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We present ageometrical construction of the 8-parameter discrete Painleve equations.
Our starting point is the $\mathrm{E}_{8}^{(1)}$ affine Weyl group. We assume that the multidimensional
$\tau$-funtion lives on the vertices of the weight lattice of this group. We derive the bilinear
equations related to the discrete Painleve equation in the form of nonautonomous Hirota-
Miwa equations and the elementary Miura transformations. The compatibility condition
of the various Miura’s that can be written leads to three types of eciuations: difference,
multiplicative (q) and another type where the parameters and the independent variable
enter through the arguments of elliptic functions. We write explicitly the discrete equations
in the first two cases and produce their degeneration through coalescence of parameters.

1. INTRODUCTION.

Discrete Painleve (d-P) equations are far more complex (and more fundamental) than
their continuous counterparts. Soon after their discovery [1] it became clear that a) d-P’s
exist in two flavours, difference (5-) equations and multiplicative (q-) equations, b) there
are many more than the six canonical continuous Painleve’ equations (c-P) [2]. The latter
fact led to anomenclature problem: since the integrable, nonautonomous mappings which
are the d-P’s were named after their continuous limits, which are c-P’s, we were faced with
aproliferation of discrete versions of $\mathrm{P}’ \mathrm{s}$ , in particular for the low-parameter ones. This
was taken care of partially by a) findings correspondences between equations and b) by
showing that some of the low-parameter d-P’s were indeed reductions of richer systems.
However the problem was far from being solved and thus the question of $\mathrm{c}\mathrm{l}.\mathrm{a}$ssification
became urgent.

The key to the classification of discrete Painleve was to be found in ageometrical
approach [3]. This was suggested by the observation that (almost but not quite all) the
d-P’s have the property of self-du.ality: the same equation is governing the evolution along
the independent variable and along the Schlesinger-induced changes of parameters [4].
Moreover, the observation that some of the difference $\mathrm{P}’ \mathrm{s}$ are just contiguity relations of
continuous $\mathrm{P}’ \mathrm{s}$ suggested that the geometrical description had to be given in terms of affine
Weyl groups, just as in the continuous case. This was first proposed in [5] under the name
of “Grand Scheme” description of d-P’s. The whole degeneration pattern linked to affine
Weyl groups, starting from the exceptional group.

$\mathrm{E}_{8}$ , was empirically associated to the
various discrete $\mathrm{P}’ \mathrm{s}[6]$ . Recently it has been put on arigorous basis thanks to the work
of Sakai [7]. He was in fact the first to show explicitly that athird type of discrete $\mathrm{P}$ did
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exist, one where the parameters and the independent variable enter through the arguments
of elliptic functions (a fact that we had anticipated on an intuitive, nonrigorous, basis).

Once the geometrical framework is fixed our task is far from finished. In order to
derive the d-P’s it does not suffice to say that their $\tau$-functions live on the (weight) lattice
of some affine Weyl group. One must derive the bilinear equations which govern the ev0-

lutions. These bilinear systems turn out to be nonautonomous Hirota-Miwa [8] equations
(the compatibility of which must be assessed). Next one must introduce the elementary
Miura transformations and, choosing the adequate path, obtain the nonlinear $\mathrm{d}$-P. The
proliferation of the d-P’s is thus related not only to the abundance of the possible geome-
tries but also to the fact that within each of them one can define more than one evolution
leading to asecond-0rder system.

Since historically almost all the d-P’s were obtained before their geometrical classifi-
cation, the approach based on affine Weyl groups has not been used in order to derive the
d-P’s. As amatter of fact the discrete forms of the d-P’s up to $q$-Pv were derived through
adirect method (deautonomisation of aQRT form using the singularity confinement [9]
criterion, aprocedure later confirmed with the aid of low-growth property [10] $)$ . They
were shown later to be described by various affine Weyl groups up to and including $\mathrm{E}_{(_{)}^{\backslash }}^{(1)}$ .

