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Abstract

We have already discussed the Markov property of Gaussian random fields $X(C)$

with the parameter $C$ running $\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{u}_{\Leftrightarrow}^{\circ\cdot \mathrm{h}}$ the class $\mathrm{C}$ where the class $\mathrm{C}$ is taken to be
$\mathrm{C}=$ { $C,\cdot C\in C^{2}$ , diffeomorphic to $\mathrm{S}^{1}$ }. In this paper we introduce the Markov property
for non-Gaussian random field $X(C)$ , namely a random field of homogeneous chaos.

1 Introduction

When we discuss the analysis of a stochastic process $X(t)$ and a random field $X(C)$ , we
usually consider operations acting on the values of $X(t)$ or $X(C)$ ; for example the best
predictor is formed by taking a function, in general nonlinear function, of the observed
values like $\varphi(X(t), t\in T)$ of $X(t)$ and $\varphi(X(c), C\in \mathrm{C})$ of random fields $X(C)$ .

In order to establish the analysis of those $\mathrm{f}\mathrm{l}\mathrm{u}\mathrm{l}\mathrm{c}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\mathrm{s}$ , we propose to take the innovo,

tion of $X(t)$ or that of $X(C)$ and express the original random functions as functionals
of the innovation., so that they are ready to be analyzed. Often, actually in many favor-
able cases, the innovation is taken to be a white noise. Thus, the white noise analysis
has become a basic tool for the investigation of stochastic processes and random fields.

With this innovation approach in mind, we aim at defining multiple Markov proper-
ties for some non Gaussian processes or fields and studying their characterization. This
notion is a generalization of the Markov $\mathrm{P}^{\mathrm{r}\mathrm{o}}\mathrm{p}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{i}\mathrm{e}\mathrm{S}$ established for Gaussian process,
although we need a new idea for the definition. There, we remind that as in the case
of a Gaussian process, the innovation will play a dominant role.

In what $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\backslash \mathrm{v}\mathrm{s}$ some background will be prepared, and see the significance of tak-
ing random fields colnpared to stochastic processes from the viewpoint of $\mathrm{i}\mathrm{n}\mathrm{f}\mathrm{o}\mathrm{l}\cdot \mathrm{l}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

theolv and the theory of dependency of random complex phenomena. Needless to say,
we always keep computability in mind.
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2Operations acting on processes and fields

Various kinds of operations on stochastic processes and randorn fields help us in the
investigation of the way of dependellcy of those random phenomena in question. in
particular multiple Markov properties.

Linear and nonlinear functions.

Assume that $X(t)’ \mathrm{s}$ are Gaussian in distribution. It is not so easy to analyse func-
tions $\varphi(X(t), t\in T)$ of those Gaussian variables directly. The most useful method is

$i$ as
was mentioned before, that we first form the innovation of $X(t)$ , which is always taken
to be white noise, of a given process discussed in this paper, then functions of $X(t)’ \mathrm{s}$

can be rephrased as ftulctionals of the innovation. Now, one is ready to analyze those
functionals. Note that the causality always holds in this case and that every operation
acting on those Gaussian $\mathrm{f}\iota \mathrm{m}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{S}$ is linear. In such a case, it is easy to check if the
quantity in question is computable.

It is well known that for a weakly stationary stochastic processes the Fonrier analysis
plays an important role (see the Wiener theory). In particular, the spectrum is one
of the characteristics of stationary stochastic processes. Also in this case, only linear
transformations of the process $X(t)$ or $X(C)$ are involved; namely it is easily checked
if the given quantity is computable or not.

Our aim is to discuss non-Gaussian case, so that we need a review of some known
results and further $\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{k}_{6}\circ\cdot \mathrm{r}\mathrm{o}\mathrm{l}\mathrm{m}\mathrm{d}$.

Transformations of time parameter

Another kind of operation for $X(t)$ and $X(C)$ is change of time parameter $t$ and of
space-time parameter $C$ , respectively.

(1) Time shift
The simplest and in fact most important example is the time shift $T_{t}$ : $sarrow s+t$ :

$\tau_{\mathrm{t}}X(S)=X(s+t)$ . (2.1)

To fix the idea let us take $X(t)$ to be a white noise which is now viewed as the time
derivative of a Brownian motion $B(t)$ ; the $\dot{B}(t)$ is a white noise. In this case we call
$\{T_{\mathrm{t}}, t\in R\}$ , after S. Kakutani, the $fl,ow$ of Brownian $mot?,on$.

