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An Elementary Construction of a Cantor Set
with Arbitrary Hausdorff Dimension

FNREHEFH  #a 1#K (Hiroo FUKAISHI)
(Li#& J&fE  (Hironobu YAMAJI)

Abstract

Recently H. Kurata gave an evaluation formula of the Hausdorff dimension of
the boundary of a tree with a distance function as follows.

Theorem 1 (Kurata).

su ( lim inf ME-y—fﬁ) S dimH(Q, g) S sup (hm inf log 1/90(3/11)) )
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In the paper we shall investigate the usefulness of Kurata’s formula and obtain
the following results.

Theoerm 2. There exists a Cantor set for which both sides of Kurata’s formula do
not coincide.

Theorem 3. For each v, 0 < v < 0o, there exists a Cantor set E with Hausdorft
dimension 7y . :

§1 Introduction

Recently H. Kurata gave an evaluation formura of the Hausdorff dimension of
the boundary of a tree and calculated the Hausdorff dimension of certain sets of R™
by using it.
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Theorem 1 (Kurata’s formula [7]). Let  be the boundary of a tree (X, .4, 0) with
a distance function £. Then

. log 1/¢(ya) . ( . log 1/5(yn) )
| f —————=""1<d Q,4) <sup|l f ———>="].
:z)e(m;ﬁggm log 1/0yn) ) = 0 = 20t Tog 1/0m)

In the present paper we shall show the following :

Theoerm 2. There exists a Cantor set for which the both sides of Kurata’s formula
do not coincide.

Theorem 3. For each vy, 0 < v < oo, there exists a Cantor set E with Hausdorff
dimension vy .

Our Cantor sets satisfying the condition in each of Theorems 2 and 3 are not self-
similar, in general. So we cannot apply the formula ¢,” + ¢,” =1 of the Hausdorff
dimension D, where each ¢; denotes the ratio of similarity. We use the Kurata’s
formula to calculate the Hausdorff dimension of our Cantor sets.

Theorem 3 is known, for ex‘ample ['6], but our construction of required Cantor sets
is elementary and geometrical. The ratios of contraction vary in each inductive step
in the construction.

- Let us recall a tree and the Hausdorff dimension of its boundary with a distance
function. . : , : :
Definition (Kurata [7]). Let (X, .A4,0) be a tree, i.e. simply connected and locally
finite graph. The set X is an infinite set of points and the collection A is a set of
arcs. The point 0 € X is called the root point. For z, y € X with z # y let p(z,v)
be the least number of arcs which join z and y, and p(z,z) = 0. Then p is a metric
on X. We assume that #{y € X : p(z,y) = 1} > 2 for each z € X. We set
Xpn={ze€eX:plo,z)=n} forn=0,1,2,--- . :

Let Q2 be the set of all paths from o. A path is a sequence of points (zg, T, Tz, - - -)
such that z9=o0, and p(z4,2p41) =1 foranyz,€X,, n=0,1,2, ---
For £ = (zn)n, 1= (Yn)n €  we define

[f] = {$0,$1,i2, .- } where zy = o,
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and
PEn) =z, zo=9,%1 =91, """, Tn = Yn, Tnt1 ¥ Yn+1-
Now P(¢,€) is not defined. The space Q is called the boundary of a tree (X, A4, 0).
Let ¢ be a positive function from X to R! with the following properties :
For any path & = (z,)n,
(L1) £(z,) is strictly decreasing in n,

(L2) lim £(z,) = 0.

For £ = (Zp)n, 1= (Yn)n € N define

LPE,m) if £+,

d(£,n)={ 0 ifé=n

Then d is a metric on 2, and  is a compact space. For z € X let B(z) = {£ € Q -
z € [€]}. If we take n € Q with = € [n], we have that B(z) = {£ € Q : d(&,n) < {(2)}.
The set B(z) is both open and closed in 2. ' ,

- For K C Q and a > 0 we define
AT (K, ) = inf{Z(e(zj))'a . K ¢ JB(z), €z) < r} for >0,
N L5 TS ,
and )
Ao (K, 0) = rl—ig-loAa(K’ 0 = srg%)Aa(K,ﬁ).
We have that 0 < A4(K,£) < oo. The value A,(K,¥) is called the a-dimensional

Hausdor{f measure of (K,£). Define the Hausdorff dimension of K with a distance
function £ as : ’ ‘

dimH(K, 0) = i}nf{vd 1 Ao(K,0) = .O} = sup{o : Aa(K,£) = o0}

Note that 0 < dimH(K, ?) < 0.
-"Now we define a‘function ¢(z) as follows. Let (o) = 1. For z € X,,, n > 1,
we take y € X, such that p(z,y) =1 and let

e — e(y)
v(z) #{z€ Xn : ply,2) =1}
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§2 A construction of a Cantor set with variable
ratios of contraction in each inductive step

In this section we construct a Cantor set E with variable ratios of contraction in
each inductive step.