Much later the forms of $q$-Pvi and $\delta- \mathrm{P}\mathrm{v}[11]$ were obtained as an offshoot of the study of
the quadratic relations of c- and d-P’s [12]. These two equations were recently shown to
be described by the $\mathrm{E}_{7}^{(1)}[13].\mathrm{a}$ffine Weyl group. Clearly what was missing was the explicit
form of the system related to $\mathrm{E}_{8}-\cdot$ The complexity of these equations precludes any direct,
brute-force, treatment and, in fact, the geometrical description seems the only available
approach. In what follows we shall show how, based on the geometry of the affine Weyl
group $\mathrm{E}_{8}^{(1)}$ one can derive the explicit forms of $q$-Pvi and $\delta- \mathrm{P}\mathrm{v}$ . We show that the richness
of this exceptional group makes possible the existence of an “elliptic” discrete P. However
for the latter one can only present the bilinear form and the Miura transformation, the
full nonlinear expression corresponding to prohibitively long calculations.

2. THE GEOMETRY OF THE $\mathrm{E}_{8}^{(1)}$ WEIGHT LATTICE.

Our various studies in the framework of what we have dubbed the Grand Scheme
have sho wn that the space pertinent to the description of adiscrete $\mathrm{P}$ equation and its
various Schlesinger’s is the weight lattice of an affine Weyl group, i.e. the dual of the
root system. In this paper we shall consider the geometry of the space associated to $\mathrm{E}_{8}$ .
Our basic assumption is that the $\tau$-functions live on the points of the weight lattice of
$\mathrm{E}_{8}^{(1)}$ . The coordinates of these points, in the basis we consider, are either all integers or
all half-integers, with the additional constraint that the sum of all coordinates is even.
The origin obviously satisfies these requirements. By considering its nearest-neighbours
(NN) we can thus find the smallest vectors that span the lattice. It turns out that the
origin has 240 $\mathrm{N}\mathrm{N}\tau$ ’s that define 120 directions along which vectors relating $\mathrm{N}\mathrm{N}-\tau$ ’s exist.
We must point out here that the adjective nearest does not really apply to these vectors
which are actually the smallest ones; still we will call them NV’s for nearest-neighbours
connecting Vectors’, ashorthand the reason of which will soon become obvious. The 240
NN of the origin have the following form. Some of them have two coordinates $a_{j}=\pm 1$ ,

$aj=\pm 1$ while the other six vanish: clearly there are 112 of these, four for each choice
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of $i\neq j\in\{1$ , $\ldots$ , 8 $\}$ , (defining 56 directions where NV’s exist). Note that their squared
distance from the origin is 2and thus the squared length of a NV is 2. The others have all
the coordinates nonzero and of absolute value 1/2, but with either sign. Again the squared
distance of each of these points from the origin is $8(1/4)=2$ . There are only 128 such $\mathrm{N}\mathrm{N}$ ,
and not 256 because of the selection rule that the sum of the coordinates must be even,
which means that the number of negative coordinates must be even. This defines 64 more
directions where NV’s exist. Though the 120 NV’s, in this specific basis, seem to belong to
two classes, this is not true; it is apure artifact of the basis. In fact the NV’s correspond
to each other by the symmetries of the underlying finite group $\mathrm{E}_{8}$ . One way to convince
oneself of this is to notice that, not only do they all have the same squared length 2, but
if we compute the scalar product of a NV of either class with all the 119 others, we find
that 63 are orthogonal, while the 56 others have ascalar product $\pm 1$ . Note that we never
bother to assign aspecific sign to an $\mathrm{N}\mathrm{V}$ :only its direction and length are of interest, so
there are indeed 120 of them. In fact, there is no consistent way to orient thetn so that
the scalar product of two nonorthogonal NV’s be always 1, or always -1. Of course the
whole argument presented here is not specific to the origin: every $\tau$ has 240 $\mathrm{N}\mathrm{N}$ , along the
120 directions defined by the NV’s.

