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TWO TOPICS ON FLEMING-VIOT PROCESSES

FEERA T R (SEUI HIRABA)
SCIENCE UNIVERSITY OF TOKYO

1. INTRODUCTION

For a Fleming-Viot process Y; (which is a probability measure-valued process) on a
compact metric space S, it is well-known that if its mutation operator A is bounded, then
Y; is pure atomic for every ¢ > 0 (Ethier and Kurtz in [2], [4]). We shall extend this result
to some jump-type measure-valued processes which are called “jump-type Fleming-Viot
processes” introduced by the author in [6].

It is also well-known that the normalized binary branching process is a time inho-
mogeneous Fleming-Viot process. We shall introduce another new class of probability
measure-valued diffusion, which are called “space-time inhomogeneous Fleming-Viot pro-
cesses” and show that the normalized space inhomogeneous binary branching process is
a space-time inhomogeneous Fleming-Viot process.

Let S be a compact metric space, fix 7 > 0 and set D, = D([r,00) — S) be a path
space of right continuous functions with left-hand limit. Let (w(t), P;)i>rzes be a S-
valued Markov process starting from z at ¢ = r with sample paths in D,. We denote the
transition semi-group by (P;) and the generator by (A, D(A)), where D(A) is a domain
of A. We suppose that (F;) is a Feller semi-group on (C(S), || - ||), where C(S) is a family
of continuous functions on S and || - || = || - ||o denotes the supremum norm.

Let Mp = Mp(S) be a family of finite Radon measures on S with the weak topology,
that is, pp, = pin Mp <= (tn, f) = (4, f) for every f € C(S), where (y, f) = [ fdp.
Then, Mp is a Polish space, i.e., complete separable metrizable space. The family of
probability measures on S, M; = M,;(S) C Mp, is a compact metric space (cf. Chap. 3
of [3]). For p € Mg\ {0}, we always denote the normalized measure as & = p/{u,1).

Let (Y;,P[V) be a Fleming-Viot process on §, with a mutation operator A, that is,
(Y;, PLV) is an M;-valued process on S such that PV (Yp = p) =1 and

(Y5 ) = (Yo, 1) + [y Af) + M(1),

where {M;(f)} is a continuous martingale with quadratic variation

(M= [ (62~ (Vo 1) ds (> 0),

A is a generator (with a domain D(A) C (C(S), || - ||)) of a conservative Feller process
(w(t), Pr)t>0,z¢s; a S-valued Markov process starting from = with w(-) € D = D([0, 00) —
S) and the transition semi-group (P;).

The generator £ of this process is given as, for n € My, f € D(A),

Le=CN () = —(n, Af)e= ™ + % [(77, ) - (ﬂa‘fﬂ =)



It is well-known that if its mutation operator A is bounded, then Y; is pure atomic for
every t > 0 (Ethier and Kurtz in [2], [4], see also Th. 8.2.1 in [1]). In particular, if A =0
and if we denote n = 3-; m;d;,, then the generator £ can be expressed as, for a function

#(m) of m = (my,ma,...),
c
qu(m) - E Zm.i((sij — m,)a;‘;¢(m)
2y
The corresponding weight process {m;(t)} is given as

dmi(t) = (6 — mal0))fems (DB, (1) (i € 9),

where {B;(t)} is a family of independent one-dimensional Brownian motions.

There is another well-known measure-valued proeess which is a branching process
(Z:,P,), that is, Mp-valued process such that P,(Zp = p) =1 and

P[l [6_(Ztvf)] — e"'(“":‘/tf),
where V;f is a unique solution to the following equation

Vif@) = Pif@) - [ dsP(Vif)(@),
OVif(z) = AV f(z) — ¥ (Vi f)(z), Vof(z) = f(=z)
with branphing mechanism ¥(v)(z);
U(v)(z) = %c(cv)v2 + /ooo [e”"“ -1+ uu] v(z,du) (> 0),

where ¢(z) > 0 is a bounded function and v(z,du) is a kernel on S x (0, 00) satisfying
that

sup/ (u A u?)v(z, du) < co.
zeS JO
In particular, if ¥(v)(z) = cw?/2 (¢ > 0), then (Z;,P,) is called a binary branching

process or a binary branching measure-valued process, or a binary branching superprocess,

or a Dawson-Watanabe process, etc.
Let 70 = inf{t > 0;€ Z;,1 = 0}. For t < 79 and f € D(A), (Z, f) has the following
semi-martingale representation:

(%, £) = {0, ) + [[ (2, Af)ds + ME(F) + ME(P)

where {M{(f)} is a continuous L?-martingale with quadratic variation {(M°(f))); such
that

(M= [ (2o eras
and

)

where N| (ds,dn) is a martingale measure with compensator

N(ds,dn) = ds[s Z(dz) fow v(du)dys, (dn).



The generator of this process £Z is given as
L2 0N () = [~(n, Af) + (n, U(F))] e~ D).

It is also well-known that the normalized binary branching process is a time inhomo-
geneous Fleming-Viot process. More exactly, in 1991, Perkins [8] established that the
conditional law of the binary branching process given the total mass process is a time
inhomogeneous Fleming-Viot process.

