An Elementary Construction of a Cantor Set with Arbitrary Hausdorff Dimension

香川大学教育学部 深石 博夫 (Hiroo FUKAISHI)

山路 広信 (Hironobu YAMAJI)

Abstract

Recently H. Kurata gave an evaluation formula of the Hausdorff dimension of the boundary of a tree with a distance function as follows.

Theorem 1 (Kurata).

$$\sup_{x \in X} \left(\liminf_{\substack{B(y_n) \subset B(x) \\ n \to \infty}} \frac{\log 1/\varphi(y_n)}{\log 1/\ell(y_n)} \right) \le \dim_H(\Omega, \ell) \le \sup_{\xi \in \Omega} \left(\liminf_{\substack{y_n \in [\xi] \\ n \to \infty}} \frac{\log 1/\varphi(y_n)}{\log 1/\ell(y_n)} \right).$$

In the paper we shall investigate the usefulness of Kurata's formula and obtain the following results.

Theoerm 2. There exists a Cantor set for which both sides of Kurata's formula do not coincide.

Theorem 3. For each γ , $0 \le \gamma \le \infty$, there exists a Cantor set E with Hausdorff dimension γ .

§1 Introduction

Recently H. Kurata gave an evaluation formura of the Hausdorff dimension of the boundary of a tree and calculated the Hausdorff dimension of certain sets of \mathbb{R}^n by using it.

Theorem 1 (Kurata's formula [7]). Let Ω be the boundary of a tree (X, \mathcal{A}, o) with a distance function ℓ . Then

$$\sup_{x \in X} \left(\liminf_{\substack{B(y_n) \subset B(x) \\ n \to \infty}} \frac{\log 1/\varphi(y_n)}{\log 1/\ell(y_n)} \right) \le \dim_H(\Omega, \ell) \le \sup_{\xi \in \Omega} \left(\liminf_{\substack{y_n \in [\xi] \\ n \to \infty}} \frac{\log 1/\varphi(y_n)}{\log 1/\ell(y_n)} \right).$$

In the present paper we shall show the following:

Theoerm 2. There exists a Cantor set for which the both sides of Kurata's formula do not coincide.

Theorem 3. For each γ , $0 \le \gamma \le \infty$, there exists a Cantor set E with Hausdorff dimension γ .

Our Cantor sets satisfying the condition in each of Theorems 2 and 3 are not self-similar, in general. So we cannot apply the formula $c_1^D + c_2^D = 1$ of the Hausdorff dimension D, where each c_i denotes the ratio of similarity. We use the Kurata's formula to calculate the Hausdorff dimension of our Cantor sets.

Theorem 3 is known, for example [6], but our construction of required Cantor sets is elementary and geometrical. The ratios of contraction vary in each inductive step in the construction.

Let us recall a tree and the Hausdorff dimension of its boundary with a distance function.

Definition (Kurata [7]). Let (X, \mathcal{A}, o) be a tree, i.e. simply connected and locally finite graph. The set X is an infinite set of *points* and the collection \mathcal{A} is a set of arcs. The point $o \in X$ is called the root point. For $x, y \in X$ with $x \neq y$ let $\rho(x, y)$ be the least number of arcs which join x and y, and $\rho(x, x) = 0$. Then ρ is a metric on X. We assume that $\#\{y \in X : \rho(x, y) = 1\} \geq 2$ for each $x \in X$. We set $X_n = \{x \in X : \rho(o, x) = n\}$ for $n = 0, 1, 2, \cdots$.

Let Ω be the set of all paths from o. A path is a sequence of points (x_0, x_1, x_2, \cdots) such that $x_0 = o$, and $\rho(x_n, x_{n+1}) = 1$ for any $x_n \in X_n$, $n = 0, 1, 2, \cdots$. For $\xi = (x_n)_n$, $\eta = (y_n)_n \in \Omega$ we define

$$[\xi] = \{x_0, x_1, x_2, \cdots\}$$
 where $x_0 = o$,

and

$$P(\xi, \eta) = x_n$$
 if $x_0 = y_0, x_1 = y_1, \dots, x_n = y_n, x_{n+1} \neq y_{n+1}$.