This flow describes the evolution of the random pheneomena that are represented
as functionals of white noise. More preciaely, let $\varphi(\dot{B})$ be a white noise functional in
Hilbert space $(L^{2})$ which contains white noise functionals with finite variance, then
time evolution is expressed in $\mathrm{t}\mathrm{e}\mathrm{r}\iota \mathrm{n}\mathrm{S}$ of the untary operator $U_{t}$ as

$U_{t}\varphi(\dot{B})=\varphi(T_{t}\dot{B})$ (2.2)

We can therefore speak of the spectral multiplicity of the $\iota \mathrm{m}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{l}\cdot \mathrm{y}\circ\circ\cdot \mathrm{r}\mathrm{o}\iota 1\mathrm{P}\{U_{t}\}$ on
a subspace of $(L^{2})$ , the choice of which depends on the problem to be discussed. For
illstance, if the entire space $(L^{2})$ is concerned, the multiplicity is infinite, while the sub-
space spanned by linear functionals of white noise has rmit multiplicity. Computability
necessarily requires finite multiplicity.
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For the case of a stochastic process with higher dimensional parameter, say $R^{d}$

parameter, the notion of multiplicity can also be introduced by taking the course of
propagation to be the radial direction. The following assertion is almost obvious.

Let $\{X(a), a\in R^{d}\}$ be L\’evy’s Brownian motion in a sense that

1) it is Gaussian,

2) $X(a)-X(b)$ has mean $0$ and variance $|a-b|$ ,

3) $X(O)=0$ , where $O$ is the origin.

Proposition L\’evy’s Brownia,$n$ motion, has infinite $mult?,pl\dot{\gamma,}city$.

As a result, we claim that finitely many channels can not send the fnll information
contained in L\’evy’s Brownian motion.

If we wish to describe finer way of dependency, then multiple Markov properties in
a weak sense, defined like in the Gaussian case, can be defined in each cyclic subspace.

(2) The whiskers as time change operators

White noise analysis has an aspect of infinite dimensional harmonic analysis since
the white noise measure $\mu$ is invariant under the infinite dimensional rotation group.
It has significant one-parameter subgroups which come from one-parameter families of
diffeomorphism of the parameter space. They are called whiskers. The shift discussed
above is a good example of a whisker. We can say that the isotropic dilation, $\backslash \mathrm{v}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$ is
another whisker, has infinitely many cyclic subspaces, that is they have similar spectral
properties to the shift. The same is true for the special conformal transformation.

Such an observation is helpful when whiskers that come from the conformal tarnsfor-
mations acting on the parameter space are discussed in connection with the computabil-
ity. We emphasize the significance of the role of whiskers when we form the innovation
from the variation of random field, which leads us to define multiple Markov property
with the help of innovation.

(3) Random time parameter

The so-called subordination is an interesting operation for a stochastic process $X(t)$ .
The time parameter $t$ is replaced by an increasing additive process $Y(t)$ . The case where
$Y(t)$ is taken to be an increasing stable process with exponent a, with $0<\alpha<1$ , has
been discussed. (This topic was discussed in [3] from the viewpoint of the ilformation
theory.)

If we consider computability, we may discuss the case where $Y(t)$ is taken to be a
Poisson process, so that $X(t)$ is observed at random times that appear successively with
exponential holding time. If, in particular, $X(t)$ is taken to be a Brownian motion, we
can see the probability distribution of the subordinated process $X(Y(t))$ . Subordination
is an interesting topic, but $\backslash \mathrm{v}\mathrm{e}$ do not go into details since there is no direct connection
with Markov property, which is our main topic.

It is noted that the facts discussed in this section are quite different $\mathrm{f}1’ 01\eta$ those
discussed in Section 1 $\mathrm{f}\mathrm{r}\mathrm{o}\ln$ the viewpoint of computation.
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3 Information theoretical study

We now come to a random field $X(C)$ indexed by a manifold $C$ in $R^{d}$ , the paralne{er
space of white noise. Before we come to the study of information theoretical proper-
ties of $X(C)$ , we wish to emphasize the significant advantages of taking a field $X(C)$

instead of a process $X(t),$ $t\in R^{d}$ , as a mathematical model of random complex systems.
Namely,

A) $X(C)$ carries more information than $X(t)$ when the parameter moves.
We know that $X(t)$ for $d=1$ has usually unit multiplicity but $X(C)$ has infinite

multiplicity except degenerated cases. Further, we see from an intuitive observation
that $t$ is $0$-dimensional and runs through a finite dimensional space, while the dimension
of $C$ is at least one and moves in an infinite dimensional space C. It means that $X(C)$

expresses more complex random phenomena than $X(t)$ .

