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1 - Introduction

Although finite difference method (FDM) is one of central numerical techniques for solving
boundary value problems, it appears that the method has not so extenswely been studied
as compared with finite element method (FEM).

For example, consider the Swartztrauber-Sweet algorithm [14] for solving the Dirichlet
problem
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which is described as follows:
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+ei;Uij = fij, 1=1,2,...,m, 7=0,1,2,...,n—1,
Uin = U Vi), Up; = Uno (Vj) Uni1j = g5 (V9),
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Where U;; stand for the apprommatlons at Py = (ri,6; ) cij = ¢(r3,0;), fij = f(ri,0;) and

= g(0;). |

Then a question arises: Does it converge at a neighbor of the origin? The algorithm
was proposed in 1973 for the case ¢ = 0 with no convergence analysis. In 1986, Strikwerda-
Nagel [13] remarked in that case (¢ = 0) that if u € C*(Q2), then the local truncation error
Too at the origin was O(h*) 4+ O(k*) and showed by numerical experiment that the scheme
had the second order accuracy at the origin. However, no proof was given there. In 1998
the author proved its convergence, and published joint papers [10,11] with N. Matsunaga,
where not only the convergence but also a superconvergence property of FDM is proved
for Dirichlet problems.



Since then, the author has establised several new results on FDM together with his
colleagues and students (cf. [2,3,5,6,11,15-19]). In this paper, we shall review those
results.

2 Superconvergence and Nonsuperconvergence of FD
Solutions

~ Let Q be a bounded domain of R? and consider the boundary value problem

—Au+b(z,y) - Vu+c(z,y)u = f(z,y) inQ (2.1)
u=g(z,y) onI =09Q, (2.2)

where b = (by(z,y), b2(z,y)) is bounded in @ = QUT.

We construct a net over Q by the grid points P;; = (z;,y;) in Q with the equal mesh
size h in the z and y directions. We denote by Q, and T, the set of grid points in
and the set of points of intersection of grid lines with I'. Let I be a part or the whole
of I" and K a constant with K > 1 (say K = 2,5,10, etc.), which is arbitrarily chosen
independently of h. We define

F(K,T) = {P e Q| dist(P,T') < Kh}.

If ' = T, then we write .%,(K) in place of %, (K, T'). Furthermore, we define the neighbors
of P € Q, to be four points in £, = Q, UT';, on horizontal and vertical grid lines through
P. These points are denoted by Pg, Pw, Ps, Py and their distances to P by hg, hw,
hs, hn, respectively (cf. Figs. 1 and 2). We denote by U(P) the approximate solution to
u(P) at P € Q. Then the Shortley-Weller (S-W) formula
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is used to approximate —Au(P). The term b(P) - Vu(P) is approximated by

b (P
1( ) he + hw hy + hg

+ b (P)

(2.4)

Then the problem (2.1)—(2.2) is discretized by

ZLU(P) = f(P), Pe,
U(P)=g(P), PE€Ty,



where

LU(P) =

 hu(hs + hy)
{2 + hsbo(P)}U(Ps).
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~ hw(hg + hw)
{2 — hnby(P)}U(Py)

" hs(hs + hy)

This leads to a system of linear equations

with respect to the unknown vector U = (U(P)), P € Q4, where h is sufficiently small so

as to satisfy

sup h|b;(P)| < 2, i
Peq

so that A is an irreducibly diagonally dominant L-matrix (hence, A is an M-matrix). The

AU = §,

1,2,

{2 + hwbi (P)}U(Pw)

vector f is determined by f(P) and the boundary condition (2.2).
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If u € C*(0), then the local truncation error 7(P) for .%, is given (cf. [12]) by

T7(P) = %u(P) - f
= Zu(P) — Lu(P)

= (5 = ) [352(PYitee(P) + 3taee ()]
+ (b = ) [552(P Yy (P) + 33y (P)]
7 [P 2Py (@5) + St (@5}

+=
+ h?v{bi’(P)uyyy(QN) + %uyyyy(QN)}] )

_|_
(2.6)

6 hs + hy

where

Qe = (z+ 6hg,y), Qw = (z — Ohw, ),
Qn = (z,y+6hy), Qs = (z,y—bhg), 0<6<1.