Now $P(\xi, \xi)$ is not defined. The space Ω is called the *boundary* of a tree (X, \mathcal{A}, o) . Let ℓ be a positive function from X to \mathbf{R}^1 with the following properties: For any path $\xi = (x_n)_n$,

(L1) $\ell(x_n)$ is strictly decreasing in n,

(L2)
$$\lim_{n\to\infty}\ell(x_n)=0.$$

For $\xi = (x_n)_n$, $\eta = (y_n)_n \in \Omega$ define

$$d(\xi, \eta) = \begin{cases} \ell(P(\xi, \eta)) & \text{if } \xi \neq \eta, \\ 0 & \text{if } \xi = \eta. \end{cases}$$

Then d is a metric on Ω , and Ω is a compact space. For $x \in X$ let $B(x) = \{\xi \in \Omega : x \in [\xi]\}$. If we take $\eta \in \Omega$ with $x \in [\eta]$, we have that $B(x) = \{\xi \in \Omega : d(\xi, \eta) \le \ell(x)\}$. The set B(x) is both open and closed in Ω .

For $K \subset \Omega$ and $\alpha > 0$ we define

$$\Lambda_{\alpha}^{r}(K,\ell) = \inf \left\{ \sum_{j} (\ell(z_{j}))^{\alpha} : K \subset \bigcup_{j} B(z_{j}), \ \ell(z_{j}) < r \right\} \quad \text{for } r > 0,$$

and

$$\Lambda_{\alpha}(K,\ell) = \lim_{r \to +0} \Lambda_{\alpha}^{r}(K,\ell) = \sup_{r > 0} \Lambda_{\alpha}^{r}(K,\ell).$$

We have that $0 \leq \Lambda_{\alpha}(K, \ell) \leq \infty$. The value $\Lambda_{\alpha}(K, \ell)$ is called the α -dimensional Hausdorff measure of (K, ℓ) . Define the Hausdorff dimension of K with a distance function ℓ as

$$\dim_H(K,\ell)=\inf\{\alpha:\Lambda_\alpha(K,\ell)=0\}=\sup\{\alpha:\Lambda_\alpha(K,\ell)=\infty\}.$$

Note that $0 \leq \dim_H(K, \ell) \leq \infty$.

Now we define a function $\varphi(x)$ as follows. Let $\varphi(o) = 1$. For $x \in X_n$, n > 1, we take $y \in X_{n-1}$ such that $\rho(x, y) = 1$ and let

$$\varphi(x) = \frac{\varphi(y)}{\#\{z \in X_n : \rho(y, z) = 1\}}.$$

§2 A construction of a Cantor set with variable ratios of contraction in each inductive step

In this section we construct a Cantor set E with variable ratios of contraction in each inductive step.

For any number $n \geq 1$, let $\{c^{(n)}_{j}\}_{j=0,1,2,\cdots,2^{n}-1}$ be a sequence of real numbers with the properties :

- (C1) $0 < c_j^{(n)} < 1$ for each $n \ge 1$,
- (C2) $\lim_{n\to\infty} a^{(1)}a^{(2)}\cdots a^{(n)} = 0$ where $a^{(n)} = \max\{c^{(n)}_{j}: j=0, 1, 2, \cdots, 2^{n}-1\}$ for $n \ge 1$.

Let E_0 be a bounded closed interval in \mathbf{R}^1 . Denote the diameter of a set $E \subset \mathbf{R}^1$ by |E|. Note that a natural number j can be written by $i_1 i_2 \cdots i_n$ as a number of n figures in a binary notation. For example,

Case n = 2: 0=00, 1=01, 2=10, 3=11, in a binary notation;

Case n = 3: 0=000, 1=001, 2=010, 3=011, in a binary notation.

Put $c_{i_1i_2\cdots i_n}=c_j^{(n)}$ if $j=i_1i_2\cdots i_n$ in a binary notation. Define a family $\{M_{i_1i_2\cdots i_n}\}_{i_1i_2\cdots i_n}$ of subintervals of E_0 indexed by a finite sequence of figures 0, 1 as follows by induction:

- (i) For n=1, let M_0 and M_1 be two closed subintervals of E_0 such that $E_0 \setminus (\text{a middle open interval}) = M_0 \cup M_1$, where $\min M_0 = \min E_0$, $\max M_1 = \max E_0$ and $|M_{i_1}| = |E_0| c_{i_1}$ for $i_1 = 0, 1$.
- (ii) If $M_{i_1i_2\cdots i_n}$ is defined, let $M_{i_1i_2\cdots i_n0}$ and $M_{i_1i_2\cdots i_n1}$ be two closed subintervals of $M_{i_1i_2\cdots i_n}$ such that