Fix r > 0 and let

Cry = {g : [r,00) = [0,00); g is continuous, and
there is 7, € (r, 00| such that g > 0 on [r,7,), g = 0 on [7,, 00) }

Let p€e My,g€ C, 4 and c > 0.
The time inhomogeneous Fleming-Viot process (Y%, Pf V) satisfies the following:

() Y, =p Y=Y, (t > 7,), PPV-as,
(ii) For f € D(A), (Y3, f) has the following semi-martingale representation:

(Voo ) = (Yo 1) + [ Yoy Af)ds + Mol 1)

such that {M,(f)} is a continuous L?-martingale with quadratic variation

(M= [ o)™ [(¥ar £2) = (Ve 2] s < 75)ds.

We denote normalized measure = p/{u,1) for p € Mp \ {0}.

Theorem 1 (Perkins ’91). Let p € Mp \ {0} and set y = (u,1). For a binary
branching process (Z;, P,), set z, = (Z,1) and Qy, =P ,oz.7!. Then

P.(Z e€B|(2,1)=g()) =P§;(Y.€ B), Qaa g€Coys,

where (Y;,PgY) is a time inhomogeneous Fleming-Viot process associated with (A, g, c)
starting from Yy = 1.

We would like to extend these results to some wide class which include Fleming-Viot
processes. The first one to “jump-type Fleming-Viot processes” introduced by the author
in [6], and second one to “space-dependent Fleming-Viot processes” intorduced by this

paper.
2. PURE ATOMIC JUMP-TYPE FLEMING-VIOT PROCESSES

According to [6], we give characterizations of jump-type Fleming-Viot processes.
For each z € S, we define an operator T} from the space of Dirac measures d,(dy) on
S to M; by

(T8, 1) = (&, T = Tf() = [ Q)T (=, dy),

where T'(z,dy) is a non-negative kernel on S such that T'(z, S) = 1.
We fix v > 0 and let v(dv) be a measure on (0, 00) such that

' [)w(v A vE)v(dv) < oo.



Let (Y;,P,) be a jump-type Fleming-Viot process associated with (A, v, v, T;) starting
from p € M,. That is, (¥;,P,) is an M;-valued process such that (Y;, f) (f € D(A))
has the following semi-martingale representation:

(Yo £) = oo 1)+ [ (Yo AS) + ME(P) + MECS),

where {M{(f)} is a continuous martingale with quadratic variation

(M= [ (e ) = Ve ) ds (v >0),

and {MZ(f)} is a pure discontinuous martingale such that

M (f) = //MFIJ(:’%}’?U (7 YQ-J)N(ds,dn),

where N| (ds,dn) is the martingale measure with compensator
N (ds,dn) =ds / Y,(dz) / v(dv)dyr,5(dn)
s 0
Remark 1. In [6] the process is defined only the case of T, = I, i.e., T30 = 4. However

the extension is possible and easy.

The generator £ of this process for Laplace functionals e~ (u € My, f € D(A)) is
given as

LD (w) = —(u, AP + 2 [(u, 1) = (u, 1) 9
+ / p(dz) / v(dv)
{BXP[ Ty e0 - mf)] —1+—(T5 u,f)} ~bh),

For a functional F(u), a derivative at £ € S is defined by

0F(p) _
Sula) e

[F (u+€bz) — F(p)]  (if exists),

and ‘higher order derivatives 02F(u)/(0p(x)du(y)), . .. are defined similarly.
Note that the generator can be expressed as

(1) LFG) = {mA% ()> 7 ]/ 5 xw( Q(u; de, dy)
OF (p)

L [P0 00m) = ) = 00, D s,
where
Q(; dz, dy) = p(dz)d,(dy) — p(dz)p(dy),
g(p,n) = %—u: %(ﬁ—u) € My
and |

(s dn) = [ (ds) [ v(dv)aurs(dn).



Here we give a formal calculation for general measrue-valued processes i.e., Ito’s formula
for measure-valued PrOCesses. '

For a set B, let Mz (B) be the class of finite singed measures on B, i.e., n € M5(B)
= n=nt—-n; e MF(B) We denote ||n|| = (g+ + N )(B) For simplicity,
if B =S, then Mi = M3%(S). Let Q(y;dz,dy) : Mp — ME(S x S) be measurable
such that Q(y;dz,dz) < C[L(dil)) for some C' > 0. Let g(u,7) : Mp X ME - M% and
n(p; dn) Mp — Mp(M3) be measurable such that

sup / d:Ilg(u,n)ll/\llg(u,n)llz (1;dn) < oo for every K > 1.
BEMp;u(S)<K Y Mg

In general, let X; be an M p-valued Markov process such that
. . -
X, = Xo+ / A*X,ds + ME + Mg,
0

where A*X, is defined by (A*X,, f) = (X,, A f), M is a continuous martingale and Mg
is a pure discontinuous martingale;

M¢(dz) = /0 " M(ds, dz)

M) = [ [ a0t (@) Vs, dn)

with a continuous martingale measure M (ds,dz) and a pure discontinuous martmgale
measure N (ds dn). Suppose that the covariance of M°(dz)M*(dy) is given as

(Me(dz), M*(dy)Y); = fo Q(X,; dz, dy)ds

and the compensator of N is N (ds,dn) = dsn(Xs,dn) (cf. for martingale measures, see
Walsh [10]). .

