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ABSTRACT. We study several natural relative properties of metacompactness and
paracompactness types and the relationships among them. We characterize several
topological properties by relative paracompactness and metacompactness.

1. INTRODUCTION
$\mathrm{A}\mathrm{r}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{l}’ \mathrm{s}\mathrm{k}\mathrm{i}\mathrm{l}$ and Genedi showed in 1989 that for any topological property $P$ one

can associate a relative property characterized in terms of a subspace $\mathrm{Y}$ of a space
$X$ , in such a way that this relative property coincides with $P$ whenever $\mathrm{Y}=X$ .

One would expect that for a given topological property there should be a variety
of relative topological properties associated with it. We study several natural rela-
tive properties of paracompactness and metacompactness type and the relationships
among them.

Throughout this paper all spaces are $T_{1}$ . Ordinals will have the order topology and
subsets of topological spaces will have the subspace topology. For any collection $A$ of
subsets of a set $X$ , any $C\subset X$ and any $x\in X,$ $(A)_{C}=\{A\in A:C\cap A\neq\phi\},$ $(A)_{x}=$

$\{A\in A:x\in A\}$ and $st(x, A)=\cup(A)_{x}$ . If $X$ is a set, $\mathcal{H}$ a collection of subsets of
$X$ and $C\subset X$ then $\mathcal{H}$ is said to be (locally) point finite on $C$ provided $C\subset\cup \mathcal{H}$

and for every $x\in C$ the collection ($\overline{\mathcal{H})_{x}}$is finite(thereis an open neighborhood $V$

of $x$ such that $\{H\in \mathcal{H} : V\cap H\neq\phi\}$ is finite).
Suppose $C$ is a subset of the space $X$ . The following definitions of the most natural

properties of relative paracompactness type are due to Gordienko,[8]. The subspace
$C$ is said to be 1 -paracompact in $X$ provided every open cover of $X$ has an open
refinement locally$\mathrm{f}\overline{\mathrm{i}1\mathrm{l}\mathrm{y}\mathrm{n}\mathrm{i}}$finite on C. The subspace $C$ is 2-paracompact in $X$ provided
every open cover of $X$ has an open partial $\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{m}\overline{\mathrm{e}\mathrm{n}\mathrm{t}}$covering $C$ and locally finite
on $C$. The subspace $C$ is 3-paracompact in $X$ provided every open cover of $X$ has
a partial refinement consisting of sets open in $C$ locally finite on $C$.

By replacing “locally finite” with “point finite” in Gordienko’s definitions we
obtain relative metacompact analogs. We say that a subspace $C$ of a space $X$ is
strongly metacompact in $X$ provided every open cover of $X$ has an open refinement
point finite on $C$ . For asubspace $C$ of a space $X$ we say that $C$ is metacompact in $X$
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provided every open cover of $X$ has an open partial refinement point finite on $C$ .
Clearly for a space $X$ strongly metacompactness in $X$ is a natural relatively meta-
compact analog of 1-paracompactness in $X$ and metacompactness in $X$ is the
corresponding relative metacompact analog of both 2-and 3-paracompactness in
X.

2. $\mathrm{c}_{\mathrm{H}\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{c}}\mathrm{T}\mathrm{E}\mathrm{R}\mathrm{I}\mathrm{z}\mathrm{A}\mathrm{T}\mathrm{I}\mathrm{o}\mathrm{N}\mathrm{s}$ OF 1-, 2-, 3-PARACOMPACTNESS AND RELATIVE
(STRONG) METACOMPACTNESS

There are several characterizations of paracompactness and metacompactness. In
[16] 1-, 2-, 3-paracompactness were characterized by means of Michael’s type. In
this section we characterize 1-, 2-, 3-paracompactness and relative (strong) meta-
compactness type of characterizations of original versions; monotone property type.

Theorem 2.1 (Original version [1], [13], [17]). A space $X$ is compact (paracompact,
metacompact) if and only if every monotone open cover of $X$ has a finite subcover
(locally finite open refinement, point finite open refinement, respectively).

A collection $S$ of sets is said to be monotone provided that for all $S,$ $S’\in S$ either
$S\subset S’$ or $S’\subset S$.

More generally, collection $S$ of sets is said to be directed provided that for all
$S,$ $S’\in S$ there is a $T\in S$ such that $S\cup S’\subset T$.

Clearly that a monotone collection is directed, but the converse is not true. For
1-paracompactness and strong metacompactness we have similar results for directed
open covers as follows:

Theorem 2.2. Suppose that $C$ is a subset of the space X. $C$ is l-paracompact
(strongly metacompact) in $X$ if and only if every directed open cover has an open
refinement that is locally finite (point finite) on $C$.