$$\begin{split} M_{i_1 i_2 \cdots i_n} \backslash \text{ (a middle open subinterval)} &= M_{i_1 i_2 \cdots i_n 0} \cup M_{i_1 i_2 \cdots i_n 1}, \\ \text{where } \min M_{i_1 i_2 \cdots i_n 0} &= \min M_{i_1 i_2 \cdots i_n}, \quad \max M_{i_1 i_2 \cdots i_n 1} &= \max M_{i_1 i_2 \cdots i_n} \quad \text{and} \\ |M_{i_1 i_2 \cdots i_n j}| &= |M_{i_1 i_2 \cdots i_n}| \ c_{i_1 i_2 \cdots i_n i_{n+1}} \quad \text{for } j = i_1 i_2 \cdots i_n i_{n+1} \quad \text{in a binary notation.} \end{split}$$

Then the family $\{M_{i_1i_2\cdots i_n}\}_{i_1i_2\cdots i_n}$ satisfies the following :

(M1) For any infinite sequence $i_1 i_2 \cdots i_n \cdots$ in $\{0, 1\}$,

$$M_{i_1} \supset M_{i_1 i_2} \supset \cdots \supset M_{i_1 i_2 \cdots i_n} \supset M_{i_1 i_2 \cdots i_n i_{n+1}} \supset \cdots$$

(M2) If
$$i_1 i_2 \cdots i_n \neq k_1 k_2 \cdots k_n$$
, then $M_{i_1 i_2 \cdots i_n} \cap M_{k_1 k_2 \cdots k_n} = \emptyset$.

(M3)
$$|M_{i_1 i_2 \cdots i_n}| = |E_0| c_{i_1} c_{i_1 i_2} \cdots c_{i_1 i_2 \cdots i_n}.$$

(M4) For any infinite sequence $i_1i_2\cdots i_n\cdots$ in $\{0,1\}$,

$$\lim_{n\to\infty} |M_{i_1i_2\cdots i_n}| = 0.$$

Hence,
$$\bigcap_{n=1}^{\infty} M_{i_1 i_2 \cdots i_n} = \text{ one point.}$$

Let

$$E_n = \bigcup_{n=1}^{\infty} \{M_{i_1 i_2 \cdots i_n} : i_1 i_2 \cdots i_n \text{ is a sequence in } \{0, 1\} \text{ with length } n\} \text{ for } n \geq 1.$$

Then the set $E = \bigcap_{n=1}^{\infty} E_n$ is a Cantor set in \mathbb{R}^1 .

Remark. The 1/3-Cantor set is a set E with

$$c_j^{(n)} = \frac{1}{3}$$
 for $n \ge 1$ and $j = 0, 1, \dots, 2^n - 1$.

Next we define a tree (X, \mathcal{A}, o) corresponding to the Cantor set E as follows:

(T1)
$$X = X_0 \cup \bigcup_{n=1}^{\infty} X_n$$
, where $X_0 = \{o\}, X_1 = \{0, 1\}, \dots$, and

 $X_n = \{i_1 i_2 \cdots i_n : \text{ a sequence in } \{0,1\} \text{ with length } n\} \quad \text{ for } n \geq 1.$

(T2)
$$A = \{[o, 0], [o, 1]\} \cup$$

 $\bigcup_{n=1}^{\infty} \{ [x_n, y_{n+1}] : x_n \in X_n, y_{n+1} \in X_{n+1}, x_n = i_1 i_2 \cdots i_n, y_{n+1} = i_1 i_2 \cdots i_n i_{n+1} \},$ where [x, y] means the arc joining x and y in X.

Then
$$\varphi(x_n) = \frac{1}{2^n}$$
 for $x_n \in X_n$.

Define
$$\ell(x_n) = c_{i_1} c_{i_1 i_2} \cdots c_{i_1 i_2 \cdots i_n}$$
 for $x_n = i_1 i_2 \cdots i_n$.

Then the function ℓ satisfies the requirements in the definition of the boundary of a tree.

We have a bijection $g: \Omega \longrightarrow E$ defined by

$$g(\xi) = s$$
 where $\{s\} = \bigcap_{n=1}^{\infty} M_{i_1 i_2 \cdots i_n}$

for $\xi = (o, y_1, y_2, \dots, y_n, \dots)$ with $y_n = i_1 i_2 \dots i_n$, $n \ge 1$. Then $\dim_H(\Omega, \ell) = \dim_H E$.

§3 Proofs

Example 1 in the following shows Theorem 2.