Let F'(u) be a suitable functional of 4 € Mp and let LF(y) be given as in (2.1). Then,
by a formal calcutation we have the following Ito’s formula:

F(X) = F(Xo)+ /0 "LF(X,)ds + M(F)

+ /0 ' /M% [F(X,- + 9(X,s—,m)) — F(X,-)] N(ds, dn),

where

ME(F) — / / ‘g{ (i( M(ds, dz)

is a martingale with quadratic variation
OF(X,) d0F(X,)
¢ Xs;dz, d:
(MeF)e =7 [ ds [ X0 3X. 1) Qe 4o )

(for the stochastic integrals corresponding to the martingale measures, see Walsh [10] and
also Dawson [1]).

We denote the space of pure atomic probability measures on S by M;, = My .(S).
We also denote the pure atomic part of a measure 7 by 7,, and for a process Y; by Y;, or

(¥2)a-



We set
M:{m:(mlyma )ml>m2 >021mt_1}
M = {m = (m;,my, .. )m12m22 - >0,%,m; <1}

and let M : M; — M; M(n) = M(n,) = (the vector of descending order statistics of the
masses of the atoms of 7,).

Theorem 2. Let (Y;,P,) be a jump-type Fleming-Viot process associated with
(A,7,v,T:) starting from p € M,. Suppose that A is a bounded operator having the
following form: ‘

Af() = a(z) [ [£() - £(2)] B, dy),

where a(z) is a nonnegative bounded function on S and B(z,dy) is a nonnegative kernel
such that B(z,S) =1 for all z € S. Also assume that v > 0 and T;6 € M, , for every
z € §. Then Y; is pure atomic for allt > 0 a.s., i.e.,

P,Y: € My, forallit>0)=1.

Moreover if a(-) = a(> 0), T0 = 4, for every ¢ € S and B(z,-) has no atoms for every
z € 8, then {my = M(Y;)} is a solution of the D([0, 00), M)-martingale problem for the
znﬁmte dimensional operator (G 'D(G)) where

Gé(m) = 1 z ma(65; — m;) 0% (m) — z miOigp(m)

b [¢ ((%))  gtm) - 3 55— m)osgtem) | ()

with 8; = 0/0m;, 8% = 0%/(0m;0m;) and D(G) is the algebra generated by {1,¢%,4°,...}
with ¢P(m) = S, m? (B8 > 1). That is, Y, is the size ordered atom process for the infinitely
many neutral alleles (jump-type) model.

Proof. Tt is enough to consider the case that a(-) = @ > 0 and B(z,-) has no atoms.
Because if we set S = S x [0,1], @ = supa(z) > 0 (note that the case of @ = 0 is trivial),

B(z,u,dydv) = a(:) B(z dy)d’u+ a,( ) 0. (dy)dv
and
Af(z,u) :E/(; /S[f(y,'u) — f(z,u)] B(z,u, dydv),

then Y;(-) := Y;(- x [0,1]), with the solution Y, of the martingale problem for A, is the
solution of the martingale problem for A.
For p € My, if po = Y ;mid,,, then set Fﬁ(/,t) = ¢p(M(u)) = y;m? (8> 1), and

Fialh) = B o) = = G 1)
If 8 > 2, then

—6Fﬁ(#) = m@‘l T) an ——62Fﬂ (,u, m‘.@‘2 T
Sulr) — 2P ale) and mnses E;ﬂ(ﬂ Dmf L () 1(0),



We first give some formal calculations. For each fixed z we denote all atoms of u + T},
by {z;}. Since B(z,-) has no atoms, by (2.1) we have

LRy) = 3 [~apm + Jp(8 1) (mi —m) m]

e [ (L) — o)

-1
J

v(dv)

= —aPFa(w) + 2(8 1) (Fp1(k) — Fo(w))

v fouta) [ (M)~ Fal

14w
Z (To6({z;}) — n({z;})) n({=;})° ‘1] v(dv)

Moreover if we set Fj(p) = 1, then the above formula is still valid for 3 = 2. Hence by
formal Ito’s formula

(2.2 M(B) = MFa(¥2)) = Fp(¥e) — Fa(¥o) — [ LEFp(Y,)ds

1+v

is an L2-martingale such that M;(8 ) ’ﬂ +Mt 4P , where M, “F is a continuous martingale
with quadratic variation

(M), = 5% [ [Fapoa (V) — Fa(¥:)?) ds

MEP —/ /[ ( Yo 41 ) - Fﬁ(Y_)] N(ds, dn)

is a pure discontinuous martingale with compensator

N(ds, dn) = ds [ Y(do) [~ v(dv)duzs(dn).

