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Abstract

A method is proposed to prepare an effective pure state corresponding to the pure
state $|0\rangle$ $|0\rangle$ $\cdots|0\rangle$ for any number of spins on a nuclear magnetic resonance quantum
computer, where $|0\rangle$ stands for the spin-up state of a nuclear spin. The method is
based on the spatial labeling proposed by Cory et al.

1 Introduction

Quantum computers [1] have been shown to be able to solve some problems
exponentially faster than classical computers [2], which seems to have sparked
enormous interest in this field of research. A quantum computer uses a set of
two-state systems as quantum bits (qubits) and executes a computation by
a sequence of controlled unitary transformations on them. The desired useful
information (output) is extracted by measuring the resulting final state of the
qubits. Of course, the task of practically realizing even a prototype quantum
computer poses a daunting challenge primarily because of the decoherence of
the quantum system used. Despite the difficulty, simple quantum logic gates
have been tested successfully for the first time using cold trapped ions [3].

Recently several groups proposed the use of nuclear magnetic reso-
nance (NMR) for the implementation of a quantum computer and demon-
strated their usefulness [4-24]. Nuclear spin systems are rather well isolated
from the environment and have longer decoherence (relaxation) times. Several
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simple quantum algorithms have been implemented [11-14] by using room-
temperature NMR with only a small number of qubits. NMR uses of the
order of Avogadro’s number of spin systems (molecules), where the energy
difference between the spin-up $(|0\rangle)$ and the spin-down $(|1\rangle)$ states is very
small compared to the thermal energy except at extremely low temperatures
[25]. For this reason, the ensemble of the spin systems used for an NMR quan-
tum computer is not in a pure state but in a mixed state. However, as with
any computation on modern (classical) computers, quantum computation has
to start from a pure input state of the form, e.g., $|00\cdots 0\rangle$ $=|0\rangle$ $|0\rangle$ $\cdots|0\rangle$ .
(Exceptions are for the cases of only one qubit [26] and of the Deutsch-Jozsa
problem [15].) Several methods [4-9] have been proposed to prepare states that
are transformed identically (at least on NMR) to the pure states. Such states
are termed “effective pure states” or “pseudopure states,” and the methods
include spatial labeling $[4,5]$ , temporal labeling [6], and logical labeling $[7,8]$ .
Although a general algorithm to prepare an effective pure state has been de-
scribed for the latter two methods, this does not seem to be the case with
spatial labeling.

We propose here a method to prepare, by spatial labeling, an effective
pure state corresponding to the pure state $|00\cdots 0\rangle$ (which will henceforth
be called simply “an effective pure state $|00\cdots 0\rangle$ ”) on an NMR quantum
computer with any number of qubits. Once the effective pure state $|00\cdots 0\rangle$

is prepared, it is easy, at least in principle, to produce various input states
including entangled states [4-24].

2 Basic operations

Let us consider an ensemble of linear $n$-spin molecules placed in a static mag-
netic field along the $z$ axis, and assume that each spin is coupled only to its
neighboring spins. (Details of the system will be described in the following
section.) The $i\mathrm{t}\mathrm{h}$ spin will be denoted as $I^{i}$ . The method presented here con-
sists essentially of the following two operations. The first is the operation that
transforms the term $I_{z}^{i}$ in the density matrix into the form $I_{z}^{i}[ \frac{1}{2}(1+2I_{z}^{i+1})]$ .
Assume that we are given the density operator described as

$\rho=I_{z}^{i}$ . (1)

Application of a $\pi/4$ pulse along the $x$ axis of the rotating frame of reference
on the $i\mathrm{t}\mathrm{h}$ spin, denoted as $(\pi/4)_{x}(i)$ , gives

