G$ , so $\varphi(G\cap(H\cross U))$

is open in $\varphi(G)$ by (i). Since $\mathrm{Y}\subseteq\varphi(G)$ ,

$V=\mathrm{Y}\cap\varphi(G\cap(H\mathrm{X}U))$
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is open in $Y$ .

Since $\pi(G)=Z$ is a complete metric group, we can use Michael’s selection theorem
to pick a (single-valued) continuous selection $f$ : $\mathrm{Y}arrow Z$ of $F$ .

From the definition of $F$ it follows that $(\varphi\circ f)(y)=y$ for al..l $y\in \mathrm{Y}$ . In particular, $f$

is $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}$. Since $\mathrm{Y}$ is compact, $f$ is a homeomorphism.

Corollary: Suppose that $H$ is a topologcal group, $H’$ is a metric group, $G$ is a compact
subgroup of the product $H\cross H’$ , and $\varphi$ : $H\cross H’arrow H$ is the projection onto the first
coordinate.

Then for every compact zero-dimensional space $\mathrm{Y}\subseteq\varphi(G)$ there exists a homeomor-
phic embedding $f$ : $\mathrm{Y}arrow G$ such that $(\varphi\circ f)(y)=y$ for every $y\in \mathrm{Y}$ .

Proof: Let $\pi$ : $H\mathrm{x}H’arrow H’$ be the projection onto the second coordinate.

Since $G$ is compact, the restriction $\varphi|_{G}$ : $Garrow\varphi(G)$ of $\varphi$ to $G$ is a closed continuous
map, soa quotient map, and so an open map. This gives (i).

Since $G$ is compact, the restriction $\pi|_{G}$ : $Garrow\pi(G)$ of $\pi$ to $G$ is a closed map. This
gives (ii).

The subgroup $\pi(G)$ of $H’$ is compact, being a continuous image of the compact group
$G$ . Since $H’$ is metric, so is $\pi(G)$ . In particular, $\pi(G)$ is a complete metric group. This
gives (iii).

A subset $X$ of an abelian group $G$ is independent provided that $\langle A\rangle\cap\langle X\backslash A\rangle=\{0\}$

for every $A\subseteq X$ .
For a prime number $p\geq 2$ , a subset $X$ of an abelian group $G$ is called p-independent

provided that $X$ is independent and

$\min\{1\leq n\leq p:nx=0\}=p$

for every $x\in X$ . For an abelian group $G$ and a prime number $p$ , cardinal numbers

$r_{0}(G)= \sup$ { $|X|$ : $X\subseteq G$ is independent}

and
$r_{\mathrm{p}}(G)= \sup$ { $|X|$ : $X\subseteq G$ is p-independent}

are called rank and $p$ -rank of $G$ respectively.

For a cardinal number $\tau$ we define $\log(\mathcal{T})$ to be the smallest. infinite cardinal $\sigma$ such
that $2^{\sigma}\geq\tau$ .

Theorem (Shakhmatov): Let $G$ be an infinite compact abelian group. Then:

(i) $G$ contains an independent subset $X$ homeomorphic to the Cantor cube $\{0,1\}^{\mathrm{l}}\mathrm{o}\mathrm{g}\Gamma \mathrm{o}(G)$

of weight $\log r0(c)$ , and
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(ii) for every prime number $p\geq 2$ the group $G$ contains a p–independent subset $X$

homeomorphic to the Cantor cube $\{0,1\}^{\mathrm{l}()}\mathrm{o}\mathrm{g}r_{P}c$ of weight $\log r_{p}(G)$ .

Even the following corollary to the above general theorem is new:

Corollary (Shakhmatov): Let $G$ be an infinite compact abelian group. Then:

(i) $G$ contains a closed independent subset $X$ with $|X|=r_{0}(G)$ , and

(ii) for every prime number $p\geq 2$ the group $G$ contains a closed p–independent subset
$X$ with $|X|=r_{p}(G)$ .

Wallace’s problem and continuity of separately continuous
multiplication in semigroups

A semigroup is a pair $(S, \cdot)$ consisting of a set $S$ and a binary associative operation .
on $S$ .