In Theorem 2.2 “directed” cannot be replaced with “monotone”. In the following
example we show that there are regular space $X$ and a dense subspace $A$ of $X$ such
that every monotone open cover of $X$ has an open refinement locally finite on $A$ but
$A$ is not 1-paracompact (or even strongly metacompact) in $X$ .

Example 2.3. Let $\mathrm{Y}=\Pi_{i=1}^{\infty}(\omega_{i}+1)$ . For each natural number $k$ let $X_{k}=(\Pi_{i=1}^{k}(\omega_{i}+$

$1))\cross(\Pi_{ik1}^{\infty}=+(\omega_{i}))$ and let $X= \bigcup_{k=1}^{\infty}X_{k}$ with the usual subspace topology [15]. For
each natural number $k$ let $A_{k}=(\Pi_{i=1}^{k}(\omega_{i}+1))\cross(\Pi_{i=k+}^{\infty}\{10\})$ and note that $A_{k}$ is
compact. Then

$A= \bigcup_{k1}^{\infty}A_{k}=$

is a dense subset of $X$ . Then every monotone open cover of $X$ has an open refinement
locally finite on $A$ but $A$ is not 1-paracompact (or even strongly metacompact) in
X.

Clearly, metacompactness in $X$ , and $2-(3-)$ paracompactness in $X$ can also be
characterized in terms of directed open covers as in Theorem 2.2. But we do not
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know if being metacompact or 2-,3- paracomp.act in a space can be characterized in
terms of monotone open covers.

However if we make obvious modifications to Junnila’s proof that paracompact (meta-
compact) spaces can be characterized in terms of monotone open covers [11], we get
the following lemma:

Lemma 2.4. For a space $X$ and $C\subset X$ , if every monotone open cover of $X$ has
an open refinement locally finite (point finite) on $C$, then $C$ is 2-paracompact (meta-
compact) in $X$ .

For a closed subset of a space $X$ , monotone open covers can be used to characterize
strong metacompactness and 3- paracompactness in $X$ .

Theorem 2.5. For a space $X$ and a closed subset $C$ of $X$ , the subspace $C$ is strongly
metacompact (3- paracompact) in $X$ if and only if every monotone open cover of $X$

has an open refinement that is point finite on $C$ (a partial refinement consisting of
sets open in $C$ locally finite on $C$).

Theorem 2.6. Suppose that the space $X$ has $Lindel\ddot{\mathit{0}}f$ degree $L(X)\leq\omega_{1}$ and $C$

is an $F_{\sigma}$ subset of X. Then $C$ is strongly metacompact in $X$ if and only if every
monotone open cover of $X$ has an open refinement that is point finite on C. If $X$ is
normal, then $C$ is 1-paracompact in $X$ if and only if every $m$

.
onotone open cover of

$X$ has an open refinement locally finite on $C$.

3. RELATIVE PARACOMPACTNESS AND METACOMPACTNESS
FROM INSIDE AND OUTSIDE

In [2] Arkhangel’skii introduced the following types of relative topological prop-
erties. Let $\mathrm{Y}$ be a subspace of a space $X$ and let $P$ be a topological property. We
say that $Y$ has property $P$ in $X$ from inside, if every subspace of $\mathrm{Y}$ closed in $X$ has
property $P$ .

$’|$ If there is a subspace $Z$ of $X$ having property $P$ containing $\mathrm{Y}$ then we say that
$\mathrm{Y}$ has property $P$ in $X$ from outside. In [3] the following general question is posed:

Question Suppose $C$ is relatively $P$ in $X$ . Does $C$ have property $P$ from outside?

For paracompactness and metacompactness the next result is clear:
$*C$ is $F_{\sigma}$ subset in $X$

$C$ is metacompact in $X\Rightarrow C$ is metacompact.
$C$ is metacompact in $X\Rightarrow C$ is matacompact in $X$ from outside.

But “$C$ being metacompact in a space $X$ from outside” does not imply that $C$ is
strongly metacompact in $X$ . For example, take $X=\omega_{1}$ with the order topology and
let $C$ be the set of isolated points of $X$ . Since $C$ is metacompact, $C$ is metacompact
in $X$ from outside but $C$ is not strongly metacompact in $X$ .
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Theorem 3.1. Suppose that $C$ is a subset of the space $X$ and $C$ is paracom-
pact (metacompact) in $X$ from outside. Then $C$ is 3-paracompact (metacompact) in
X.

Remark 3.2. The converse of Theorem 3.1 is not true. In [3] the authors give an
example of a Tychonoff space $X$ and a subspace $\mathrm{C}$ of $X$ which is 1-paracompact in
$X$ but not paracompact in $X$ from outside. In our next example we construct a Ty-
chonoff space $Z$ and a subspace $C$ of $Z$ which is 2- paracompact (i.e. metacompact)
in $Z$ but which is not metacompact in $Z$ from outside.