To verify the above result we use an approximation method. Let {S;.‘, T3, PNy J € N}
be a partition family for S, i.e.,

(a) S; C 8,2} € S}, S NSE =0if j #&,

(b) U; S7 =S forallm € N,

(c) for each j, there is k such that SP*! C Sp,

(d) pn :=sup; diam(S}) — 0 (n — o0).
Ror s € My, sct £(n) = X5, p(S})0up and & = EX(Y)). For B > 1, let Fpa(u) —
Yo w(S7) = ¢P(£™(p)). Note that for B > 1, Fpn(p) — Fp(p) as n — oo by the definition
of Fp(p). , _

For each j,n, if we take fi" € D(A); 0 < fi™ 1 Lsp (k 1 00), and use Ito’s formula

for (Y;, f#™), then by letting k¥ — co and summing up on j we can get the following: If

and



B > 2, then

M) i= Mi(Es(%)) = Epn(¥:) = Fyn(Yo) = [ £Fpn(¥o)ds

is a bounded (uniformly in n) L*-martingale, where
LEpa) = X[ 3908 1) () ST (ST
+aB [(u, B(, 7)) — w5 u(s:)ﬁ-l]
e /()wzj:[((wr;flji)(s?))ﬁ Sy

SIS o).
Note that if we set p =1/(1+v),q =v/(1 +v) and

(2.3) h(a,b) := (pa + gb)° — a® — Bq(b— a)a?* >0
for 0<a,b<1, then by 8> 2

h(a,b) = /0 " ds /0 " B(8 — 1)(tq(® — a) + a)’~2¢*(b — a)?dt

< B(B—1)g*(a® +b7).

Since B(z,-) has no atoms, we can see that as n — oo LFpn(p) — LFz(p) (bounded-
pointwisely), and hence M, :(8) — M,(0) (a.s.,, in L?). Moreover the limit process

{M:(B)} is an L*-martingale with My(8) = My’ -+ M;** as mentioned above (note that this
decomposition can be shown by using the uniqueness of special martingales; cf. Theorem
6.1.3 in [1]).

By mean zero in (2.2) and by taking a limit of LF(p) as 8 | 2 carefully, we have

t
0=UmE, [M(8) - M(@)] = E, |7 [ (1~ R (¥)ds| (2 0).
By ~ > 0 this implies
(Ye)a,1) =1 (Y2) =1, ie, Y€ My, foraat>0, as.

In order to show that Y; € M, , for all t > 0, a.s., we mention that Mtc’ﬁ , Mtd P are still
L?-martingales for B € (1,2). In fact, to verify this, let Fs (1) = ¢p (M (p)), where

¢/3,e(m) = Z¢E(mz) with  ¢(m) = (m + E)ﬁ — P ﬂeﬁ_lm

Apply Ito’s formula to Fjs (Y;) and take the limit € | 0, then the corresponding martingale
parts MPP¢, M&P¢ converge to M, M respectively in L2. Moreover for M;(8) =
M{® + M} the formula (2.2) also holds. These can be checked as follows: First note
that for 1 < 8 < 2,

be(m) = /ds/ (B — 1)(tm + €)P2m2dt +m? (B | 1),



¥(m) is convex in 0 < m < 1 and

5Fp, (1) | e
Gui) Zﬁ{<ml+e ') 1 (a),

POl s e
5,1,(3:’)5#(:‘/)7 Z‘:IB(IB 1)(mi + €)1, ( )1z, ().

Hence

LB = 3 |=op{(met 9 = Tyt 16(6 — 1) (ms — ) oms +

+/ ,u(d:z:)/ Fg e (# vl 6) — Fpe(p)

— f:’v JZ(T_,,,.é — w)({=;}) {(mz- el 6ﬂ—1}:| v(dv)

converges to LFp(u) as € | 0 by using

(m+ 1 =& = (5= V) [ (tm+ P Pdt A mf (e} 1)
and monotone convergence theorem. By the same way we also have
[) CLF, (Y,)ds — /0 ' LFy(Y)ds.
If we set (Y;)a = 3; m;(t)du), then as € 0,

(eoey, = g [ [z_ {(m;(s) + P~ — &1} my(s)

i {2 ((ms(s) + o1 = &) mj<s>} ]ds

J

2
t
. ,yﬂz/o ) {mj(S)zﬁl - (Z mj(S)ﬁ) }ds
7 J
— «Mc,ﬁ»t'
Hence
MPe = Bmeey, = M = By,

where {B;} is a one-dimensional Brownian motion. The L? convergence can be shown by
the folowing:

(ML — MoFY, = ”/,52/ [ > {(mi(s) + 9 =1 - mj(s)ﬁ_l}zmj(s)

i {Z ((ms(5) + % — &1 — my(s)1) m, (s>} ]ds |
— 0 in L.
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For the discontinuous parts, we can see that

/-ot ds/Ys(d:E) /:o v(dv)|Fp,. (Xf_l__vﬂ”_é) — Fp(Yy)

1+w

Y, +vT,0
— S Fg | ———— | — Fp(Y-
{r (B2 - mov)
by Lebesgue’s convergence theorem. Hence Mtd’ﬁ ‘- Mf # in L2. Moreover by taking a

suitable subsequence we get the a.s. convergence. Therefore (2.2) is also valid.
Form the above results as 3 | 1,

2
—0 in L!

B, [(M2)] = B, [(Mo#)] = 1B, [ [ Ry () (1= Ry (%)) ds] =0,
E, (M) - / ds [ ¥i(de) [ v(av) |y (Y + vl ‘S) A

o [ o [0 ()

) (@5 =Y, 1>2] -
by T € My, forallz € Sand Y, € My, for a.a. t > 0,' a.s. Furthermore

i (M) < 2t (B [0077] 4 B [07])
= 0.

