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Abstract

We consider two loci (or DNA sites) in which mutation occurs from the wild-type allele
$A_{1}$ (resp. $B_{1}$ ) to a mutant allele $A_{2}$ (resp. $B_{2}$ ) in the first (resp. second) locus. Gene
combinations or haplotypes with a single mutation, $A_{1}B_{2}$ or $A_{2}B_{1}$ , are deleterious. The
double mutant, however, does not have the harmful effect of the single mutations. This
model is a two-locus two-allele model with compensatory fitness interaction. For this
model with finite population size, the time until fixation of the double mutant, $A_{2}B_{2}$ ,
starting from the state in which the population consists exclusively of $A_{1}B_{1}$ , is investi-
gated. The average time until fixation and other aspects of the time until fixation are
compared. The effect of dominance in diploid population makes the average time until
fixation much shorter than the case of no dominance.

1. Introduction

A mutation may cause a structural change in the gene product, and is deleterious when the
change is harmful. A second mutation, however, may bring a change by which the structure
of the gene product is almost the same as that of the original molecule, and the protein may
be functional (Chelvanayagam et al. (1997), Lei et al. (2000), Stephan and Kirby (1993),
Wilson et al. (1992) $)$

The evolutionary model discussed here is one in which the first mutation is deleterious
and the second mutation compensates for the deleterious effect of the first mutation. Under
continued mutation pressure, the fixation of the double mutant is certain. If it takes much
time until fixation of the double mutant, however, molecular evolution by compensatory
fitness interaction would not be common. In other words, the time until fixation is not long
if this kind of evolution is an important one.

Kimura $(1985\mathrm{a}, \mathrm{b})$ proposed a population genetics model called the compensatory neutral
mutation model. This is a two-locus two-allele model in which a single mutation at either
one of the two loci is deleterious but mutations at both loci confer the same fitness as the
wild type. This model incorporates compensatory fitness interaction. Under the stochastic
effect of random genetic drift, the time until fixation is a random variable. The main result of
Kimura $(1985\mathrm{a}, \mathrm{b})$ is that the average time until fixation of the double mutant starting from
a population consisting exclusively of the wild type increases quickly as the deleterious effect
of single mutants increases when the linkage of two loci is weak. In other words, molecular
evolution by compensatory fitness interaction is difficult when two loci are loosely linked. To
have this conclusion, a haploid model or a diploid model with no dominance is assumed (see

also Iizuka and Takefu (1996) and Stephan (1996) $)$ .
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If the distribution of the time until fixation of $A_{2}B_{2}$ has a tail toward the infinity, the
average time until fixation may not be an appropriate quantity to analyze this model. In other
words, even if the average time until fixation is large, molecular evolution by compensatory
fitness interaction may be possible, for example, when 10 percent point of the distribution
function of the time until fixation is not large. For this reason, it is interesting to see whether
the conclusion on the possibility of molecular evolution by compensatory fitness interaction
is altered by using other aspects of fixation time than the average time until fixation or not.
For this reason, we will introduce new quantities associated to the distribution of time until
fixation in this paper.

Further, the deleterious effects of single mutant may be weaken by dominance effects of
selection for diploid organisms. Then the effects of dominance for diploid organisms seem
to enlarge the possibility of molecular evolution by compensatory fitness interaction. In this
paper, we consider a diploid model with dominance and show that the conclusion obtained by
Kimura $(1985\mathrm{a}, \mathrm{b})$ that molecular evolution by compensatory fitness interaction is difficult
when two loci are loosely linked is not applicable to the diploid model with dominance.

2. Model

We consider the following Wright-Fisher model with two loci and two alleles for a randomly
mating, diploid population with the effective size $N$ . For the first (resp. second) locus, we
denote by $A_{1}$ (resp. $B_{1}$ ) the wild-type allele that mutates to allele $A_{2}(B_{2})$ . We use locus
even for DNA site in a gene in this paper.

Let $X_{ij}(n)$ be the relative frequency of $A_{i}B_{j}$ haplotype $(i, j=1,2)$ in generation $n$

$(n=0,1,2,\ldots)$ . The genetic composition of the population $X(n)=(X12(n), x_{2}1(n),$ $X22(n))$

changes deterministically by mutation, recombination and selection. Further, $X(n)$ changes
stochastically by random genetic drift. 1.