Example 1. For each n, define

$$c^{(n)}_{\ j} = \left\{ egin{array}{ll} rac{1}{3} & : & j = 0, \, 2, \, \cdots, \, 2^n - 2, \ rac{1}{9} & : & j = 1, \, 3, \, \cdots, \, 2^n - 1, \end{array}
ight.$$

and

$$\ell(y_n) = c_{i_1} c_{i_1 i_2} \cdots c_{i_1 i_2 \cdots i_n} \quad \text{for } y_n = i_1 i_2 \cdots i_n$$
$$= c_{j_1}^{(1)} c_{j_2}^{(2)} \cdots c_{j_n}^{(n)},$$

where

$$j_r = 2^{r-1} i_1 + 2^{r-2} i_2 + \dots + 2 i_{r-1} + i_r, \quad r = 1, 2, \dots, n.$$

Then, the resulting Cantor set E gives an example of Theorem 2 (see Fig. 1).

(1) The right side of Kurata's formura = $\frac{\log 2}{\log 3}$.

In fact, take a path $\xi=(o,y_1,y_2,\cdots,y_n,\cdots)\in\Omega$ with $y_n=00\cdots0$ for any n. We have that

$$\frac{\log 1/\varphi(y_n)}{\log 1/\ell(y_n)} = \frac{\log 2}{\log 3} \quad \text{for any } n.$$

Hence,

$$\liminf_{\substack{y_n \in [\ell] \\ n \to \infty}} \frac{\log 1/\varphi(y_n)}{\log 1/\ell(y_n)} = \frac{\log 2}{\log 3}.$$

(2) The left side of Kurata's formula = $\frac{\log 2}{2 \log 3}$.

In fact, take any $x \in X$ with $x = i_1 i_2 \cdots i_n$. Let y_n be any point in X such that $B(y_n) \subset B(x)$. For any n > m, set $y_n = i_1 i_2 \cdots i_m i_{m+1} \cdots i_n$ and $i_{m+1} = \cdots = i_n = 1$. Then, for any n > m

$$\ell(y_n) = c_{j_1}^{(1)} c_{j_2}^{(2)} \cdots c_{j_m}^{(m)} \left(\frac{1}{9}\right)^{n-m}$$

and

$$\frac{\log 1/\varphi(y_n)}{\log 1/\ell(y_n)} = \frac{\log 2}{2(1-\frac{m}{n})\log 3 - \frac{1}{n}\log c_{j_1}^{(1)}c_{j_2}^{(2)}\cdots c_{j_n}^{(n)}}.$$

Hence,

$$\liminf_{\substack{B(y_n) \subset B(x) \\ n \to \infty}} \frac{\log 1/\varphi(y_n)}{\log 1/\ell(y_n)} = \frac{\log 2}{2\log 3} . \quad \Box$$

Fig. 1

Theorem 3 is established by Examples 2 - 6 in the following.

Example 2. Case: $\gamma = 0$. For each n, define

$$c_{j}^{(n)} = \left(\frac{1}{3}\right)^{n}$$
 for $j = 0, 1, \dots, 2^{n} - 1$.

Then, the resulting Cantor set E has Hausdorff dimension 0.

In fact, take any $y_n \in \Omega$ with $y_n = i_1 i_2 \cdots i_n$. Then

$$\ell(y_n) = \left(\frac{1}{3}\right)^1 \left(\frac{1}{3}\right)^2 \cdots \left(\frac{1}{3}\right)^n = \left(\frac{1}{3}\right)^{\frac{1}{2}n(n+1)}.$$

The function ℓ satisfies the conditions (L1) - (L2).

Since

$$\frac{\log 1/\varphi(y_n)}{\log 1/\ell(y_n)} = \frac{2\log 2}{(n+1)\log 3} \longrightarrow 0 \text{ as } n \to \infty,$$

we have that

 $\dim_H E = 0$ from Theorem 1. \square

Example 3. Case: $\gamma = 1$. For each n, define

$$c_{j}^{(n)} = \frac{1}{4} \frac{2^{n} + 1}{2^{n-1} + 1}$$
 for $j = 0, 1, \dots, 2^{n} - 1$.

Then, the resulting Cantor set E has Hausdorff dimension 1.

In fact, take any $y_n \in \Omega$ with $y_n = i_1 i_2 \cdots i_n$. Then

$$\ell(y_n) = \left(\frac{1}{4}\right)^n \frac{2^n + 1}{2} = \frac{2^n + 1}{2^{2n+1}}.$$

The ℓ satisfies the conditions (L1)-(L2).