Hence by Doob’s maximal inequality and by taking a sequence {G,.}; 5n 4 1,
sup |My(B,)] = 0 a.s. for each T' > 0.
t<T

2

Note that

Ho(p) = / p(dz) /

p+ vl
Fﬂ( TTo )"Fﬂ(ﬂ)

e (ZTmé({wj})mzj})ﬁ-l—Fﬁ(u)) v(dv) > 0

and that for pu € My,

timsup £Fp () = —aFs, () + limsup [ 219(8 — 1) Fas() + H ()]
Bi1 Bl

Thus if we set
Rq = limsup /0 t [%ﬂn(ﬁn — 1) Fp1(Ys) + H? "(Ys)} ds
(which is nondecreasing in t), then by (2.2) and the above result we have
(W) — Fii(Yo) + a/ﬂt Fi (Ys)ds— R, =0 forall0<t<T,as.

By Fi,(Y;) =1for a.a.t >0, as.,
Fi,.(Y}) — Fi.(Yo) =R, —at forallt >0, as.
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and
0=F,(Y;) — F14(Ys) =R.— R;—a(t—s) foraa. t>s>0,as,
that is,
R;— R;=a(t—s) foraa.t>s>0,as.

The left hand side is nondecreasing in t > s. Hence it is easy to see that
R, =at forallt>0,a.s.

This implies that ¥; € M, , for all t > 0, a.s. Finally in case of T;0 = §; (z€8),itis
easy to check that {m} is a solution of the martingale problem for (G, D(G)). O

Remark 2 (Pure jump case). In case of v = 0, even if A is bounded, it is not ensure
that Y; is pure atomic for all ¢ > 0 P,-a.s. For instance, suppose that T;6 € My, for
every z € S and Yp = p € My, P,-a.s. Also assume that a(-) = a > 0 and B(z,-) has no

atoms for each z € S. Let HP(u) be defined as in the previous proof. If / vy(dv) < oo,
0
then it is easy to see that

lim H?(u) = 0.
lim. (1)

In fact, for B > 1, let h(a,b) > 0 be in (2.3) with p = 1/(1 + v),q = v/(1 + v), then it
holds that for 0 < a,b <1, '
h(a,b) < pd’ +qtf —a® — Bg(b— a)a”!
q (—aﬂ + b — B0 a)aﬁ_l) :

{s q(1 + B)(a +1),
- 0 (Bl1).

Threfore we can apply Lebegue’s convergence theorem for H(7n). Now by mean‘zefro

. 4,5n
0 = %ﬁlEy[Mtﬁ]

= By [R() - (%) +a | R (Yo)ds].

This implies that E,[Fi4(Y;)] = Fi+(p)e™® =e™® < 1, ie., Y; is not pure atomic.
T
(Note that if a = 0, then E,[Fi,(Y;)] = 1, ie., E,[ / Fi(Y)dt] =T for al T > 0.
0

thus, Y; € M, for a.a. t > 0, a.s. Moreover by the same way as in the previous proof
we have

Fi,(Y;)—1=R,—at=H;—at=0 forallt >0, as.
That is,
P(Y; € My, forall0<t<T)=1)
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3. SPACE-TIME INHOMOGENEOUS FLEMING-VIOT PROCESSES

Next we would like to extend the Perkins result to the space(-time) inhomogeneous
case.

Let c¢(z) > 0 be a bounded function. ;

According to Dawson [1], we first give a characterization of the space inhomogeneous
binary branching process (Z;, P,)i>0 (1 € MF).

(Z:,P)e>0 is an. Mp-valued process such that P,(Zp = p) = 1, Z; = Zinn (T0 =
inf{t > 0;(Z;,1) = 0}) and

P[] — -0,

where V;f is a unique solution to the following equation
1 t
Vif (@) = Bif(z) = 5 [ dsP (c()(Vi-of)()?) (@),
or )
OVif(z) = AVef () — 5e(@)(Vaf)(2), Vof(e) = (=)
Moreover {Z;, ) (f € D(A)) has the following semi-martingale representation:
¢
(Zi, £) = (Zo, 1) + [ (2, Af)ds + Mi(),
where { M;(f)} is a continuous L2-martingale with quadratic variation {(M(f))), such that

(M= [(Zuvef)as (<)

The generator of this process £Z is given as

£7e0() = [~ AF) + 5 ()] €00

For a functional F(n) of n € Mp, a derivative at € S is defined by
— = llm [F (n+€dz) — F(n)]  (if exists),

and higher order derivatives §2F (7)) /(6n(z)dn(y)), ... are defined similarly. Note that the
generator can be also expressed as

3.1) £20() ~ 0 AT + 5 [ 5ol )

where Q(n; dz, dy) = c(x)n(dz)bs (dy).
Next in oreder to introduce space-time inhomogeneous Fleming-Viot processes we define

a family of operators £9 = (L{),<i<s, for a fixed g € C, as follows: For functionals
exp[—(n, f)] (n € My, f € D(A)) and r <t < 7,

Lie= D) = {—(n,Af)—g(t)‘1 [(n, cyn, £) — (m,ef)]} e

*3 (t) [<n, cf?) + (m,c){n, £)* — 2{n, cf){n, >] o—(mf)

with a domain

Do(L?) := lin span {e“<"f); feDA),f> O}.
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This operator can be also expressed as in (3.1) by

et = A o (oo 5 E”))>—-< %7%)

62F(n) .
2// 6n(m)5n(y)Qt(n’ o dy),’_ |

where

1
Q¢(n; dz, dy) = FO) [e(x)n(dz)b=(dy) + ((n, ¢) — c(z) — c(y))n(dz)n(dy)].
We need the following condition.
Condition 3.1. c € C(S) satisfies 0 < sup ¢(z) < 2inf ¢(z).