The relative frequency $Y_{ij}=Y_{ij}(n)$ of $A_{i}A_{j}$ after mutation is given by

$Y_{11}=(1-2u)X11(n)$

$Y_{12}=(1-u)X_{12}(n)+ux_{11}(n)$

$Y_{21}=(1-u)X_{21}(n)+ux_{11}(n)$

$Y_{22}=X_{22}(n)+ux_{12}(n)+uX_{21}(n)$ ,

where $u$ is the mutation rate per generation.
By recombination, $Y_{ij}(n)$ changes to $Z_{ij}=Z_{ij}(n)$ as

$Z_{ij}=Y_{ij}-(-1)^{i}+jDr$ ,

where
$D=\mathrm{Y}_{11}Y22-\mathrm{Y}12\mathrm{Y}21$

and $r$ is the recombination fraction between the loci per generation.
By selection, $Z_{ij}(n)$ changes to $Q_{ij}=Q_{ij}(n)$ as follows. Let

$p_{ij}^{kl}=Zijzk\iota$
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be the relative frequency of $(A_{i}B_{j,\mathrm{t}}A_{k}B)$ individuals. Note that

$p_{ij}^{klij}=p_{kl}$

and

$i,j,k, \iota\sum_{=1}^{2}pij1k\iota_{=}$ .

$\tilde{\mathrm{L}}$et $w_{ij}^{kl}$ be the relative fitness of $(A_{i}B_{j}, A_{k}B_{l})$ individuals relative to $(A_{1}B_{1}, A_{1}B_{1})$ individ-
uals. By definition,

$w_{ij}^{k\iota}=wk\iota ij,$ $w_{11}^{11}=1$

and by compensatory neutral fitness interaction, we assume that

$0<w_{i}k\mathrm{t}j\leq 1,$ $w_{22}^{22}=1$ .

We will consider four cases of assigning the value of $w_{ij}^{kl}$ later in this section. By selection,
$p_{ij}^{kl}$ changes to

$q_{ij}^{kl}= \frac{w_{ijij}^{k\iota_{p}}kl}{\overline{W}}$ ,

where

$\overline{W}=\sum_{ki,,j,,\iota=1}w_{ij}^{kl}p_{i}^{k\mathrm{t}}2j$

is the mean of relative fitness of the population and note that

$q_{ij\iota}^{k\mathrm{t}ij}=qk$ .

Then the relative frequency of $A_{i}B_{j}$ haplotype after selection is

$Q_{ij}= \sum_{=k,,\iota 1}^{2}q^{kl}ij$ .

As concrete examples of compensatory fitness interaction, we consider the following four
selection schemes.

Selection Scheme [I]: No dominance and tight coupling

In the case of tight coupling, each $(A_{i}B_{j}, A_{k}B\downarrow)$ individual produces two kinds of molecules
coded by $A_{i}B_{j}$ and $A_{k}B_{l}$ with the same proportion. The relative fitness of $A_{i}B_{j}$ and $A_{k}B_{l}$

are $1-s_{ij}$ and $1-s_{kl}$ , respectively. Then the relative fitness of the $(A_{i}B_{j}, AkB\downarrow)$ individual
is

$w_{ij}^{k\iota_{=\frac{1-s_{ij}}{2}+\frac{1-s_{kl}}{2}}}$ ,

where
$s_{11}=s_{22}=0,$ $s_{12}=s21=s$ .
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Selection Scheme [II]: No dominance and free coupling

In the case of free coupling, each $(A_{i}B_{j,k}AB\iota)$ individual produces four kinds of molecules
coded by $A_{i}B_{j,kj}A_{i}Bl,$$AB$ and $A_{k}B_{l}$ with the same proportion. The relative fitness of $A_{i}B_{j}$ ,
$A_{i}B_{l},$ $A_{k}B_{j}$ and $A_{k}B_{l}$ are $1-s_{ij},$ $1-s_{il},$ $1-s_{kj}$ and $1-skl,$ resp,e$\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{V}.\mathrm{e}\mathrm{l}\mathrm{y}$ . Then the r.elativefitness of the $(A_{i}B_{j}, A_{k}B_{l})$ individual is

$w_{ij}^{kl}= \frac{1-s_{ij}}{4}+\frac{1-s_{il}}{4}+\frac{1-s_{kj}}{4}+\frac{1-s_{kl}}{4}$,

where
$s_{11}=s_{22}=0$ , $s_{12}=s_{21}=S$ .