Example 3.3. Let $X$ be an non-metacompact $0$-dimensional $T_{1}$ space. Let $\mathrm{Y}$ be
a compact $0$-dimensional $T_{1}$ space such that $\mathrm{Y}-\{p\}$ is not metacompact for some
$p\in Y$ . (For example $X=\beta \mathrm{N}-\{p\}$ and $Y=\beta \mathrm{N}$ where $p\in\beta \mathbb{N}-\mathrm{N}.$) Let $Z=X\cross \mathrm{Y}$

and define a topology on $Z$ as follows:
1. For $x\in X$ and $y\in \mathrm{Y}-\{p\}$ basic open neighborhoods of $(x, y)$ are of

the form $\{x\}\cross V$ where $V$ is open neighborhood of $y$ in $\mathrm{Y}$

2. For $x\in X$ basic open neighborhoods of $(x,p)$ are of the form
$\cup\{\{x\}\cross V_{x} : x\in U\}$ where $U$ is an open neighborhood of $x$ in $X$ and
$\{V_{x} : x\in U\}$ is a collection of open neighborhoods of $\mathrm{p}$ in $\mathrm{Y}$

Then $Z$ is a $0$-dimensional $T_{1}$ space (and thus a Tychonoff space). Let
$c=\{(_{X}, y)\in X\cross \mathrm{Y} : y\neq p\}$ .

Then $C$ is 2- paracompact (i.e. metacompact) in $Z$ but which is not metacompact
in $Z$ from outside.

Theorem 3.4. Suppose that $C$ is a subset of the space $X$ and $C$ is 3-paracompact
(metacompact) in X. Then $C$ is paracompact (metacompact) in $X$ from the inside.

“A subspace $C$ being metacompact (paracompact) in a space $X$ from inside” does
not imply that $C$ is metacompact in $X$ , there is a counterexample.

4. RELATIVE CP-PARACOMPACTNESS AND CP-METACOMPACTNESS

Theorem 4.1 (Michae11957 [14], Original version). A regular space is paracompact
if and only if every open cover has a closed closure preserving refinement.
Theorem 4.2 (Junnila 1979 [11], Original version). A space is metacompact if and
only if every directed open cover has a closed closure preserving refinement.

We shall define relative versions. For a space $X$ and a subset $C$ of $X$ , a collection
$\mathcal{F}$ of closed subsets of $X$ is said to be closure preserving with respect to $C$ provided
that for all $\mathcal{F}’\subset(F)_{C}$ either $C\subset\cup F’$ $\mathrm{o}\mathrm{r}\cup F’$ is closed in $X$ .

The collection $F$ is said to be weakly closure preserving with respect to $C$ provided
that for all $\mathcal{F}’\subset(\mathcal{F})_{C}$ , one has $(\cup \mathcal{F}’)\mathrm{n}c=(\overline{\cup \mathcal{F}’})\cap c$ . We say that a subspace $C$ of a
space $X$ is [weakly] $cp$-paracompact (metacompact) in $X$ provided every (directed)
open cover of $X$ has a closed partial refinement covering $C$ which is [weakly] closure
preserving with respect to $C$.
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The following characterization of “cp- paracompact in a regular space $X$” demon-
strates that it is a natural property of relative paracompactness type.

Theorem 4.3. Suppose $X$ is a regular space and $C\subset X.$ The subspace $C$ is cp-
paracompact in $X$ if and only $if\overline{C}$ is a paracompact subspace of $X$ .

Corollary 4.4. Suppose $X$ is a regular space and $C\subset X.$ If the subspace $C$ is cp-
paracompact in $X$ then $C$ is paracompact in $X$ from outside.

Remark 4.5. There is a space $X$ and its subspace $C$ such that $C$ is cp- paracompact
in $X$ but $C$ is not 2-paracompact in $X$ .
Theorem 4.6. For a regular space $X$ and a closed $C\subset X$ the following conditions
are equivalent:
(1) $C$ is paracompact,
(2) $C$ is 3-paracompact in $X$ ,
(3) $C$ is weakly cp- paracompact in $X$ ,
(4) $C$ is $cp$-paracompact in $X$ .

The metacompact version of this result is as following.

Theorem 4.7. For a space $X$ and a closed $C\subset X$ the following conditions are
equivalent:
(1) $C$ is metacompact,
(2) $C$ is metacompact in $X$ ,
(3) $C$ is weakly $cp$-metacompact in $X$ ,
(4) $C$ is cp- metacompact in $X$ .

Corollary 4.8. For a (regular) space $X$ and a closed $C\subset X$ , if $C$ is weakly cp-
metacompact (weakly $cp$-paracompact) in $X$ , then $C$ is metacompact (paracompact)
in $X$ from inside.

There is a classical result about covers by compact subsets:

Theorem 4.9 ([12] and [18], Original version). Every space $X$ with a closure pre-
serving closed cover by compact sets is metacompact.