For any number n > 1, let {c(?)}jzo,l,z,...,zn_l be a sequence of real numbers
with the properties :

(C1) 0< c(?) <1 foreachn>1,

(C2) lima®a®...a™ =0  where a™ = max {c(?) ] =0,1,2,.--,2" -1}
n—oo
forn > 1.
Let Ey be a bounded closed interval in R!. Denote the diameter of a set: E ' R!
by |E|. Note that a natural number j can be written by i3 - -4, as a number of n
figures in a binary notation. For example, '

Casen=2: 0=00, 1=01, 2=10, 3=11, in a binary notation ;

Casen=3: 0=000, 1=001, 2=010, 3=011, in a binary notation. ~
Put c¢;ipes, = c(?) if j = 4y43---4, ‘in a binary notation. Define a family
{Mi,i,-in }irip-in Of subintervals of Ey indexed by a.finite sequence of figures 0, 1
as follows by induction :

(i) Forn=1, let M, and M; be two closed subintervals of Ej such that
Ey\ (a middle open interval) = My U M,

where min My = min Ey, max M; =maxFEy, and [M;]|=|Eo|c;

for 1= 0, 1

(i) If M;;,..i, is defined, let M; ;,...i.0 and M;,;,..;,1 be two closed subintervals
of M;;,..;, such that ) ’
Mi1i2'"in\ (a middle open subinterval) = Miliz--'ino U Mi1i2.,.in1, ‘
Where min Miliz_---inﬂ = min Milh"'in? max Miliz---inl = max Milizmin and
|Mi1i2---inj| = |Mi1i2~-inl Ci1i2---inin+1 fOI’ ] = ’il'iz s ’inin+1 in a binary notation.

Then the family {M;,i,..i, }iyip-i, satisfies the following :
(M1) For any infinite sequence 4yig---i,--- in {0, 1},
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Mi1 D Mi1i2 DD Mi1i2'"in D) MiliZ"'i;l'in+1 DR
(M2) If 'Z:l’ig tee Zn # klkz v kn; then Mi1i2""in N Mkle...kn = @ .

(M3) |Mi1i2---in| = IEol Ci1Citig * ° " Ciyig-rvin -
(M4) For any infinite sequence %143+ -4, --- in {0,1},

nlg{olo |Mi1i2~--in| =0.

o0
Hence, () Mi,,..i., = one point.

n=1
Let

U{ iyigi, ¢ G102+ iy 18 & sequence in {0, 1} with length n} for n > 1.

Then the set E = () E, is a Cantor set in R'.

n=1
Remark. The 1/3-Cantor set is a set E with
‘T"zé for n>1 and j=0,1,---,2" —1.

Next we define at tree (X A, 0) corresponding to the Cantor set E as follows

(T1) X=X, U U X,, where X, = {o}, X; ={0,1},

n=1

Xn = {iyiz -+ i, : asequence in {0,1} with length n} for n > 1.
(T2) A=A{[0,0], [0,1]}U
UA{[2n, Ynt1] : Zn € Xn, Yn41 € Xng1, Tn = tat2" - - in, Yny1 = f182 -+ - Gndni1}s
Where [z,y] means the arc joining z and y in X.

| 1
Then o(zn) = on for z, € X,.

Define E(il?n) = C4,Ciyig * * * Cipig--in fOI' Ty = i1i2 s in.
Then the function £ satisfies the requirements in the definition of the boundary of a

tree.



We have a bijection g: — E defined by

g(§) =s  where {s} = ﬁ M iy,

n=1

for €= (Oa Y1, Y2, * 5 Yn, ) with yn =7:17:2."'in7 n 2 1.
Then dimg(Q,¢) =dimy E.

§3 Proofs

Example 1 in the following shows Theorem 2.

Example 1. For each n, define

3 i=0,2,20 -2,
I é . j=1,37...’2n_1’
and
e(yn)=CiICi1i2-.-Cili2,.,in fOr yn=i1i2...in
—_ 1.2 (n)
_cjlcjz...cjn,
where =2V + 27 20+ + 20+ 4, T=1,2,---, 1.