We thus obtain

2.7
O(h) otherwise. (2.7)

(P) = {0(h2) if hg=hyw=hs=hy=h
‘Then, the Bramble-Hubbard result [1] asserts that
u(P) —U(P) = O(h?) VP e Q,, (2.8)

even if a grid point P exists such that (hg, hw, hs, hn) # (h, h, h, k). A matrix theoretic
proof of this result can be found in Gorenflo [7], Meis-Marcowitz [12], Hackbusch [8], etc.
Recently, Matsunaga-Yamamoto [11] further sharpened (2.8) as

u(P) —U(P)=0(h*) VP € F(K),
for the case b = 0. The same pfoof can be used to derive the following;:

Theorem 2.1. Let u € C*(Q) be the solution of (2.1)~(2.2). Then

O(h®) P e H(K)
P)-U(P)| = 29
[u(P) - U(P)l {O(hz) otherwise. (29)
Similar results have been obtained for nonsmooth Dirichlet problem
—Au 4+ max(0, ¢(u)) = f(z,y) inQ (2.10)

u=g(z,y) onT (2.11)



where f, g are given functions and ¢ is a continuously differentiable function with ¢’(u) > 0,
provided that (2.10)—(2.11) has a solution u € C*() (cf. Chen-Matsunaga-Yamamoto [2]).
For convection-diffusion problem

Ou

5 T div{—k(z,y)Vu+ua} = f(z,y) inQ x (0,7), (2.12)
Oou

e o(z,y,t) on Ty, (2.13)

u=1Y(z,y,t) onTy, (2.14)

u(z,y,0) = v’(z,y) inQ, (2.15)

where (2 is a bounded domain in R? wiht the boundary I' = I'; UT,, we assume that
k € CY*(Q)), a = (a'(z,y),d’(z,y)) with @’ € C¥*(Q) and div(a) > 0, f € C*(Q),
u’(z,y) € C**(£2) and that there exists a positive constant xq such that x(z,y) > ko in
2. It is then known that there exists a unique solution u(z,y,t) of (2.10)—(2.11) with
u € C***1(Qr), where Qr = 2x [0, T] and that u € C*'(Qr) if &, @, f and the boundary
value are sufficiently smooth as well as the boundary. Furthermore, we assume that I'; is

paralleled to z-axis or y-axis. Then the following result is shown in Fang-Yamamoto [6]:

Theorem 2.2. To solve (2.12)—(2.15) , apply the implicit scheme corresponding to (2.12)-
(2.15)

Uk -Uf?
hak B4 SO Atz + LUk = f;, (2.16)
D, UF = ¢f onT} | (2.17)
UF =¢F onT? (2.18)
U=4), 1<i<N (2.19)

where At is the increment of time t, f; = f(B,), of = o(P,, kAt), ¥F = (P, kAt), and
u) = u®(B,). Ly is the usual discretization of the operator L defined by

Lu = div{—k(z,y)Vu + ua}.

D,, is the discretization of Neumann boundary condition by the method which uses the line
of the fictitious nodes. Then (2.16)—(2.19) can be written in the matriz-vector form

(I+AtAU* =U*'+ f (2.20)
(U* = (UF,...,UE), Ais an N x N matriz).

If u e C*(Qr), then

uf = Uf| < |uf = U7

3

. {O((At +h)R), P € F(K,T?) (2.21)

O(At + h), otherwise.
To prove the theorem, the estimate

(I+AtA)*v<v YweRY, v>0 (2.22)



was used. However, in a workshop held in February 21-22, 2001 at Ehime University,
I. Marek of Charlse University was pointed out that (2.22) was not true. In fact, (2.22)
should be corrected to

I+ AtA)™v < ||v||ce Yo >0,

where e = (1,..., 1)t € RN, Therefore in (2.21), |uf —U?| should be read for max;|ud—UJ|,
so that we have a corrected estimate
O((At + h)h), P, € Su(K,T?)

2.23
O(At + h), otherwise, (2.23)

ui — Uf| < max|u) — UY| + {
J

in place of (2.21). The author are grateful to him. The property like (2.9), (2.23), etc.
are called “superconvergence property”.
More precisely, we define the superconvergence property for discretized solution

{U(P)} for (2.1)~(2.2) as

Definition 2.1 (Yamamoto-Fang-Chen [19]). We say that a discretized solution
{U(P)} has a superconvergence property near I' C T, if, for some constants ¢ > 0
and K > 1, '

O(h*+), P e (K, T)

[u(P) - U(P)| = {Q(h") otherwise.