A semigroup $S$ has the cancellation property provided that either of $sx=sy$ and
$xs=ys$ implies $x=y$ whenever $x,$ $y,$ $s\in S$ .

A topological semigroup is a semigroup equipped with a topology which makes its
binary operation continuous.

Clearly, every topological group is a topological semigroup with the cancellation
property.

Theorem (Gelbaum, Kalish and Olmsted [1951]): A compact semigroup with the
cancellation property is a topological group.

Problem (Wallace [1955]): Is a countably compact Hausdorff semigroup with the
cancellation property a topological group?

A series of positive results by Mukhurjea-Tserpes, Grant, Korovin, Reznichenko,
Yur’eva culminated in the following most general result:

Theorem (Bokalo-Guran [1996]): A sequentially compact Hausdorff semigroup with
the cancellation property is a topological group.

Theorem (Robbie, Svetlichny [1996]): Suppose that there exists an abelian topological
group $G$ with the following properties:

(i) $G$ is countably compact,

(ii) every infinite closed subset of $G$ has cardinality greater or equal than the contin-
uum,

(iii) $G$ is torsion-free, i.e. for every $x\in G$ and each $n\geq 1$ one has $ng\neq 1_{G}$ .

Then, (inside of $G$) one can find a Tychonoff counterexample to the Wallace prob-
lem, i.e. there exists a commutative Tychonoff countably compact semigroup with the
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cancellation property that is not a topological group.

Theorem $(\mathrm{T}\mathrm{k}\mathrm{a}\check{\mathrm{C}}\mathrm{e}\mathrm{n}\mathrm{k}_{0} [1990])$ : Assume $\mathrm{C}\mathrm{H}$ . Than there exists a topological group $G$

with the following properties:

(i) $G$ is countably compact,

(ii) every infinite closed subset of $G$ has cardinality greater or equal than the contin-
uum,

(iii) $G$ is a free abelian group (in particular, $G$ is torsion-free).

Tomita [1997] constructed similar group under Martin’s Axiom for Countable Sets.

Question: Is there such a group in ZFC?

Theorem (Ellis [1957]): A group equipped with a locally compact topology such that
multiplication is separately continuous is a topological group.

Theorem (Korovin [1992]): A group equipped with a countably compact topology
such that multiplication is separately continuous is a topological group.

Theorem (Reznichenko [1994]): Let $G$ be group equipped with a pseudocompact
topology such that multiplication is separately continuous. Then $G$ is a topological
group provided that one of the following conditions holds:

(i) $G$ has countable tightness,

(ii) $G$ is separable,

(iii) $G$ is a k-space.

Theorem (Korovin [1992]): There exists an abelian group (of period 2) equipped with
a pseudocompact group topology such that multiplication is separately continuous but
is not jointly continuous.

Since the group is of period 2, i.e. $x+x=0$ and so $x=-X$ for all $x\in G$ , the
inverse operation is just the identity map, and so the inverse operation is automatically
continuous.

Thus a pseudocompact group with a separately continuous multiplcation (and even
continuous inverse) need not be a topological group.

Convergence properties in topological groups and
function spaces

Let $X$ be a topological space. For $A\subseteq X$ we use $\overline{A}$ to denote the closure of $A$ in $X$ .
A sequence converging to $x\in X$ is a countable infinite set $S$ such that $S\backslash U$ is finite

for every open neighbourhood $U$ of $x$ .
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A space $X$ is Fr\’echet-Urysohn provided that for each set $A\subseteq X$ if $x\in\overline{A}$, then there
exists a sequence $S\subseteq A$ converging to $x$ .

Definition (Arhangel’skii [1970]): The tightness $t(X)$ of a topological space $X$ is
defined as the smallest cardinal $\tau$ such that

$\overline{A}=\cup\{\overline{B} : B\in[A]^{\leq\tau}\}$ for every $A\subseteq X$ .