Since any cover of a space $X$ consisting of compact sets will refine every directed
open cover, we have the following relative version of this theorem.

Theorem 4.10. Suppose $C\subset X$ and that there is a collection of compact subsets
of $X$ covering $C$ which is (weakly) closure preserving with respect to $C$ then $C$ is
(weakly) $cp$-metacompact in X. In particular, if $C$ is a countable subset of $X$ then
$C$ is $cp$-metacompact in $X$ .

Theorem 4.11. Suppose that $X$ is a regular space and $C\subset X$ is metacompact in
X. Then $C$ is weakly $cp$- metacompact in $X$ .

We do not know if regularity is needed in Theorem 4.11. For the strongly meta-
compact analog it is not needed:
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Theorem 4.12. Suppose that $X$ is space and $C\subset X$ is strongly metacompact in
X. Then $C$ is weakly $cp$-metacompact in $X$ .

5. DIAGRAMS

The following diagrams shows the relationships among the properties of paracom-
pactness and metacompactness types studied here.

[diagram 1] (paracompact type)
1-paracompact in $X$

$\Downarrow$

2-paracompact in $X$
$\mathrm{c}\mathrm{p}$-paracompact in $X$

$\Downarrow$ $\Downarrow T_{3}$

3-paracompact in $X$ $\Leftarrow$ paracompact in $X$ from outside
$\Downarrow$ $\Downarrow T_{3}$

paracompact in $X$ weakly cp-paracompact
from inside in $X$

[diagram 2] (metacompact type)
cp-metacom.P$\mathrm{a}.\mathrm{c}\mathrm{t}$ in $X$ strongly metacompact in $X$ metacompact in $X$

$\Downarrow \mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}$

outside
$\Downarrow$ $\Downarrow$ $\Downarrow$

weakly $\mathrm{c}\mathrm{p}$-metacompact in $X$ $\Leftarrow T_{3}$ metacompact in $X$

$\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{C}\Downarrow \mathrm{t}$

in $X‘ \mathrm{f}$rom
$\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\Downarrow$

6. CHARACTERIZATIONS OF ORIGINAL PROPERTIES BY RELATIVE PROPERTIES

That is can topological properties of a space be characterized using relative topo-
logical properties. In 1996, $\mathrm{A}\mathrm{r}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{l}’ \mathrm{S}\mathrm{k}\mathrm{i}\mathrm{l}$ and Tartir showed that a $T_{2}$ space $\mathrm{Y}$ is
regular in every larger $T_{2}$ space if and only if $\mathrm{Y}$ is compact [6]. It is natural to
consider the following question.

Let $P$ be a topological property. If $\mathrm{C}$ is $P$ in every larger space, what can be
said about topological properties of $C$ itself?

For relative paracompact and metacompact properties we have the following answer:
Theorem 6.1 ([16]). The following conditions are equivalent for a space $C$ .

(1) $C$ is 3-paracompact (metacompact) in every larger space $X$ .
(2) $C$ is 3-paracompact (metacompact) in every larger space $X$ in which $C$ is closed.
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(3) $C$ is 3-paracompact (metacompact) in some larger space $X$ in which $C$ is closed.
(4) $C$ is paracompact (metacompact).

Theorem 6.2 ([16]). Let $C$ be a regular space. The following conditions are equiv-
alent:
(1) $C$ is 2-paracompact in every larger regular space $X$.
(2) $C$ is 2-paracompact in every larger regular space $X$ in which $C$ is closed.
(3) $C$ is 2-paracompact in every larger normal space $X$ in which $C$ is closed.
(4) $C$ is Lindel\"of.

Theorem 6.3 ([16]). Let $C$ be a regular space. The following conditions are equiv-
alent:
(1) $C$ is 1-paracompact in every larger regular space $X$.
(2) $C$ is 1-paracompact in every larger regular space $X$ in which $C$ is closed.
(3) $C$ is 1-paracompact in every larger $Tych_{on}\ddot{\mathit{0}}ff$ space $X$ in which $C$ is closed.
(4) $C$ is compact.

Theorem 6.4. Let $C$ be a normal space. The following conditions are equivalent:
(1) $C$ is 1-paracompact in every larger normal space $X$ in which $C$ is closed.
(2) $C$ is $Lindel\ddot{\mathit{0}}f$.

Theorem 6.5. The following conditions are equivalent for a space $C$ :
(1) $C$ is strongly metacompact in every larger space $X$ in which $C$ is closed.
(2) $C$ is strongly metacompact in some larger space $X$ in which $C$ is closed.
(3) $C$ is metacompact.

Theorem 6.6. Let $C$ be a normal space. T.he following conditions are equivalent:
(1) $C$ is strongly metacompact in every larger regular space $X$ .
(2) $C$ is compact.
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