Having defined the NN and NNV’s we turn to the next-nearest-neighbours (NNN)
of agiven $\tau$ . We can reach them by moving away from this $\tau$ by avector which is as
small as possible asum of NV’s. This turns out to be the case if we add two orthogonal
NV’s, (since the sum of two NV’s with scalar product -1 is again an $\mathrm{N}\mathrm{V}$ ). So the length
of such aNNV is 2, since its squared length is 4. It turns out that there are 1080 such
vectors (up to an arbitrary sign) and 2160 NNN of agiven $\tau$ . This number is obtained by
considering the 120 $\cross 63/2$ pairs of mutually orthogonal NV’s, with either relative sign,
and ignoring the global sign for NNV’s, so we multiply by 2for $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}_{\}}$ and by 4to find
all NNN’s. Each NNV, however, is obtained from seven distinct such pairs, as can be
shown in astraightforward way. For instance the NNV (2,0,0,0,0,0,0,0) is obtained from
the seven pairs of NV’s $\{(1, 0, \ldots, 1, \ldots, 0),(1,0, \ldots, -1, \ldots, 0)\}$ where the $\pm 1$ are at any
of the 7last positions. Again let us stress that though this NNV looks unique, this is due
to the particular basis we chose. All NNV’s are fully equivalent, corresponding to each
other through the symmetries of the finite group $\mathrm{E}_{8}$ . In this basis they seem to come in
three classes, eight similar to the one mentioned above, 560 with 4zero coordinates and
4coordinates $\pm 1$ (defining 70 choices for the positions of the nonzero coordinates and a
factor 8for three relative signs since we ignore the global sign) and finally 512 with one
coordinate $\pm 3/2(\mathrm{s}\mathrm{a}\mathrm{y}-3/2)$ in either of the 8positions , and seven coordinates $\pm 1/2$ with
only six free signs since the sum must be even (so there must be an odd number of plus
signs). $9_{1}$

3. NONLINEAR VARIABLES, HIROTA-MIWA EQUATIONS AND CONTIGUITY RELATIONS.

In order to introduce the nonlinear variables (for which we will use the symbols $X$ or
$\}$’) we will make the assumption that they are defined at points of the lattice which are mid-
points between one $\tau$ and one of its NNN’s. For example, between the origin and its NNN
(2,0,0,0,0,0,0,0) we have anonlinear variable $X$ defined at the point (1, 0, 0, 0, 0, 0, 0, 0). It
can be easily shown that $X$ (and in fact any other such point) is at the midpoint not only
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of the original pair, but of exactly eight pairs of $\tau$ sites which are in NNN position with
respect to each other (but not, in general, NNN of the origin). The eight pairs in this pre-
cise example are the original one $\{(0,0,0,0,0,0,0,0), (2,0,0,0,0,0,0,0)\}$ and seven of the form
$\{(1,0,\ldots, 1,\ldots,0), (1,0, \ldots, -1, \ldots, 0)\}$ , etc, where the second nonvanishing coordinates
is at any of the seven last positions. The eight vectors joining the two sites of each pair
are all distinct NNV’s (their length is indeed 2). One can easily see that any two of them
are orthogonal. Thus there is no consistent orientation choice for these vectors.

The next step is to relate the nonlinear variable $X$ to the $\tau’ \mathrm{s}$ . For each $X$ we have 8
NNV’s and we can introduce 8quantities $C_{i}$ which are the scalar products of these vectors
and the position vector $\frac{\mathrm{t}}{O’X}$ . (Note here that the origin $O’$ of this position vector need
not coincide with the origin of coordinates: it may well be shifted by 8arbitrary numbers
$\alpha.\cdot)$ . However, as we explained above, the orientations are not determined, consequently
there exists arbitrariness in the definition of the sign of the each $C_{i}’ \mathrm{s}$ :we can change
any of the $c_{:}$ ’s to its opposite value. Next, we introduce the quantities $\phi_{i}$ which are the
products of the two $\tau’ \mathrm{s}$ at the ends of each vector, and define:

$X= \frac{f(C_{j})\phi_{i}-f(C_{1})\phi_{j}}{g(C_{j})\phi_{\dot{1}}-g(C_{\dot{1}})\phi_{j}}$

.
(3.1)

where the $f(C_{\dot{\iota}})’ \mathrm{s}$ and $g(C_{\dot{\iota}})’ \mathrm{s}$ are as yet undetermined functions (to which we will return
later) of their respective $C_{:}$ . Note however that since the $C_{i}’ \mathrm{s}$ are not determined better
than up to asign, $f(C_{i})$ and $g(C_{i})$ must both be even (or possibly both odd, but without
loss of generality one can always assume even) functions of their argument.