Theorems 2.1 and 2.2 are proved under the assumptions u € C*(2) and u € C*1(Qr =
Q % [0,T]), respectively. We are now interested in the case where u ¢ C*(Q) for the S-W
approximation to the problem (2.1)—(2.2). This case has been discussed in Yamamoto-
Fang-Chen [19] for the centered five point FDM applied to the problem

—Au=fin Q= (0,1) x (0,1),u=gonT, (2.24)
u € C(Q)NC™(Q) but u g C*(D).

It is shown that different situations occur: no superconvergence case near any I' C T, a
superconvergence case near a side I' of T, etc.

3 Convergence of Inconsistent Schemes

The results in Yamamoto-Fang-Chen [19] can be extended to a slightly general problem:

—Au+c(z,y)u=f inQ=(0, 1) x (0,1) ’ (3.1)
u=g(z,y) onT, (3.2)

where solution u belong to C(2) N C*(Q2) and has singular derivatives near T such that

29 (1 — z)f|2(x, y)|

su <K <o ‘ 3.3

ze(ol,)l) xa(l“z)ﬁ ' (3:3)
¥ (1 - y)|2%(z,y

(1= )55 )I§K2<oo, j=234 (3.4)

up
y€(0,1) y7(1 - y)6



with constants o, 3,7,d € (0,2) and positive constants K;, K, > 0 independent of = and

y. We apply the centered five point formula
1
h:n+1, xi:ih,i:o’l,z""’n-*_l, yJ:jh) j:0)1)27-..)n+1

to solve (3.1)—(3.2). Then it is easy to see that

O(hmin(@f7)~2)  (near Ty = {(z,0) | 0 < z < 1})
O(R=in(Bm9=2)  (near Ty = {(1,4) | 0 <y < 1})

P)| =
I7(P)] O(hmin(®B8)=2)  (near 'y = {(z,1) | 0 < z < 1})
O(hmin(™0)=2)  (near I'y = {(0,9) [0 <y < 1})
- 00 '

as h — 0. However, we can prove the following:

Theorem 3.1 (Fang—Matsubara—Shogenjl-Yamamoto [3]). In addition to the con-
ditions (3.3)—(3.4) we assume

sup |u(P)—-U(Q)| < Kod° at P,Q near I, (3.5)
dist(P,Q)<d ‘ T . -

where Ky is a positive constant and o = min(a, 3,7,8). Then
[u(P) —U(P)| < O(h%) VP € Q.

4 Acceleration Techniques

We can improve the accuracy O(h?) in Theorem 3.1 by a coordinate transformation undér
the conditions (3.3)—(3.5). Let ¢(t) be the function defined by

-1

o(t) =c, /Ot{s(l —s)}ds, ¢, = [/Ol{s(l - 3)}”ds] ,

where p > 0. Observe that ¢(t) = ¢ if p = 0. We then put
1
n+1’
a;lz(p(tz), y_’l:w(t])’ 'L,J=0,1,2,,n+1
and generate non-equidistant grid points P;; = (;,y;). Then we can prove the following
result:

Theorem 4.1 (Yamamoto [18]). Under the conditions (3.3)~(3.5), apply the S-W ap-
prozimation to the problem (3.1)—(3.2). Put r = o(p + 1). Then, at every P € Q,, we
have . ‘

h=

O(h") (r<2)

I’U,(P) — U(P)I = {O(hZ log l) ('r =2).

Furthermore, we have
[u(P) — U(P)| = Xp)h" + u(p)h?,

where A(p) and p(p) are increasing functions with polynomial orders as p — oo.



Another transformation

W(t) = exp(at) — 1

0<t<1
exp(a) -1’ ~— ~

is known as a stretching function, where a is a positive constant. We can also prove that
with the constant ¢ defined as in Theorem 3.1

[u(P) — U(P)| = A(a)h® + j(a)h?, VP e Q,

where A(a) and ji(a) are monotonically decreasing and increasing functions, respectively,
with exponential order as a — oco. Therefore, the stretching function ¢ works by letting
the parameter a large.