$\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}arrow \mathrm{f}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}arrow$

$arrow \mathrm{F}\mathrm{r}\acute{\mathrm{e}}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{t}- \mathrm{U}\mathrm{r}\mathrm{y}\mathrm{s}\mathrm{o}\mathrm{h}\mathrm{n}arrow t(X)=\omega$

Definition (Arhangel’skii [1972]): Let $X$ be a topological space. For $i=1,2,3$ and
4 we say that $X$ is an $\alpha_{i}$ -space if for every countable family $\{S_{n} : n\in\omega\}$ of sequences
converging to some point $x\in X$ there exists a (kind of diagonal) sequence $S$ converging
to $x$ such that:

$(\alpha_{1})S_{n}\backslash S$ is finite for all $n\in\omega$ ,
$(\alpha_{2})S_{n}\cap S$ is infinite for all $n\in\omega$ ,
$(\alpha_{3})S_{n}\cap S$ is infinite for infinitely many $n\in\omega$ ,
$(\alpha_{4})S_{n}\cap S\neq\emptyset$ for infinitely many $n\in\omega$ .

Definition (Nyikos [1990]): We say that a space $X$ is an $\alpha_{3/2}$ -space if for every
countable family $\{S_{n} : n\in\omega\}$ of sequences converging to some point $x\in X$ such that
$S_{n}\cap S_{m}=\emptyset$ for $n\neq m$ , there exists a sequence $S$ converging to $x$ such that $S_{n}\backslash S$ is
finite for infinitely many $n\in\omega$ .

$\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}arrow \mathrm{f}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}arrow$

$arrow\alpha_{1}arrow\alpha_{3}/2arrow\alpha_{2}arrow\alpha_{3}arrow\alpha_{4}$

The only nontrivial implication $\alpha_{3/2}arrow\alpha_{2}$ is due to Nyikos [1992].

GENERAL TOPOLOGICAL SPACES

Theorem (Simon [1980]): There exists a compact Fr\’echet-Urysohn $\alpha_{4}$-space that is
not $\alpha_{3}$ .
Theorem (Reznichenko [1986], Gerlits, Nagy [1988] and Nyikos [1989]): There exists
a compact Fr\’echet-Urysohn $\alpha_{3}$-space that is not $\alpha_{2}$ .
Theorem (Dow [1990]): $\alpha_{2}$ implies $\alpha_{1}$ in the Laver model for the Borel conjecture.

For $f,$ $g\in\omega^{\omega}$ we write $f<^{*}g$ if $f(n)<g(n)$ for all but finitely many $n\in\omega$ .

A family $F\subseteq\omega^{\omega}$ is unbounded if for every function $g\in\omega^{\omega}$ there exists $f\in F$ such
that $g<*f$ .
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We define $b$ to be the smallest cardinality of an unbounded family in $(\omega^{\omega}, <^{*})$ .

Theorem (Nyikos [1992]): If $b=\omega_{1}$ holds, then there exists a countable Fr\’echet-
Urysohn $\alpha_{2}$-space that is not $\alpha_{1}$ .
Corollary: The existence of a (Fre’chet-Urysohn) $\alpha_{2}$-space that is not $\alpha_{1}$ is both con-
sistent with and independent of ZFC.

Theorem (Gerlits, Nagy [1988] and Nyikos [1989]): There exists a countable Fr\’echet-
Urysohn $\alpha_{2}$-space that is not first countable.

Theorem (Gerlits, Nagy [1982]): There exists a (uncountable) Fr\’echet-Urysohn $\alpha_{1^{-}}$

space that is not first countable.

Theorem (Nyikos [1989]): Every space of character $<b$ is $\alpha_{1}$ .
$c$ is the cardinality of the continuum.

Theorem (Malyhin, Shapirovskii [1974]): If $MA+\neg CH$ holds, then every countable
space of character $<c$ is Fr\’echet-Urysohn.

Corollary: $MA+\neg CH$ implies the existense of a countable Fr\’echet-Urysohn $\alpha_{1}$-space
that is not first countable.

Theorem (Dow, Steprans [1990]): There is a model of ZFC in which all countable
R\’echet-Urysohn $\alpha_{1}$ -spaces are first countable.