Then, the resulting Cantor set E gives an example of Theorem 2 (see Fig. 1).

log 2
log3

(1) The right side of Kurata’s formura =

In fact, take a path & = (0,¥1,%2,"**,Yn,* ) € Q@ with y, =00---0 for any n.
We have that 7
log1/¢(yn) _ log2
log 1/4(yn) log 3

for any n.

Hence,
liminfvlogl/(p(yn) _ log 2 .
weg Tog1/e(ys) | log3

log 2
2log3

(2) The left side of Kurata’s formula =
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In fact, take any z € X with z = 4,45 ---i,. Let y, be any point in X such that
B(y,) C B(z). For any n > m, set yp = t102-Imimy1° - in DA Gpppq = -+ =
in, = 1. Then, for any n>m .

L@ ... m (1)
(y") =CiCj JTL (9) .

and
log1/0(yn) log 2

log1/£(yn) — 2(1 — ™)log3 — llogc(l) @ ...

n .72 In
Hence,
lim log1/p(yn) _ log2
B(y,.)ca(z) log1/€(y,) ~ 2log3 ’

[ —

— m ' L O 1

m 1 B | Bl Il

Bl I | | TN
Fig. 1

Theorem 3 is.established by Examples 2 - 6 in the following.

Example 2. Case: v =0. For each n, define

m_ (1\" . |
c(j)=(§> forj=0,1,---,2"—1.

Then, the resulting Cantor set E has Hausdorff dimension 0.

In fact, take any y, € 2 with y, = %199 --%,. Then

BEOIOROE O
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The function £ satisfies the conditions (L1)- (L2).

Since
log1l/¢(ya) _ 2log2

log1/£(y,)  (n+1)log3
we have that  dimg F =0 from Theorem 1. O

—0 as n— o0,

Example 3. Case: v =1. For each n, define

C(n) _ 2"+ 1

1 .
= —_- —— y fd eee 2n pa— .
J 4 2n—1 + 1 fOI' J 07 1’ ) 1

Then, the resulting Cantor set E has Hausdorff dimension 1.

In fact, take any y, € Q with y, = %145+ -4,. Then

1\ 2" + 1 on + 1
E(yn) = (Z) 2 — 22n+1 .
The £ satisfies the conditions (L1)- (L2).
Since tog 1/o(u) 1
0g 1/¢\Yn
- 1
log 1/£(yn) (2_,_%)_%?;_12 —1 asn— oo,

we have that dimg F =1 from Theorem 1. O
Example 4. Case: 0 < v < 1. For each n, define

N E

c(;l)z(i)" forj:())lj"'72n_1~

Then, the resulting Cantor set E has Hausdorff dimension - .
In fact, the both sides of Kurata’s formula are equal to y. O

Example 5. Case: 1 < 4 < co. For some integer N > 2 with v < N, we can obtain
a Cantor set E in RN with dimy E = v by appropriate modifications to that of §2.
We explain how to construct such a Cantor set E in R2 for N = = 2.

Let Ey be a closed regular square in R2. For each n, define

c(,_,,)_l 2" 4+1

J —ZW f(?rj:O?l)"'aZn_l)



and

Ciyigein — c(;-l) for j =1145---1, in a 4-ary notation.

Define a family {M;,i,..i, }ijiss, Of closed subsquares of Ey indexed by a finite se-
quence of figures 0, 1, 2, 3 with the properties (M1) - (M4). Analogously in §2 we

have a Cantor set E C R? with dimg E = 2 (Fig. 2). O

Fig. 2

Example 6. Case: v = co. We construct a Cantor set F in the Hilbelt cube () with

dimg F = oo. The Hilbert cube means a space

Q={(t:): OS%S% for i=1,2,3,---}

with the metric

d(s,t) = ,‘ io:(sz —t;)? for s=(s;), t= ().

Define a set.E C Q) as follows :
FE = U An U {ao},
n=1

where ay = (0,0,0, - --), and for any n, A, is a Cantor set such that

1 l]n><{0}><{0}><-~-,

(Al) 4nC [n—-I—l’ n
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(A2) dimg A, =n,
(A3) An,NA,=0 if m#n.

Since F is a totally disconnected compact metric space with no isolated points, it
is a Cantor set. We have that

dimy E = supdimg A, =oc0. O
n
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