$\rho=\frac{1}{\sqrt{2}}(I_{zy}^{ii}+I)$ . (2)
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By evolving the system solely under the influence of the spin-spin coupling
$J_{i,i+1}$ between spin $I^{i}$ and its nearest-neighbor spin $I^{i+1}$ for a time period of
$t=1/(2J_{i,i1}+)$ (this operation will henceforth be denoted as $1/2J_{i,i+1}$ ), we
have

$\rho=\frac{1}{\sqrt{2}}(I_{z}^{i}-2I_{x}^{i}I^{i+1}z)$ . (3)

Then, we apply a $(\pi/4)_{-y}(i)$ pulse to generate

$\rho=\frac{1}{2}[I_{z}^{i}+I_{x}^{i}-2(I^{i}-xI_{z}i)I_{z}i+1]$ . (4)

If we finally apply the pulsed field gradient along the $z$ axis $G_{z}$ to annihilate
all transverse magnetizations, we get the state described as

$\rho=I_{z}^{i}[\frac{1}{2}(1+2I_{z}i+1)]$ (5)

Thus, the sequence of operations

$( \frac{\pi}{4})_{x}(i)-1/2J_{i,i+1}-(\frac{\pi}{4})_{-y}(i)-G_{z}$ (6)

is equivalent to multiplying $I_{z}^{i}$ by the bracketed factor of Eq. (5) that involves
the nearest-neighbor spin $I^{i+1}$ . The procedure represented by Eq. (6) can be
applied, of course, only between spin-spin coupled (nearest) neighbors.

The second operation essential to the present method is the SWAP (or
EXCHANGE) operation $[27,28]$ which exchanges the states of the two qubits
in question. The necessary condition for the SWAP operation to work is that
the two spins to be swapped are spin-spin coupled, which is clear from the fact
that the SWAP operation is equivalent to three consecutive controlled-NOT
operations. For example, if we denote the controlled-NOT operation with spin
$I$ as the control and spin $S$ as the target by CNOT$(I, S)$ , then

SWAP $(I, s)=\mathrm{C}\mathrm{N}\mathrm{O}\mathrm{T}(I, S)\mathrm{C}\mathrm{N}\mathrm{o}\mathrm{T}(S, I)\mathrm{c}\mathrm{N}\mathrm{O}\mathrm{T}(I, S)$ . (7)

The essential ingredient of CNOT$(I, S)$ and CNOT$(s, I)$ is, in turn, to evolve
the spin system solely under the influence of the spin-spin coupling $J_{IS}$ , an
operation $1/2J_{IS}$ that is similar to that denoted as $1/2J_{i,i+1}$ in Eq. (6). An
exact operator form of the SWAP operation is $[29,30]$ , apart from an irrelevant
overall phase factor,
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SWAP(I, S) $=e^{i\pi I_{z}siIs}ze\pi yye^{i\pi I_{x}}s_{x}$ , (8)

where the order of the three factors of the right-hand side is immaterial as is
evident from the commutation relation

$[I_{k}S_{k,\iota}Is_{l}]=0$ ( $k,$ $l=x,$ $y$ , or $z$). (9)

We note that by combining the two operations described above we can
create and multiply by factors that are similar to those in Eq. (5) but contain
remote spins $I^{j}$ , where $i+1<j\leq n$ . For example, if we wish to create
the factor $[ \frac{1}{2}(1+2I_{z}^{i+2})]$ from the magnetization $I_{z}^{i}$ , we first bring $I_{z}^{i}$ to the
position of $I^{i+1}$ which neighbors $I^{i+2}$ by a SWAP operation, then create the
desired factor by a process similar to that of Eq. (6), and then bring back to
their original positions by a second SWAP. Thus, if we have the state given
by Eq. (5), we get the following:

$\rho=I_{z}^{i}[\frac{1}{2}(1+2I_{z}i+1)]$ ,

$\mathrm{S}\mathrm{W}\mathrm{A}\mathrm{p}(IiIi+1)arrow’\rho=I_{z}^{i+1}[\frac{1}{2}(1+2I_{z}^{i})]$ ,

the sequence of Eq. $(6)arrow$with $i$ increased by 1

$\rho=I_{z}^{i+1}[\frac{1}{2}(1+2I_{z}^{i+2})][\frac{1}{2}(1+2I_{z}^{i})]$ ,

$\mathrm{s}\mathrm{w}\mathrm{A}\mathrm{P}(-^{I^{i},I})i+1\rho=I_{z}^{i}[\frac{1}{2}(1+2I_{z}^{i+2})][\frac{1}{2}(1+2I_{z}^{i+1})]$ (10)

Therefore, it will be convenient to incorporate the two operations into one
procedure $F(i, j)$ , which is defined as the operation to create the term $I_{z}^{i}[ \frac{1}{2}(1+$

$2I_{z}^{j})]$ from $I_{z}^{i}$ for any spin pair of $I^{i}$ and $I^{j}$ . In this notation, the procedure of
Eq. (6) is simply $F(i, i+1)$ , and the whole process in Eq. (10) is $F(i, i+2)$ .
To execute $F(i, j)$ , one applies the SWAP operation $(j-i-1)$ times, then
applies the operation of Eq. (6) with $i$ replaced by $(j-1)$ , and finally applies
the SWAP operation $(j-i-1)$ times again:

$(\mathrm{S}\mathrm{W}\mathrm{A}\mathrm{P})^{j}-i-1-$ [ $\mathrm{E}\mathrm{q}$ . (6) with $i$ replaced by $(j-1)$ ] $-(\mathrm{S}\mathrm{W}\mathrm{A}\mathrm{p})j-i-1$ (11)

3 Preparation of effective pure states

The system we have in mind is an ensemble of the order of Avogadro’s number
of identical $n$-spin molecules in a liquid state, placed in an external static
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magnetic field along the $z$ axis and at room temperature. To simplify the
discussion, we assume, for now, a linear chain of spins as the spin system
that comprises a quantum computer and nonzero spin-spin couplings only
between nearest neighbors (no long-range spin-spin couplings). All the spins
are assumed to have different chemical shifts (Larmor precession frequencies
in a static magnetic field), enabling us to address each spin individually. Each
spin (except the terminal ones) has to be coupled at least to two neighboring
spins in the chain. Otherwise the molecule cannot function as a universal
quantum computer, being unable to perform the controlled-NOT operation
that is requisite to a universal quantum computer [28]. For the moment, we
also assume that the system is homonuclear in order to avoid cluttering the
notation. It would be understood that these assumptions are not unrealistic
if the number of qubits is moderate.

In the high temperature limit, the density operator for our ensemble of
the linear $n$-spin systems at thermal equilibrium in an external static magnetic
field may be written concisely by [25]

$\rho=\sum_{i=1}^{n}I_{z}^{i}$ , (12)

where we omitted the proportionality constants and NMR-irrelevant, unitarily
invariant constants. The density matrix in Eq. (12) corresponds to the traceless
part of the density matrix of our ensemble and is sometimes termed as the
deviation density matrix [7]. (All the density matrices used in this work refer
to deviation density matrices.) The preparation starts by transforming the
thermal equilibrium state in Eq. (12) into

$\rho=\sum_{i=1}^{n}(\frac{1}{2})^{i-1}I_{z}^{i}$ . (13)

This is easily accomplished by tipping each magnetization $I_{z}^{i}$ by an angle $\theta_{i}$ ,
where $\cos\theta_{i}=(\frac{1}{2})^{i-1}$ , and then applying a field-gradient $G_{z}$ . Incidentally, in
a heteronuclear case, a similar procedure will be used in realizing this type of
density operator from the density operator at thermal equilibrium, which is
proportional to

$\rho=\sum_{i=1}\omega In0zii$ , (14)

where $\omega_{0}^{i}$ is the resonance frequency of the $i\mathrm{t}\mathrm{h}$ spin [25].