This condition is equivalent to ¢(z) + ¢(y) > ¢(z) > 0 for every z,y,z € S.
"The following result gives the definition of the space-time inhomogeneous Fleming-Viot
process (Y;, PIV) associated with (4, g, ¢) starting from pu € M; at t = 7.

Theorem 3. Let p € My, g € Gy and c € C(S);¢(z) > 0. Forw € C, ;. :=
C([r,7g) — M), set Yy(w) = w(t). Then, under Condition 3.1 on c(z), there is a
solution PLY on C,, _ to the martingale problem for (L] , Do(L9))seirr,) satisfying the
following:

Q) Y, = 4, PV s,
(ii) For f € D(A) and r <t < 7,, (Y;, f) has the following semi-martingale represen-
tation:

¢
Yoy = (e d)+ [ {(V AN+ 9() (¥ (Y, ) = (Vo)) } ds
+Mr,t(f )
such that {M,.(f)} is a continuous L%-martingale with quadratic variation
¢
(M Drs = [ 9(6)™ [(Vores) + (Yo, ) (Ys, 1) = 2(¥s, e )(Va, £)] ds.
Moreover if A =0, then the solution (Y3, Pf V) is unique.
By using the same argument as in Perkins [8] and the author [6] it is possible to obtain

the following result. Recall & = u/(p,1).

Corollary 1. Let p € Mg\ {0} and set y = (u,1). For a fized r > 0, let (Z:,P,.) be
a space -inhomogeneous binary branching process with A =0 on C([r,00), M) such that
Zy = p. Set Tp = (Z;,1) and 10 = inf{t > r;x, = 0}. If Qy = Py o ({Zt}eepm)) ", then

P,, (Zley € B1(2,1) = 9O)lirp) =PI (Yl € B), Qa0 g€ Cry,

where (Yt,PF V) s a space -ttme inhomogeneous Fleming-Viot process associated wzth
(0,g,c¢) starting from Y, =

Note that z, = (Z;, 1) has a decomposition z; = (, f) +m;, where {m;} is a continuous
martingale starting from 0 with quadratic variation, '

(mY, — /:(Zs,c)ds (r<t<m).
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Proof. For simplicity of the notations, as in [6] we set Z,(f) = (Zi, f), |Z:| = (Z:,1) =
z;. Recall that

dZy(f) = Z«(Af)dt + dM(f),  Zo(f) = (n. F),

where {Mt( f)} is a continuous L?-martingale with quadratlc variation d{(M(f)): =
(Z;,cf?)dt Thus by using Ito’s formula we have

A1)\ Z)) = ~d|Z /|2 + dMQ))/| ZI°
and, noting that
421, (1/1Z))e = ~a(M(5), MW/ ZI = ~(Zcf) /|2,
we also have
dZ(f) = Z(Af)dt + dUAF) + (B2l ) — Zuleh) /| Zit,
where

dU:(f) = dM(f)/|Ze) — [Z:(f) /1 Z4|)d M (1)

is a continuous L?-martingale with quadratic variation

i — D D aqary. 2 |75 aaen, mo,

= [Zlef®) + (1) Zile) - 2245 Zd(ef))] | 2|t

Hence by the same way as in [8] we can show that {Z,} under the condition |Z.| = g(-) is
the space inhomogeneous Fleming-Viot process. O

Proof of Theorem 3.
Let ¢(z) > 0 be in C(S) and satisfy Condition 3.1. Fix g € C, and set c/(z) =
c?(t;7) = c(z)/g(t) (t < ),

A(@,9,) = (13,9, 2) = 5 [(4,5) + o (t,) — 2(t,2)] (2 0).

It is enough to consider the uniqueness and the existence in C, 1 := C([r,T] = M,) for
each fixed r < T < 7.