Selection Scheme [III]: Dominance and tight coupling

In this case, each $(A_{i}B_{j,kl}AB)$ individual produces the molecules coded by $A_{i}B_{j}$ and $A_{k}B_{l}$

with the same proportion. By dominance effect, the relative fitness of an individual with at
least $A_{1}B_{1}$ or $A_{2}B_{2}$ is 1. Then the relative fitness of $(A_{i}B_{j,k}AB\iota)$ individual is

$w_{11}^{kl}=w_{22}=w_{i}k\mathrm{t}1j1=wi22j=1,$ $w_{ij}^{kl}=1-s$ ,

otherwise.

Selection Scheme [IV]: Dominance and free coupling

In this case, each $(A_{i}B_{j}, A_{kl}B)$ individual produces the molecules coded by $A_{i}B_{j,\iota,kj}A_{i}BAB$

and $A_{k}B_{l}$ with the same proportion. By dominance effect, the relative fitness of an individual
with $i=j$ or $i=l$ or $k=j$ or $k=l$ is 1. Then the relative fitness of the relative fitness of
$(A_{i}B_{j}, A_{k}B_{\mathrm{t}})$ individual is

$w_{12}^{12}=w^{2}2^{1}1=1-s,$ $w_{ij}^{k}=1l$ ,

otherwise.

For the case that two loci is closely linked, tight coupling is realistic. On the other hand, free
coupling may be realistic when these loci code two subunits of a molecule that combine to
form the total molecule. Note that selection scheme [I] is the compensatory neutral mutation
model of haploid population that was investigated by Kimura $(1985\mathrm{a}, \mathrm{b})$ if $2N$ in our paper
is replaced by $N$ .

By random sampling drift, $Q_{ij}(n)$ changes to $X_{ij}(n+1)$ stochastically. The transition
probability law of $X(n+1)$ conditional on $(Q_{12}(n), Q_{21}(n),$ $Q_{2}2(n))$ is given by

$P(X_{12}(n+1)= \frac{m_{12}}{2N}, X_{21}(n+1)=\frac{m_{21}}{2N},$ $X_{22}(n+1)= \frac{m_{22}}{2N}|Q12(n),$ $Q21(n),$ $Q22(n))$

$= \frac{m_{11}!m_{12}!m_{2}1!m22!}{(2N)!}Q_{11}^{m_{11}}Q_{12}m12Q_{2}m121Q_{22}^{m_{22}}$ ,

where
$m_{11}+m_{1}2+m_{21}+m22=2N$
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and
$Q_{1}1=1-Q12-Q21-Q_{2}2$ .

3. Diffusion Model

Let $x(t)=(x_{12}(t), x21(t),$ $x22(t)),$ $0\leq t<\infty$ be the diffusion model corresponding to the
Wright-Fisher model $X(n),$ $n=0,1,2,$ $..$ . The continuous time stochastic process $x(t),$ $t\geq 0$

is a three dimensional diffusion process on $\{(x_{12}, X21, X_{22})\in R^{3}|x_{ij}\geq 0, x_{12}+x_{21}+x_{22}\leq 1\}$

with the infinitesimal generator

$L= \frac{1}{2}\sum_{)(i,j),(k,l)=(1,2),(2,1),(2,2}\frac{x_{ij}(\delta ik\delta_{j}\downarrow-X_{kl})}{2N}\frac{\partial^{2}}{\partial x_{ijl}\partial_{X_{k}}}$

$+ \sum_{)(i,j)=(1,2),(2,1),(2,2}\{fij(x_{12}, X21, x_{2}2)$

$-(-1)^{i+j}r(X11^{X-}22x12X_{21})+x_{ij(} \sum_{k,\iota=}21\tilde{w}^{k}ijx_{k}\iota\downarrow-\tilde{W})\}\frac{\partial}{\partial x_{ij}}$ ,

where
$f_{12}(x_{11}, X_{12}, X_{21})=u(_{X_{1}-}1X_{12})$

$f21(x_{11}, X12, X21)=u(x_{11}-x_{21})$

$f_{22}(x_{1}1, X_{12}, X_{21})=u(X12+x_{21})$

$kl$

$\tilde{w}_{ij}^{k\iota_{=}}s\mathrm{l}\mathrm{i}\mathrm{m}Sarrow 0\frac{w_{ij}}{s}$

$\tilde{W}=s\lim_{sarrow 0}\frac{\overline{W}}{s}$

and $x_{11}=1-x_{12}-x_{21}-X_{22}$ . Note that $\tilde{w}_{ij}^{kl}=w_{ij}^{kl}$ for selection scheme [I] $\sim[\mathrm{I}\mathrm{V}]$ . For
selection scheme $\mathrm{I}\sim \mathrm{I}\mathrm{V}$ in Section 4, however, $\tilde{w}_{ij}^{kl}\neq w_{ij}^{kl}$ . Let