Now, apply first the procedure $F(n-1, n)$ to spin $I^{n-1}$ of Eq. (13) to
get
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$\rho=\sum_{=i1}^{n-2}(\frac{1}{2})^{i-1}I_{z}^{i}+(\frac{1}{2})^{n}[(1+2I_{z}^{n-1})(1+2I_{z}^{n})-1]$ . (15)

Next apply $F(n-2, n-1)$ to spin $I^{n-2}$ to obtain

$\rho=\sum_{i=1}^{3}(\frac{1}{2})^{i-}I^{i}+n-1z(\frac{1}{2})^{n-3}I_{z}^{n-2}[\frac{1}{2}(1+2I^{n-}1)z]$

$+( \frac{1}{2})^{n}[(1+2I_{z}^{n-1})(1+2I_{z}^{n})-1]$ , (16)

and then $F(n-2, n)$ to obtain

$\rho=\sum_{\backslash }^{n-3}(\frac{1}{2})^{i-}I^{i}+i=11z(\frac{1}{2})^{n-3}I^{n-}2.[z\frac{1}{2}(1+2In-1)z][\frac{1}{2}(1+2\mathrm{s}I_{z}^{n})]$

$+( \frac{1}{2})^{n}[(1+2I_{z}^{n-1})(1+2I_{z}^{n})-1]$

. .

$= \sum_{=i1}^{n-3}(\frac{1}{2})^{i-1}I_{z}^{i}+(\frac{1}{2})^{n}[(1+2I_{z}^{n-2})(1+2I_{z}^{n-1})(1+2I_{z}^{n})-1]$ . (17)

For the $k\mathrm{t}\mathrm{h}$ spin $I^{k}$ , we apply a sequence of $(n-k)$ procedures, $F(k, k+1)$ ,
$F(k, k+2),$

$\ldots,$ $F(k, n-1)$ , and $F(k, n)$ , as follows:

$\rho=\sum_{i=1}^{k-1}(\frac{1}{2})^{i-}I^{i}+1z(\frac{1}{2})^{k-1}I_{z}^{k}$

$+( \frac{1}{2})^{n}[(1+2I_{z}^{k+1})(1+2I_{z}^{k+2})\cdot\cdot . (1+2I_{z}^{n})-1]$ ,

$F(k, k+arrow 1)$ $F(k, k+arrow 2)$ . .. $F(k, n)arrow$

$\rho=\sum_{i=1}^{k-1}(\frac{1}{2})^{i-1}I_{z}^{i}$

$+( \frac{1}{2})^{k-1}I_{z}^{k}[\frac{1}{2}(1+2I_{z}^{k+1})][\frac{1}{2}(1+2I_{z}^{k+2})]\cdots[\frac{1}{2}(1+2I_{z}^{n})]$

$+( \frac{1}{2})^{n}[(1+2I_{z}^{k+1})(1+2I_{z}^{k+2})\cdots(1+2I_{z}^{n})-1]$

$= \sum_{i=1}^{k-1}(\frac{1}{2})^{i-1}I_{z}^{i}$

$+( \frac{1}{2})^{n}[(1+2I_{z}^{k})(1+2I_{z}^{k+1})\cdots(1+2I_{z}^{n})-1]$ . (18)

Application of similar procedures will finally yield
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$\rho=(\frac{1}{2})^{n}[_{i=1}\prod^{n}(1+2I^{i})-z1]$ , (19)

which is exactly the target state we want to prepare, i.e., the effective pure
state $|00\cdots 0\rangle$ expressed in the deviation density matrix.