B) For $C$ we have complex ways of deformation. In some important examples $(\mathrm{e}.\mathrm{g}$ .
[3] $)$ the innovation of the field can be obtained by deformations of $C$ (including the
mappings from $C$ onto itself). As a result, various ways of dependence can be discussed,
in particular multiple Markov properties.

Let us have a quick review of the representation theory of a Gaussian process $X(t)$

and give a remark so that we extend the results to random fields which are either
Gaussian or non Gaussian expr.essed as a homogeneous chaos. A representation of
$X(t)$ in terms of a white noise $B(t)$ such that

$X(t)= \int_{0}^{\mathrm{t}}F(t, u)\dot{B}(u)du$ , (3.1)

is called $\sim cano\eta,icd$ if the conditional expectation $E[X(t)|X(u), u\leq s]$ with $s\leq t$ is
given by

$\int_{0}^{s}F(t,u)\dot{B}(u)du$ . (3.2)

In such a case, we can obtain the innovation $\dot{B}(t)$ by a causal and linear operator;
formally spealcing by the inverse of the integral operator $F$ . The idea behind such an
observation is that we define a stochastic process as a random function that gains a new
information (actually, expressed by the innovation) at each instant. The probabilistic
structure of a process is determined by the variation of the field involving innovation
and, of course, past values.

If $X(t)$ is a nonlinear $\mathrm{f}\iota \mathrm{m}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of white noise, then it is no more Gaussian and xve
can not say that innovation is obtained ill a similar manner, as is easily understood
(see 1 in the next section).

However, if a random field $X(C)$ formed by a homogeneous chaos in the form

$X(C)– \int_{(C)^{n}}F(C, u1, u2, \ldots, u_{n})$ : $x(u_{1})_{X}(u_{2})\ldots \mathcal{I}(u.n)$ : $du^{n}$ , (3.3)

where $(C)$ is the domain enclosed by $C$ .
Then the innovation can be obtained from $\delta X(C)$ by using nonlinear operations

(see [2]). There we have assumed that the kernel $F$ is the canonical kernel.
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In order to carry on the calculus, $\backslash \mathrm{v}\mathrm{e}$ have to assume that $C$ rums $\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{o}\mathrm{u}_{\mathrm{o}}\circ\cdot \mathrm{h}$ a certain
class of smooth ovaloids.

With this remark we are now able to define a generalization of multiple Markov
properties.

4 Multiple Markov properties for non-Gaussian
case

For a Gaussian case, the $N$-ple Markov property can be characterized by the canonical
kernel; namely it should be a Goursat kernel of order $N$ .

We $\mathrm{n}\mathrm{o}\backslash \mathrm{v}$ think of the non-Gaussian case which is restricted to be a $\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{o}_{\mathrm{o}}^{0}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{o}\mathrm{u}\mathrm{s}$

chaos.

1. Stochastic process $X(t)$

Suppose that $X(t)$ is not a Gaussian process, say $\mathrm{h}_{01\mathrm{n}\mathrm{o}\mathrm{g}\mathrm{o}\mathrm{u}}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{S}$ chaos ($.\mathrm{o}\mathrm{f}$ white
noise) of order greater than 1. Then it is impossible to obtain the innovation $B(t)$ from
the variation $\delta X(t)$ . For example, let

$X(t)= \int_{0}^{t}\int_{0}^{t}F(t, u_{1}, u_{2})$ : $x(u_{1})x(u_{2})$ : $du_{1}du_{2}$ (4.1)

be given. Then its variation is

$\delta X(t)=dX(t)=dt\int_{0}^{\mathrm{f}}\int_{0}^{\iota}\frac{\partial}{\partial t}F(t, u_{1}, u2)$ : $x(u1)x(u2)$ : $du_{1}du_{2}+2dtX(t) \int_{0}^{\mathrm{r}_{F}}(t, t, v2)_{X()du2}u_{2}$ .