There exist 28 different ways to write $X$ in terms of the $\phi_{i}$ . By equating any two of
these expressions we obtain equations for the $\phi_{\dot{1}}$ ’s, i.e. for the product of the $\tau$-functions:

$(f(Cj)g(C_{k})-f(C_{k}.)g(Cj))\phi_{i}+(f(C_{k})g(C:)-f(C_{i})g(C_{k}))\phi_{j}$

$+(f(C:)g(Cj)-f(Cj)g(C.\cdot))\phi k=0$ (3.2)

The overdetermined system of equations (3.2) is anon-autonomous Hirota-Miwa sys-
tem [8] which describes completely the evolution of the multivariable $\tau$-function in $\mathrm{E}_{8}^{(1)}$ .

They are, in fact, the bilinear forms of the various equations that “live” in $\mathrm{E}_{8}^{(1)}$ . So far we
have not yet examined the question of the consistency of (3.2), which will impose further
constraints on the even functions $f$ and $g$ . This will be done in the next section.

For convenience, in what follows and whenever there is no ambiguity, we will use the
name of anonlinear variable to mean the point where this variable is defined. Consider the
8NNV’s around agiven point like $X=(1,0,0,0,0,0,0,0)$ , which, in this particular case
happen just to be twice the 8unit vectors of our basis. We can orient 7of them arbitrarily,
and then the orientation of the 8th one is fixed, so the sum of the oriented vectors is
four times any of the $2^{7}$ (arbitrarily oriented) NV’s of half-integer coordinates, along 64
directions. Consider one of these vectors, for instance $\mathrm{F}$

$=(^{1}/\cdot 2,/12,/11/2,2,1/2,/11/2,\prime 2,/1)2$ .
We now consider the point $(^{3}/4)-1/4,$ -1/4, -1/4, $-1 \oint_{4},$ -1/4, -1/4, -1/4) such that the vector
from it to the site of $X$ is half the NV considered above. It turns out to be avalid nonlinear
site where we can define anonlinear variable Y. This was not apriori obvious. For instance
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if we translate the site of $X$ by half of one of the 56 other NV’s, we would not end up at
amidpoint of two NNN $\tau’ \mathrm{s}$ , and no nonlinear variable could be defined there. Similarly
to $\mathrm{Y}$ we can introduce $\overline{\mathrm{Y}}$ corresponding to the point $(^{5}/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4)$ such
that $\vec{\overline{\mathrm{Y}}X}=-F/2$ . Here, the overbar $\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{b}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}-$ atranslation by the full $\mathrm{N}\mathrm{V}$ , $F$ .
Since the point $\overline{\mathrm{Y}}$ is distant from the site of $\mathrm{Y}$ by afull $\mathrm{N}\mathrm{V}$ , all the $\mathrm{r}’ \mathrm{s}$ around $\overline{\mathrm{Y}}$ are in
the same positions with respect to it as those around $\mathrm{Y}$ but not as around $X$ . In fact,
one can easily convince oneself that the 8NNV’s around $\mathrm{Y}$ and $\overline{\mathrm{Y}}$ are identical, and have
all their coordinates 1/2, but for one coordinate $-3/\cdot 2$ at any of the eight positions. They
are symmetrical of the NNV’s around $X$ with respect to the hyperplane orthogonal to the
$\mathrm{Y}X$ line.

The 8 $C_{i}’ \mathrm{s}$ around $X$ , which are the scalar products of the position vector $\frac{\mathrm{t}}{o’X}$ with
the appropriate NNV’s just twice the coordinates, with ashift due to the position of $O’$ :
$C_{j}=2n_{j}’$ , (where $a_{i}’=c\iota_{i}-\alpha_{i}$ , $a_{1}=1$ , $a,$ $=0$ for $j\neq 1$ ). The corresponding quantiti es
$F_{i}$ , $\overline{F}_{?}$ around $\mathrm{Y}$ , $\overline{Y’}$, corresponding to the vectors $\frac{\mathrm{t}}{o’Y}$ and $O’\vec{\mathrm{Y}^{-}}-$ , are $F_{j}=2\zeta-2b_{j}’$ ,