Since

$$\frac{\log 1/\varphi(y_n)}{\log 1/\ell(y_n)} = \frac{1}{(2+\frac{1}{n}) - \frac{\log (2^n+1)}{\log 2^n}} \longrightarrow 1 \quad \text{as } n \to \infty ,$$

we have that $\dim_H E = 1$ from Theorem 1. \square

Example 4. Case: $0 < \gamma < 1$. For each n, define

$$c_{j}^{(n)} = \left(\frac{1}{2}\right)^{\frac{1}{\gamma}}$$
 for $j = 0, 1, \dots, 2^{n} - 1$.

Then, the resulting Cantor set E has Hausdorff dimension γ .

In fact, the both sides of Kurata's formula are equal to γ . \Box

Example 5. Case: $1 < \gamma < \infty$. For some integer $N \ge 2$ with $\gamma \le N$, we can obtain a Cantor set E in \mathbb{R}^N with $\dim_H E = \gamma$ by appropriate modifications to that of § 2. We explain how to construct such a Cantor set E in \mathbb{R}^2 for $N = \gamma = 2$.

Let E_0 be a closed regular square in \mathbb{R}^2 . For each n, define

$$c_j^{(n)} = \frac{1}{4} \frac{2^n + 1}{2^{n-1} + 1}$$
 for $j = 0, 1, \dots, 2^n - 1$,

and

$$c_{i_1 i_2 \cdots i_n} = c_j^{(n)}$$
 for $j = i_1 i_2 \cdots i_n$ in a 4-ary notation.

Define a family $\{M_{i_1i_2\cdots i_n}\}_{i_1i_2\cdots i_n}$ of closed subsquares of E_0 indexed by a finite sequence of figures 0, 1, 2, 3 with the properties (M1) - (M4). Analogously in § 2 we have a Cantor set $E \subset \mathbb{R}^2$ with $\dim_H E = 2$ (Fig. 2). \square

Fig. 2

Example 6. Case: $\gamma = \infty$. We construct a Cantor set E in the Hilbert cube Q with $\dim_H E = \infty$. The Hilbert cube means a space

$$Q = \{(t_i) : 0 \le \frac{1}{t_i} \le \frac{1}{i} \text{ for } i = 1, 2, 3, \dots \}$$

with the metric

$$d(s,t) = \sqrt{\sum_{n=1}^{\infty} (s_i - t_i)^2}$$
 for $s = (s_i), t = (t_i).$

Define a set $E \subset Q$ as follows:

$$E = \bigcup_{n=1}^{\infty} A_n \cup \{a_0\},\,$$

where $a_0 = (0, 0, 0, \dots)$, and for any n, A_n is a Cantor set such that

(A1)
$$A_n \subset \left[\frac{1}{n+1}, \frac{1}{n}\right]^n \times \{0\} \times \{0\} \times \cdots,$$

- (A2) $\dim_H A_n = n$,
- (A3) $A_m \cap A_n = \emptyset$ if $m \neq n$.

Since E is a totally disconnected compact metric space with no isolated points, it is a Cantor set. We have that

$$\dim_H E = \sup_n \dim_H A_n = \infty. \quad \Box$$

References

- [1] Edgar, G. A.: Measure, Topology, and Fractal Geometry, Springer, New York, 1990.
- [2] Falconer, K. J.: Fractal Geometry, John Wiley & Son, Chichester, 1990.
- [3] Hata, M.: On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), 381-414.
- [4] Hausdorff, F.: Dimension und äusseres Maß, Math. Ann. 79 (1918), 157-179.
- [5] Hocking, J. G. and Young, G. S.: Topology, Addison-Wesley, Reading, 1961.
- [6] Keesling, J.: Hausdorff dimension, Topology Proceedings 11 (1986), 349-383.
- [7] Kurata, Y.: The Hausdorff dimension of the boundary of a tree, preprint, 1999.
- [8] Yamaguti, M., Hata, M. and Kigami, J.: Furakutaru no Sūri, Iwanami Shoten, Tokyo, 1993. (= Yamaguti, M., Hata, M. and Kigami, J.: Mathematics of Fractals, *Translations of Mathematical Monographs*, vol. **167**, Amer. Math. Soc., 1997.)

Hiroo Fukaishi

Department of Mathematics, Faculty of Education, Kagawa University Takamatsu, Kagawa 760-8522, JAPAN *E-mail address*: fukaishi@ed.kagawa-u.ac.jp

Hironobu YAMAJI 1941 Kou, Ōhama, Takuma-cho, Mitoyo-gun Kagawa 769-1104, JAPAN