Corollary: The existence of a countable Fr\’echet-Urysohn $\alpha_{1}$ space that is not first
countable is both consistent with and independent of ZFC.

Theorem (folklore): Let

$G=\{f\in 2^{\omega_{1}} : |\{\beta\in\omega_{1} : f(\beta)=1\}|\leq\omega\}$ .

Then $G$ is a Fre’chet-Urysohn topological group that is $\alpha_{1}$ but is not first countable.

TOPOLOGICAL GROUPS

Theorem (Nyikos [1981]): Every Fre’chet-Urysohn topological group is $\alpha_{4}$ .
Theorem (Shakhmatov [1990]): Let $M$ be a model of ZFC obtained by adding $\omega_{1}$

many Cohen reals to an arbitrary model of ZFC. Then $M$ contains a countable Fr\’echet-
Urysohn topological group $G$ that is not $\alpha_{3}$ . (Note that $G$ is $\alpha_{4}$ by Nyikos’ theorem.)

Theorem (Shibakov [1999]): CH implies the existence of a countable Fre’chet-Urysohn
topological group that is $\alpha_{3}$ but is not $\alpha_{2}$ .
Theorem (Shakhmatov [1990]): Let $M$ be a model of ZFC obtained by adding $\omega_{1}$

many Cohen reals to an arbitrary model of ZFC. Then $M$ contains a countable Fr\’echet-
Urysohn topological group $G$ that is $\alpha_{2}$ but is not $\alpha_{3/2}$ .

Theorem (Shibakov [1999]): A Fr\’echet-Urysohn topological group that is an $\alpha_{3/2^{-}}$

space is $\alpha_{1}$ . Thus $\alpha_{3/2}$ and $\alpha_{1}$ are equivalent for Fr\’echet-Urysohn topological groups.
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Theorem (Birkhoff, Kakutani [1936]): A topological group is metrizable if and only
if it is first countable.

Question (Shakhmatov [1990]): Is it consistent with ZFC that every Fr\’echet-Urysohn
topological group is $\alpha_{3}$ ? What about countable Fr\’echet-Urysohn topological groups?

Question: Is it consistent with ZFC that every Fr\’echet-Urysohn topological group that
is an $\alpha_{3}$-space is automatically $\alpha_{2}$ ? What about countable Fre’chet-Urysohn topological
groups?

Question (Shakhmatov [1990]): Is it consistent with ZFC that every countable Fr\’echet-
Urysohn topological group that is an $\alpha_{2}$-space is first countable?

Question (Malyhin [197?]): Without any additional set-theoretic assumptions beyond
ZFC, does there exist a countable Fr\’echet-Urysohn topological group that is not first
countable?

Theorem (Malyhin [197?]): $MA+\neg CH$ implies the existence of such a group.

Definition (Sipacheva [1998]): Let $\mathcal{F}$ be a filter on $\omega$ . We say that $\mathcal{F}$ is a FUF-filter
privided that the following property holds:

if $\mathcal{K}\subseteq[\omega]^{<\omega}$ is a family of finite subsets of $\omega$ such that for every $F\in \mathcal{F}$ there exists
$K\in \mathcal{K}$ with $K\subseteq F$ , then there exists a sequence $\{K_{n} : n\in\omega\}\subseteq \mathcal{K}$ so that for every
$F\in \mathcal{F}$ one can find $n\in\omega$ with $K_{m}\subseteq F$ for all $m\geq n$ .

For a filter $\mathcal{F}$ on $\omega$ let $\omega_{F}$ be the space obtained by adding to the discrete copy of $\omega$

a single $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}*\mathrm{w}\mathrm{h}\mathrm{o}\mathrm{s}\mathrm{e}$ filter of open neighbourhoods is $\{F\cup\{*\} : F\in F\}$ .
Theorem (Sipacheva [1998]): If $\mathcal{F}$ is a FUF-filter on $\omega$ , then the space $\omega_{\mathcal{F}}$ is $\alpha_{2}$ . For
$A,$ $B\in[\omega]^{<\omega}$ define

$A\cdot B=(A\backslash B)\cup(B\backslash A)\in[\omega]^{<\omega}$ .
This operation makes $[\omega]^{<\omega}$ into an Abelian group with $\emptyset$ as the identity element such
that $A\cdot A=\emptyset$ (thus $A$ coincides with its own inverse, and all elements of $[\omega]^{<\omega}$ have
order 2).