$T(x_{12,21,22}xX)= \inf\{t|X_{22}(t)=1, (x_{12}(\mathrm{o}), X21(0), X22(0))=(x_{12}, X21, X_{22})\}$

be the time until fixation of $A_{2}B_{2}$ conditional on $(x_{12}(0), x_{21}(0),$ $X_{22}(\mathrm{o}))=(X_{1221,22}, XX)$ .
The average time until fixation

$\overline{T}(x_{12,2}x1, X_{22})=E[T(x12, x21, X22)]$

satisfies
$L\overline{T}(x_{12}, x21, X22)+1=0$ , (1)

with $\overline{T}(0,0,1)=0$ and $\overline{T}(0,0,0)$ being finite.
Kimura $(1985\mathrm{a}, \mathrm{b})$ investigated the case of selection scheme [I] by computer simulation

of the Wright-Fisher model and by an approximate method for the diffusion model. Stephan
(1996) analyzed some extension of selection scheme [I] by an approximate method proposed
by Kimura $(1985\mathrm{a}, \mathrm{b})$ . Iizuka and Takefu (1996) considered some extension of selection
scheme [I] by solving the partial differential equation (1) numerically.
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$\bullet$

4. Results and Discussion

It is difficult to solve the partial differential equation (1) analytically. Further, we are inter-
ested in not only the average time until fixation $\overline{T}$ but also the distribution of the time until
fixation as mentioned in Introduction. It is also difficult to obtain the properties of distribu-
tion function by analytical method. For these reasons, we will investigate the compensatory
neutral mutation model with dominance by computer simulations. Computer simulations are
performed as follows. For the initial condition that $(X_{12}(0), x_{2}1(0),$ $x_{2}2(\mathrm{o}))=(0,0, \mathrm{o})$ , the
genetic composition of the population is changed deterministically by mutation, recombina-
tion and selection using formulas in Section 2. Then random sampling drift is performed using
the rejection method (Press et al. (1992)), by which we obtain $(X12(1), x_{2}1(1),$ $X22(1))$ . We
iterate this operation until $X_{22}(\tau)=1$ . For this sample path, the time until fixation $T(\mathrm{O}, 0,0)$

is $\tau$ . We repeat independently this procedure $m$ times. We denote by $\tau_{i}$ the time until fixa-
tion in the i-th simulation. We can obtain the distribution of $T(\mathrm{O}, 0,0)$ by $\{\tau_{i}\}_{i=1},2,\ldots,m$ . and
the average time of fixation can be obtained by

$\overline{T}=\overline{T}(0,0,0)=\frac{1}{m}\sum_{i=1}^{m}\mathcal{T}_{i}$

The selection schemes described in Section 2 are refered to as additive model. In our
simulations, we use the alternative model of multiplicative model defined in the following.

Selection Scheme I: No dominance and tight coupling

The relative fitness of the $(A_{i}B_{jkl}, AB)$ individual is

$w_{ij}^{kl}=(1-S_{ij})(1-S_{kl})$ ,

where
$s_{11}=s_{22}=0,$ $s_{12}=s_{21}=s$ .

Selection Scheme II: No dominance and free coupling

The relative fitness of the $(A_{i}B_{j,l}A_{k}B)$ individual is

$w_{ij}^{k\iota_{=\sqrt{(1-s_{ij})(1-Si\downarrow)(1-skj)(1-S_{k\downarrow)}}}}$ ,

where
$s_{11}=s_{22}=0,$ $s_{12}=s_{21}=s$ .

Selection Scheme III: Dominance and tight coupling

The relative fitness of $(A_{i}B_{j}, AkB_{\iota})$ individual is

$w_{11}^{k\downarrow}=w_{2}^{k}2\iota 11=wij=wij=122,$ $w_{ij}^{k\iota_{=}2}(1-S)$ ,
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otherwise.

Selection S.cheme $\mathrm{I}\mathrm{V}$ : Dominance and free coupling

The relative fitness of the relative fitness of $(A_{i}B_{j}, A_{k\iota}B)$ individual is

$w_{12}^{12}=w^{21}21=(1-s)^{2},$ $w_{ij}^{k}=1l$ ,

otherwise.