We first show the existence of the solution. Fix n > 1. Let p™ = Y%, 6,,. Let
(X9, ”‘(,,)) be the independent particle system associated with the motion process
(w(t), P;) starting from X2 = p™. Let (X;, Q, ,=) be the Markov particle system start-
ing from X, = u such that the Laplace functional Lr,t(p,(")) = Q, um[exp —( Xy, f)] is
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the unique solution to the following equation:

i#i

Lr,t(p'(n)) - %g Qg,y(ﬂ) I:exp (_ Z cfn('r, t) - Zc'iq,j,k(r7 t) - (X?1 f>)

m'#Em i#j

+ X [ds 2, (s) exp (—cfn('r,s)— S & t) — e, t))

L, (Xg — Ouwn(s) + 6wk(s))

+ Y [ds cyuls)ex (cz,-,m,s)—;cfn(r,t)— > cz,,-,,k(r,t)>

i i'5£5'5(8,5")£(6.9)

Ls,t (Xg - 5111,;(3) + 5w1(s)):| )

where ¢ (t) := cI(t; wn(t)), c.(r,t) := /Tt ch.(s)ds and cf . (t) == c?(t; wi(t), w; (t), we (1)),

t
iulrt) = [ clju(s)ds 64 5):

This particle system can be constructed directly as follows: first n-particles {w;(t); % =
1,2,...,n} (C D,) move independently and one particle (e.g. k;-th particle 'wkl) is

selected with probability 1/n at the starting time t = r. Let 0c® = ¢ T’]’k p =
1,2,..., and m,i,j,k € {1,...,n}; ¢ # j) be independent random variables such that
Py (U(P) > t) = exp[—cZ,(r,t)] and Py (T, J)k > t) = exp|—cj; 1 (r,t)], where w = {w;(t);i =
1,2,...,n}, The index m, and the pair (i1, 1) is uniquely defined by min, o) = c{!) and

ey

mln,,qéJ ii et 7'1(11) ik 1 a},{z < Tz(llz , then after the random time a,(,}z, m;-th particle

jumps to the location of the ky-th partlcle and at the same time ky-th particle is selected

with probability 1/n. If o{) > 'r(l 3 k> then after the random time T(1 3 Lk » t1-th particle
jumps to the location of the another j;-th particle and at the same time kg-th particle is
selected with probability 1/n. Again these particles move independently according to the
same law. For these particles, we use the same notations {w;(t)}. Next the random times

@, 7'1(2 32 x, are defined as above by using {s%?}, { }. Then according to o2 > 1(22)1 0 ko

or 0(2) < 7(2 32 x, Particles moves similarly to above. These operations are continued.

ThlS particle system (X;,Q, ,m) is called the space-time dependent Moran particle

1.]k

system starting from u(") at t = r associated with the motion process (w(t), Prz), sampling
rate function c(t; z).

We denote the generator of independent particle system {wx(t)} by G° which is defined
as

G () = —(n, e AL — ey,



16

Let pu™ = ¥ . §,,. The generator G; of (X, Q, .m) is given as

1 —
Gie~ N (u) = = > [gﬂe—(-,f) (™) + ¥ (zm) (e—[f(wk)—f(wm)] _ 1) = (.1
‘ k=1 m

+Y (i, 75, Th) (e'[f (@5)~F(=al _ 1) e WS )}
]

_ {.—'(ﬂ:efA(l — e"f)) + % i [Z & (zm) (e—[f(zk).ff(wm)] _ 1)

+ Zcﬁ(zi, T, Tk) (e_[f(zj)—f(mi)] . 1)} }e_(,‘@.),f).

i#j
Set the domain of G = (G:) by
Do(G) := lin span {e"("f>; f=—log(1—h),0<h<1l,he D(A)}.

Then it is easy to see that (X, Q,.=) is a Markov process with sample paths in
D([r,00) — Mp(S)) and the unique solution to the martingale problem for (G;, Do(G))
on D([r,00) = Mp(S)).

Now we consider the scaled Moran particle system (Y, ¢, P{") ), where Y,,; = X,/n with
pn = p™ /0 and Pf,":zn is its probability law. We also denote the generator by £} ,. We
shall show that if p, — p in M, then the scaling limit (¥;, PEY) exists as a space-time
inhomogeneous Fleming-Viot process associated with (4,1,¢%) = (A4, g,c) and has the
following generator £L7; for r <t < 7,

LieNn) = —(n,Af)e ™)

_‘g(l_t) [(n, c)(n, f) — {n,cf)] e~
+—2'g_1(t7 [(n’ Cf2> + (777 C)(’?: f>2 - 2(7], cf) (7’, f)] e—(ﬂ,f)_
For f € D(A),

Vi 1) = (Yo 1) = [ (Yo Af)ds |

is a P,(ZL—martingale and

sup P, [esssup,<ycrl{Yos, AN] < JAS].

Hence by Th. 9.4 in Chap. 3 (p 145) of [3] {(Yn:, f)} is relatively compact, i.e., tight in
D([r,T],R) (because D([r,T],R) is Polish). Moreover since S is compact and D(A) is
dense in C(S) and closed under addition, by Th. 3.7.1 in [1] {Y;,;} is tight, i.e., relatively
compact in D([r, T], M;). Therefore there exist a subsequence {(¥n, ., P{") )} and a limit
point (Y;, P, ,) such that {Yy, .} converges weakly to {Y;} in D([r, T], M;).

For each integer n, let Mg") = Mg")(S) be a family of counting measures on S of
the form 7, = 33%_, 4, /n. Moreover let f, = —nlog(l — f/n) for f € D(A) such that
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|l <1 and inf f > 0. It is possible to show that for each r < T' < 7,
(3:2) lim sup sup |L£5 e (n) — LI (n)| =0

n—o0
r<t<T neMg”)

(we shall show this at the end). Hence it is easy to that the limit point (V;,P,,) is a
solution to the martingale problem for (£{, Dy(L)) in D([r, T], M;). We need to show the
continuity and the semi-martingale representation of {Y:}. However this can be shown by
the same way as in the proof of Th. 6.1.3 of [1].