For a filter $\mathcal{F}$ on $\omega$ let $G(\mathcal{F})$ be the group $([\omega]^{<\omega}, \cdot, \emptyset)$ equipped with the topology
whose base of open neighbourhoods of $\emptyset$ is given by the family $\{[F]^{<\omega} : F\in \mathcal{F}\}$ .

Theorem (folklore): Let $F$ be a filter on $\omega$ . Then:

(i) $G(F)$ is Hausdorff if and only if $F$ is free (i.e. $\cap \mathcal{F}=\emptyset$ ),

(ii) $G(F)$ is Fre’chet-Urysohn if and only if $\mathcal{F}$ is an FUF-filter,

(iii) $G(F)$ is first countable if and only if $\mathcal{F}$ is countably generated.

Theorem (folklore): If there exists a free FUF-filter on $\omega$ that is not countably
generated, then there exists a countable R\’echet-Urysohn topological group that is not
first countable.

Question (folklore): Is there, in ZFC only, a free FUF-filter on $\omega$ that is not countably
generated?
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Theorem (Nogura, Shakhmatov [1995]): All $\alpha_{i}$ properties $(i=1,3/2,2,3,4)$ coincide
for locally compact topological groups.

Theorem (Nogura, Shakhmatov [1995]): The following conditions are equivalent:
(i) every compact group that is an $\alpha_{1}$-space is metrizable,
(ii) every locally compact group that is an $\alpha_{4}$-space is metrizable,
(iii) $b=\omega_{1}$ .

Corollary (Nogura, Shakhmatov [1995]): Under $\mathrm{C}\mathrm{H}$ , a locally compact group is
metrizable if and only if it is $\alpha_{4}$ .
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FUNCTION SPACES $C_{p}(X)$

For a topological space $X$ let $C_{p}(X)$ be the set of all real-valued continuous functions
on $X$ equipped with the topology of pointwise convergence, i.e with the topology which
the set $C_{p}(X)$ inherits from $R^{X}$ , the latter space having the Tychonoff product topology.

For every space $X,$ $C_{p}(X)$ is both a (locally convex) topological vector space and a
topological ring.

Theorem (Scheepers [1998]): Let $X$ be a topological space. Then $C_{p}(X)$ is $\alpha_{2}$ if and
only if $C_{p}(X)$ is $\alpha_{4}$ . Therefore, all three properties $\alpha_{4},$ $\alpha_{3}$ and $\alpha_{2}$ coincide for spaces of
the form $C_{p}(X)$ .
Corollary (Scheepers [1998]): If $C_{p}(X)$ is Fr\’echet-Urysohn, then $C_{p}(X)$ is $\alpha_{2}$ .

Theorem (Scheepers [1998]): It is consistent with ZFC that there exists a subset of
real numbers $X\subseteq R$ such that $C_{p}(X)$ is Fr\’echet-Urysohn (and thus $\alpha_{2}$ ) but is not $\alpha_{1}$ .

Note that the existence of the above space is not only consistent with ZFC but also
independent of ZFC by Dow’s theorem.

Theorem (Scheepers [1998]): It is consistent with ZFC that there exists a subset of
real numbers $X\subseteq R$ such that $C_{p}(X)$ is $\alpha_{1}$ but is not Fr\’echet-Urysohn.

PRODUCTS OF GENERAL SPACES

Theorem (Nogura [1985]):

(i) For $i=1,2,3$ , if $X$ and $\mathrm{Y}$ are $\alpha_{i}$-spaces, then $X\cross \mathrm{Y}$ is also an $\alpha_{i}$-space.

(ii) There exist compact Fr\’echet-Urysohn $\alpha_{4}$-spaces $X$ and $\mathrm{Y}$ such that $X\cross \mathrm{Y}$ is
neither Fr\’echet-Urysohn nor $\alpha_{4}$ .