Here we see that the second $\mathrm{t}\mathrm{e}\mathrm{r}\ln$ has a different order. but $\int^{t}\mathrm{o}F(t, t’.)_{X}u_{2}(u2)d.u2$ is
not a conditional expectation of $X(t-\vdash dt)$ . since it is orthogonal to $X(S),$ $s\leq t)$. hence
not a function of the $X(s)$ .

2. $\mathrm{R}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{o}\ln$ field $X(C)$

We now come to the case of random field which is not Gaussian but homogeneous
chaos. To fix the idea let us consider the case of quadratic chaos (take $n=2$ for $X(C)$
in the last section),

$X(C)= \int_{(C)}F(c_{\mathrm{i}}u1, u2)$ : $x(u_{1})_{X}(u_{2})$ : $du_{1}du_{2}$ . (4.2)

Assulne that $F$ is the canonical kernel. Note that canonical property can be defined
in the same manner to the case of Gaussian random field. Of course the uniqueness of
the canonical kernel is guaranteed.

From the result in the paper [2] we can obtain the innovation $\{x(s), s\in C\}$ from
$\delta X(C)$ and also the conditional expectation $E[X(c)|\mathrm{B}(C’)1$ , where $\mathrm{B}(C’)$ is the sigma-
field of events determined by $X(C”),$ $C\prime\prime<C’$ . Here $C”<C’$ means that $C”$ is inside
of $C’$ . There is an important fact; namely, the conditional expectation is a nonlinear
function of the $X(c^{;\prime})\backslash \backslash r\mathrm{i}\mathrm{t}\mathrm{h}C^{\prime;}<C’$ (note that no more Gaussian case). [ $\mathrm{t}$ is $\mathrm{t}1_{1\mathrm{e}\mathrm{l}}\cdot \mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}$

a nonlinear $\mathrm{f}\iota 1\mathrm{n}\mathrm{C}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ , in reality a quadratic function, of the $x(u),$ $u\in(C’)$ .
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Since the conditional expectation is the projection to the space spanned by the non
linear functions of $X(c”),$ $C”<C’$ . Hence, it is the projection to nonlinear funct ion
of $x(u),$ $u\in(C’)$ . Thus we have

$E[X(c)| \mathrm{B}_{C^{J}}.(X)]=\int_{(C)},F(C., u1, u2)$ : $x(v_{1})x(v_{2}):d_{U}’.1dv_{2}$ . (4.3)

The results obtained so far hold for a homogeneous chaos of any order.

T.$\mathrm{h}\mathrm{u}\mathrm{s}$ , multiple Markov properties for $X(C)$ of homogeneous chaos can be defined in
a similar lnanner to the case of Gaussian fields since conditional expectation is $\mathrm{f}_{011\mathrm{n}\mathrm{e}}\mathrm{d}$

by the innovation. To make sure, we give

Definition Let $X(C)$ be given by

$X(C)= \int_{(C)^{n}}F$( $C,$ $u_{1},$ $u2,$ $\ldots,$ un): $x(u1)X(u_{2})\cdots X(un)$ : $d_{U^{n}},’$. (4.4)

with a canonical kernel $F$ . For any choice of $C_{i^{\mathrm{S}}}$
’ such that $C\mathit{0}\leq C_{1}<\ldots<C_{/_{\mathit{1}}}\mathrm{v}<$

$C_{N+1}$ ,

1. $E[X(C_{?})|\mathrm{B}C_{0}(X)],$ $i=1,9$-, ..., $N$, are linearly independent and

2. $E[X(c_{i})|\mathrm{B}_{C\mathrm{o}}(X)],$ $i=1,2,$ $\ldots N+1$ are linearly dependent

then, $X(C)$ is said to be N-ple Mark.$ov$.

Theorem If a $ro,ndom$ fi.eld $X(C)$ of homogeneous chaos $?\cdot S$ N-ple Markov: $tJbe7|,$ $i,ts$

$canom,Ca\iota ke\Gamma n,e\iota$ is a Goursat kernel of order $N$.

Proof. For proof we only note that the conditional expectation is a nonlinear function
of the known values, unlike Gaussian case. For the rest of the proof we can follow the
method given in [4].

Corolary The predictor of an N-ple Markov random field of homogeneous $d\iota aoS$ is
computable. More precisely, the best predictor $\dot{\tau}s$ a linear combination of the $ro,nd,om$

$va\tau\dot{\mathrm{v}}ab\iota e$ obtained from the values of the past.

To close this paper, we note that the multiple Markov properties indicate not only
way of dependency, but also suggest compntability of the best predictor.
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