Next in case of A = 0 the uniqueness can be shown by the same way as in [9]. In fact,
for r <t <T and n € M, let

a(n, f) = g(&)~" [{n, ) (n, £) — (n,cf)]
and
be(n, £) = 9(t) ™ [(m,ef*) + (n, ) (m, )* — 2(m, cf)m, F)] -

We consider the following stochastic differential equation: for r <t < T,

(3:3) (Y, f) = ai(Y,, f)dt + \/6(¥s, f)dB,, Yo —p,

where (B;) is a one-dimensional standard Brownian motion. To show the (law) uniqueness
of (Y;) it is enough to show the pathwise uniqueness of the solution to the above equation
in C,.r (see [7]). However the pathwise uniqueness can be easily checked. Let (Y;), (¥;)
be solutions for the equation (3.3) defined on th same probability space (we denote the
probability measure as P,). By using the following inequality (let g, = inf,<;<r g(t))

las(n, ) — ae(@, )] < NgZ*(llell v IIFID) (Kn = 7, )| + [ — 7, £)) ,
[be(n, ) = b, ) < Ng*(lef | v IFIP) (=7, )] + [ — 7, H)])
where N is an appropriate number, and we have

B, [1(% ~ Yo 1)) < © [ B [, = Fay )l + (Y, — T 1) ds,

where C > 0 is a constant depending only on (g.,||c||,||f]|).- Thus we get the pathwise
uniqueness of {(Y;,¢)} and of {(Y;, f)} (f € C(S)). Hence the law of uniqueness holds.

Therefore if A = 0, then the limit process (Y}, Pf; X r<t<T uniquely exists in C, 7.

Finally we show (3.2). Note that for 7, = 3=, 5,/n € MP,
L:’_:]z’te;_<-,fn)(,r’n) — gt6_<.,f”/n) ('n,'r’,n)
— Af
pr— 'r]'n,) 1 _ f/n
1 n
+= Y cl(wm) (UnlemS@/n _ 1) g~ lmn)

k,m=1

)e_ (nﬂ)fﬂ)

+l i Z C‘?(.’Di, xj) wk) (e(f"(mi)_fn(zj))/n —_ 1) e—(nﬂ’fn).
k=1 i#£j

It is eaéy to see that

2 ez () = @) = = (o), 1) = ()
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and that by symmetry of f(z;,z;,zx) in (4, j)
> _cl(zi, 75, 7x) [f(ﬂf«) f(=5)] =

itj
Moreover
2§:(f(m‘l)—f(m.‘l)) = 2Z(f(ﬂvz) f(=5))?
= 2 ((m, 1) = (0n, 1)?)
and

o2 Z o(z:)(f(z:) — f(z;))?

itj

] Zc(ml (f(zi) — f(ﬂi;,))

= (nn,sz) + (1, ) (s %) = 2{00, <) (0, F)-
Hence by cf(a:,-,:cj,mk) = |c(z;) + ¢ (z;) — i ()] /2 we have

(f(x:) — f(=5))*
= chg(“’u“’h-’”k) o2

ni3a z;é]
=5 (t) [(10s %) + (1, ) {1, 1) — 210, 1) (1, )]
Therefore by using Taylor’s expansion the equation (3.2) can be easily checked. O

Remark 3. If A = 0 and the starting measure Y, = p is pure atomic, i.e., p = Y- mPd,0,
then clearly the process Y; is also pure atomic and the corresponding generator is given
as

Gom) = 13 [m,c(w )i+ mam; {zmkc(m — (a?) - ofa! >}] 0%, p(mm)

%,J

+ Z b;(m)d;¢(m),

where b;(m) = (EJ- c(x9)m; — c(m?)) m,;. However in this case our result is contained
to Shiga’s result [9] in 1987. He showed the result under more general conditions on
c¢(x) and b;(m) such that let 8; = c(z?), B; > 0;sup; B; < co and for some matrix (g;;);
@%; > 0,5up; 3% ¢s; < 00, |bi(m) — by(m')| < 5 gij|m; — mj|.

By using the same argument as in the proof of Theorem 3 we can see the follbwing
results:

Theorem 4. In Theorem 3, if the quadratic martingale part is changed to the follow-
ng
t
(MW = [ 90 [(¥aref?) + (Yare) Yo, 12) = 2(¥erc)Yan )] d,

then the same claim holds for all bounded functions ¢ € C(S);c(x) > 0 without Con-
dition 8.1. Moreover it is possible to construct the processes without the drift term

g@®) 7 [{n, c)m, £) — (m, cf)]-
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Proof. We have to consider the approximating particle systems {X,}. However it is
enough to change c(z,v,2) to (x,y) = *(t;z,y) := [9(t, z) + A (t,y)]/2, thus ;4 (t)
to ¢f;(t) := ¢f(t; wi(t), w;(t)). Moreover for the processes without drift term, it enough
to delete the terms corresponding to cZ,(s) and ¢ (zm). O
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