Theorem (Arangel’skii [1971]): If $X$ is a Fr\’echet-Urysohn $\alpha_{3}$-space and $\mathrm{Y}$ is a (count-
ably) compact Fr\’echet-Urysohn space, then $X\cross \mathrm{Y}$ is Fr\’echet-Urysohn.

Theorem (Costantini, Simon [1999]): There exist two countable Fr\’echet-Urysohn
$\alpha_{4}$-spaces $X$ and $\mathrm{Y}$ such that $X\cross \mathrm{Y}$ is $\alpha_{4}$ but fails to be Fr\’echet-Urysohn.

Theorem (Simon [1999]): Under $\mathrm{C}\mathrm{H}$ , there exist two countable Fr\’echet-Urysohn $\alpha_{4^{-}}$

spaces $X$ and $\mathrm{Y}$ such that $X\cross \mathrm{Y}$ is Fr\’echet-Urysohn but is not $\alpha_{4}$ .

Question: Is there such an example in ZFC?

PRODUCTS OF TOPOLOGICAL GROUPS

Theorem $(\mathrm{T}\mathrm{o}\mathrm{d}\mathrm{o}\mathrm{r}\check{\mathrm{c}}\mathrm{e}\mathrm{V}\mathrm{i}\acute{\mathrm{c}} [1993])$: There exist two (compactly generated) Fr\’echet-Urysohn
groups $G$ and $H$ such that $t(G\cross H)>\omega$ (in particular, $G\mathrm{x}H$ is not Fr\’echet-

Urysohn). Moreover, every countable subset of $G$ and $H$ is metrizable, and so both $G$

and $H$ are $\alpha_{1}$ .

Theorem (Malyhin, Shakhmatov [1992]):

Add a single Cohen real to a model of $MA+\neg CH$ . Then, in the generic extension,
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the exists a (hereditarily separable) Fr\’echet-Urysohn topological group $G$ such that
$t(G\cross G)>\omega$ (in particular, $G\mathrm{x}G$ is not Fre’chet-Urysohn). Moreover, $G$ is an $\alpha_{1^{-}}$

space.

Theorem (Shibakov [1999]): Under $\mathrm{C}\mathrm{H}$ , there exists a countable Fr\’echet-Urysohn
topological group $G$ such that $G\mathrm{x}G$ is not Fre’chet-Urysohn.

Question: Is there such an example in ZFC only?

Question: In ZFC only, does there exist two countable Fre’chet-Urysohn topological
groups $G$ and $H$ such that $G\mathrm{x}H$ is not Fr\’echet-Urysohn?

Question: In ZFC only, is there a Fr\’echet-Urysohn topological group $G$ such that $G$ is
$\alpha_{1}$ but $G\cross G$ is not Fr\’echet-Urysohn?

PRODUCTS OF $C_{p}(X)$

Theorem $(\mathrm{T}\mathrm{k}\mathrm{a}\check{\mathrm{c}}\mathrm{u}\mathrm{k} [1984])$ : If $C_{p}(X)$ is Fr\’echet-Urysohn, then even its countable
power $C_{p}(X)^{\omega}$ is Fr\’echet-Urysohn.

Theorem $(\mathrm{T}\mathrm{o}\mathrm{d}\mathrm{o}\mathrm{r}\check{\mathrm{c}}\mathrm{e}\mathrm{V}\mathrm{i}\acute{\mathrm{c}} [1993])$ : There exist two spaces $X$ and $\mathrm{Y}$ such that both $C_{p}(X)$

and $C_{p}(\mathrm{Y})$ are Fr\’echet-Urysohn but

$t(C_{p}(x)\mathrm{x}C_{\mathrm{p}}(\mathrm{Y}))>\omega$

(in particular, $C_{p}(X)\cross C_{p}(\mathrm{Y})$ is not Fr\’echet-Urysohn). Moreover, every countable
subset of $C_{p}(X)$ and $C_{p}(\mathrm{Y})$ is metrizable, and so both $C_{p}(X)$ and $C_{p}(\mathrm{Y})$ are $\alpha_{1}$ .
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