The additive model and the multiplicative model for each selection scheme are almost the
same if the selection parameter $s(0<s<1)$ is small and the parameter $s$ in the additive
model is replaced by $\frac{s}{2}$ in the multiplicative model.

We use $N=50,2Nu=1$ and $m=10000$ in our simulations. The distribution function
of the time until fixation $T=T(\mathrm{O}, 0,0)$ for $\dot{\mathrm{s}}$election scheme I is presented in Fig.1. In this
figure, we use the window of width 50 such as $\tau_{i}$ with $50n+1\leq\tau_{i}<50(n+1)$ being plotted
on the point $50n+25(n=0,1,2, \ldots)$ . The scaled recombination haction is $2Nr=50$ (loose
linkage). Four cases of the scaled selection parameter ($2Ns=0,5,10$ and 15) are given in
this figure. Fig.1 shows that the distribution has the tail toward the infinity.

Figure 1
Freauencv $\mathrm{X}10000$

$\mathrm{T}$

Distribution of $\mathrm{T}$ for scheme 1 $(2\mathrm{N}\mathrm{u}=1,2\mathrm{N}\mathrm{r}=50)$

Mean (the average time until fixation), median, 10 percent point and 90 percent point
of the distribution are shown in Fig.2 for the case of selection scheme I with $2Ns=10$ and
$2Nr=50$. We use again the window of width 50 in this figure. In this case, $T=134$ for
10 percent point, $T=317$ for median, $T=$ 405.8 for mean and $T=792$ for 90 percent
point. The ratio $R$ of 10 percent point to mean is 0.330. The ratio is decreases as $2Ns$

increases. For example, $R=$ 0.103 for $2Ns=24$. The absolute value of 10 percent point,
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however, increases as $2Ns$ increases. Therefore, using 10 percent point of the distribution
may not change the conclusion on the possibility of molecular evolution by compensatory
fitness interaction obtained by using the average time until fixation for large $2Ns$ .

Frequency $\mathrm{x}$ 10000 Fioure 2

$\mathrm{T}$

Mean, median, 10 % and 90 % of the distributions
for scheme 1 $(2\mathrm{N}\mathrm{u}=1,2\mathrm{N}\mathrm{r}=50,2\mathrm{N}\mathrm{S}=10)$

The average time until fixation $\overline{T}$ as a function of the scaled selection parameter $2Ns$ is
given in Fig.3 for selection scheme $\mathrm{I}\sim \mathrm{I}\mathrm{V}$ with $2Nr=0$ and $2Nr=50$.

$\log_{\mathrm{l}0}\mathrm{T}-$ Fioure 3

$2\mathrm{N}\mathrm{s}$

Effects of Selection Scheme
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For selection scheme I, $\overline{T}$ increases quickly as $2Ns$ increases in the case of loose linkage
$(2Nr=50)$ . This result is consistent with that of Kimura $(1985\mathrm{a}, \mathrm{b})$ (see also Iizuka and
Takefu (1996) and Stephan (1996) $)$ . For selection scheme II with loose linkage $(2Ns=50)$ ,
this property is more enhanced. Note that $\overline{T}$ increase quickly as $2Ns$ increases even in the
case of no recombination $(2Nr=0)$ for selection scheme II. The reason of the enhancement
may be that the effect of free coupling is similar to that of recombination in this case.

The effects of dominance are remarkable both for tight coupling and free coupling. For
free coupling (selection scheme IV), $\overline{T}$ is slowly increasing function of $2Ns$ for $2Nr\cdot=0$ and
$2Nr=50$ contrast to the case of hee coupling without dominance (selection scheme II). For
tight coupling with dominance (selection scheme III), $\overline{T}$ is much shorter than the case of tight
coupling without dominance. This tendency is much remarkabl.e for the case of loose linkage
$(2Nr=50)$ .

By these results, molecular evolution by compensatory fitness interaction is difficult when
two genes (DNA sites) are far distant (loosely linked) if there is no dominance. By introducing
dominance effects in selection, molecular evolution by compensatory fitness interaction may
be possible even if two genes (DNA sites) are far distant (loosely linked) and the conclusion
obtained by Kimura $(1985\mathrm{a}, \mathrm{b})$ does not hold for the compensatory neutral mutation model
with dominance.

Finally, we note that the minimum of $\overline{T}$ is attained by some positive $2Ns$ . This phenom-
ena seems to be inconsistent with our intuitio.n. The $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}-$

.
of this phenomena is given

by Iizuka and Takefu (1996).
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