4 Discussion

Although we do not claim the present method to to be optimal for preparing an
effective pure state $|00\cdots 0\rangle$ , it should be worthwhile to estimate how difficult
it is to carry it out. A difficulty is concerned with the preparation of the state
given by Eq. (13) from the state in Eq. (12). We have to apply radiofrequency
pulses for all spins, the pulse angle for the $i\mathrm{t}\mathrm{h}$ spin being $\theta_{i}$ . As the number of
qubits $n$ increases, the value of the factor $\cos\theta_{i}=(\frac{1}{2})^{i-1}$ approaches zero and
$\theta_{i}$ approaches $90^{\mathrm{O}}$ . For example, even for $i=6,7$, and 8, the necessary pulse
angles are $\theta_{6}=88.21^{\mathrm{O}},$ $\theta_{7}=89.10^{\circ}$ , and $\theta_{8}=89.55^{\mathrm{O}}$ . Thus, it gets more and
more difficult to prepare these factors exactly by radiofrequency pulses.

Another difficulty concerns the problem of decoherence. The time needed
to obtain the effective pure state $|00\cdots 0\rangle$ by the present method may be esti-
mated roughly in terms of the number of necessary operations. The preparative
procedure leading to Eq. (13) from Eq. (12) needs $n$ pulses. The operation of
Eq. (6) works between nearest neighbors and requires about nine pulses. (This
operation also works for spin pairs with $J$ couplings.) For distant spin pairs
with no direct $J$ coupling, we have to operate $F(i, j)$ repeatedly. As noted
above, for the $k\mathrm{t}\mathrm{h}$ spin we have to apply the $F(k, j)$ procedure $(n-k)$ times
$(j=k+1, k+2, \ldots, n)$ . The number of necessary SWAP operations increases
quadratically as the number of intervening chemical bonds between the spins
in question and the terminal $n\mathrm{t}\mathrm{h}$ spin. A (simplified) SWAP operation as pro-
posed by M\’adi et al. [24], which exchanges only the $z$ component of the two
magnetizations in question, needs 12 pulses. In this way, one may estimate
that the total number of operations needed to prepare the state of Eq. (19)
grows roughly as $O(n^{3})$ . Fortunately an improvement is possible if we note
that it is not necessary to swap back [as in Eq. (10)] at all. Elimination of all
swap-back operations reduces the total number to the order $O(n^{2})$ .

More importantly, we have to consider the fact that the operation $1/2J_{ij}$

requires a time period of free precession of length $t=1f(2J_{i}j)$ , and each
(simplified) SWAP operation involves two $1/2J_{ij}$ operations [24], where $J_{ij}$

is the coupling constant between the spin pairs $I^{i}$ and $I^{j}$ in question. The
necessary number of SWAP operations increases (approximately) as $\frac{1}{2}n^{2}$ with
the number of qubits $n$ , and that of $1/2J_{ij}$ operations also increases as $\frac{1}{2}n^{2}$ .
Thus a total time needed is $\frac{3}{2}n^{2}$ times $t=1/(2J_{ij})$ . Assuming that all the

18



$J$ values are 20 Hz, we estimate the contribution from the SWAP and $1/2J_{ij}$

operations to be around 0.6 $\mathrm{s}$ and 0.9 $\mathrm{s}$ even for $n=5$ and 6, respectively. Note
that we did not take into account the time necessary for applying selective
(soft) pulses. The pulse duration time for a selective pulse, rather than a
nonselective (hard) pulse, is typically of the order of 1 ms for, e.g., $1\mathrm{H}$ and $13\mathrm{C}$ ,
which is far from negligible when accumulated. Note also that these estimates
refer only to the preparation of input state and do not include an actual
quantum computation at all.

According to some (optimistic) estimation [31], an NMR quantum com-
puter with about 30 qubits might exceed the power of modern supercomputers.
In this context, we recall that Warren [32] pointed out previously that if we
resort to effective pure states for $\dot{\mathrm{q}}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{u}\mathrm{m}\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n},$ the output (strength
of NMR signals) scales as $( \frac{1}{2})^{n}$ . The present estimate reiterates another chal-
lenge, the notorious problem of decoherence, unless we have a purpose-built
spin system (computer molecule) for which the decoherence time is long.
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