5 Unified Understanding of FDM, FEM, FVM for
Two-point Boundary Value Problems

We can understand three methods FDM, FEM and FVM (finite volume method) through
the simple two-point boundary value problem

—-;5 (p(x)%) ~ f(z), a<z<b (5.1)
u(a) = u(b) = 0. (5.2)
Let
a=20<T1 < <Z< < ZTpy1=b, hi=x;—xi1, (5.3)
h= max hi, Ty = %(:1:z + Zip1) (5.4)

and discretize (5.1)—(5.2) with the use of three methods:
(i) FDM

Uig1=Us) _ o (Ui=Uiz1)
p’i+-1- pz-—-;—

hi h; .
- : = hiv1+hs =fi, 1=12,...,n (55)
1t

(i) FEM
The FE approximation v, = Y., Uspi(z) with piecewise linear polynomials is de-
termined by solving

> ([ sowiein) 0= [ s@n@, i=12.0m 69

j=1

with respect to {U;}.



(iii) FVM

The FV approximation wy(z) = Y, Uip; is obtained (cf. Li—Chén—Wu [9]) by

solving the linear system

i ( /a bPCb)%(%)«M) U; = /a bf(m)wi(x)dx, i=1,2,...,n

Jj=1

with respect to {U;}, where

bo) =L ST S0
0 (otherwise).

Then (5.5)—(5.7) can be written in the tridiagonal linear systems
AU=f, AU=Ff, AU-=T,
or
U=A"f, U=A"f U=A"F,
where f = (fi,..., fa)t, f = (fr,-. . fu)ts F=(f1,..., fu)t with

R b _ b
ﬁ=ﬂm,ﬂ=/fmwwﬂ,ﬁ=/f@%wM,
A= HA,,

a; + aq —Q2
—0a9 as + as —ag
AO '.‘ '._ '.. y ai:—p' é

—0p—1 ap-1 + Ay, —0Qn
—an, Qn + Gnt1

2 2
H=di ciey s
1ag{h1 + hy’ hn+hn+l}

(5.7)

and A = A, is obtained by putting H = I in the expression A = HA, and replacing the

elements a; of Ay by

. 1. . 1 [
a; = Epi, Di = ™ p(z)dz.
7— T JTi-1

It was shown in Yamamoto [17] that the matrix A~' = (g,;) is given by

-1
n+1l  hg % hi n+1 hi . .
( k=1 pk_%) (Zk:l pk_%> (Zk:]-}—l pk__%> (7/ S J)

gij = -1
n+1l  hg J hy n+1 hi . .
al _ . 12> 7).
( = P:) ( = Pk—%>( ingty) 029

(5.8)
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The element §;; of the matrix A~! = (§,;) are obtained by replacing Pi-1 in (5.8) by

. 1 Tetd
Dp_1 = —_hk X /T p(x)dz.

-5 1
k-3

Let G(z,£) be the Green function for the problem (5.1)~(5.2). Denoting G(z;, z;) by Gi;
and noting that

b
w= [ GOt 59)
we can conclude the following (cf. Fang-Tsuchiya-Yamamoto [5]):

(a) Ui=1 ( i1 9i fihg + 375 945 fjhj+1) (the mean of two Riemann’s sums)

_pfo® e
ol {ow?) wectiay) TS0

(b) Ui = [} (S5 803 @) ) f(2)do

oo wectan) ;
Wl {0(h2> pecar) €0

©) U= [} (S5 95%5(0)) F(o)da

w—U, = o(h) (p€ C'a,b]) 011,
U {oaﬂ) pectiay TN

Numerical experiments show that there is no remarkable difference among the accuracy
of three methods if f is sufficiently smooth (i.e., f € C%![a,b]). However, the above
results show that FEM has a slight advantage over other methods, especially over FDM
if f & CY'[a,b]. Finally we remark that numerical experiments by Q. Fang showed that
FDM with nodes (5.3)—(5.4) applied to the problem

~& (0% +e@ru= 1), a<z<s (5.10)

u(a) =a, ud)=p (5.11)

has also the O(h?) accuracy, provided that p, ¢ and f are sufficiently smooth (cf. [4,5]).
This suggests a possibility of generalizing the error estimates in (a)—(c) to (5.10)—(5.11).
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