$\overline{F}_{1}\cdot=2\overline{\zeta}-2\overline{b}’.$”with $b_{j}’=b_{j}-\alpha_{j}$ where the $b_{j}’ \mathrm{s}$ are the coordinates of $\mathrm{Y}$ , $\langle$ $=\overline{O’Y}\cdot F/2=$

$1/4$ $\sum_{k}b_{k}’$ and similarly for $\overline{\mathrm{Y}}$ . In the translation by the full $\mathrm{N}\mathrm{V}$ , $F$ , from $\mathrm{Y}$ to $\overline{\mathrm{Y}}$ the shift
of each $b.$’is 1/2 and thus the shift of $\zeta$ is one ( $F$ has squared length 2). So the shift of
each $F_{j}$ is also one. The same shift of one will affect each $C_{i}$ when translating $X$ by one
full $F$ . Moreover, if we compute in $X$ the analog of $\langle$ , namely $z= \frac{1}{O’z\mathrm{Y}}.F/2=1/4\sum_{k}a_{k}’.$ ,
we $\mathrm{h}_{\dot{\epsilon}}\iota \mathrm{v}\mathrm{e}\zeta=z-1/2$ , $\overline{\zeta}=z+1/2$ .

Among the 64 distinct NV’s around $X$ (or any other point similar to $X$ , for that
matter) that allow to reach anonlinear site like $\mathrm{Y}$ , each one is orthogonal to 35 of the
others, and $\mathrm{h}_{\dot{\epsilon}}\iota \mathrm{s}$ a $\mathrm{s}\mathrm{c}_{\dot{\epsilon}}\iota 1_{\dot{\epsilon}}\iota \mathrm{r}$ product $\pm 1$ with the 28 remaining ones. For instance, the NV
$F$

$=$
$(^{1}/\underline{\prime},/1\underline{)}, 1/2,/_{2}1, 1/2, 1/2,/ 11/\underline{\prime},\underline{\prime})$ is $\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{I}_{\mathrm{l}}\mathrm{o}\mathrm{g}\mathrm{o}\mathrm{n}_{\dot{\epsilon}}\iota 1$ to the 35 ones having four coordin.ates

1/2 and four $-1/l$ (counting opposite vectors only once) and has scalar product 1, say,
with the 28 NV’s having six coordinates 1/2 and two -1/2, defining thus 28 points form-
ing an equilateral triangle with $X$ and $\mathrm{Y}$ (and 28 others forming an equilateral trian-
gle with $X$ and $\overline{\mathrm{Y}}$). Let us call $W$ avariable defined at one of the sites forming an
equilateral triangle with $X$ and Y. To be specific let us choose the point W23 such
that the vector $\frac{\iota}{W_{23}X}$ is half the NV with negative signs in second and third positions,
$\mathrm{P}V_{23}=(^{;}/4,1/4,1/4, -1/4, -1/4, -1/4, -1/4, -1/4)$ . (We did not choose the first position for
aesthetical reasons, in order to stay as close to the origin as possible, but a $W$ with one
index 1is just as good as any other one, since the origin is by no means aspecial point).
The symmetric $\mathrm{P}\tilde{V}_{23}=(^{r_{)}}/4, -1/4, -1/4,1/4,1/4,1/4,1/4,1/4)$ of $\mathrm{P}V_{23}$ with respect to $X$ is also
avalid point to define anonlinear variable, and forms an equilateral triangle with $X$ and

$\overline{\mathrm{Y}}$ . Note however that the points in the XYW23 tw0-dimensional plane that form aregular
hexagon of center $X$ with $\mathrm{Y}$ , $\overline{\mathrm{Y}}$ , $W_{23}$ and $7V_{23}$ , namely (1, 6/2, 1/2, 0, 0, 0, 0, 0) for $\epsilon=\pm 1$ ,
are not midpoints of $\mathrm{r}’ \mathrm{s}$ in NNN positions and no nonlinear variables can be defined there.

In order to define avariable like $X$ through (3.1) we need two products $\mathrm{O}’ \mathrm{s}$ involv-
ing four $\tau$ ’s. It turns out that just six well chosen $\tau$ ’s suffice to define all three vari-
ables $X$ , $\mathrm{Y}$ and $W$ :the two $\tau_{+-}$ and $\tau_{-+}\dot{\epsilon}\iota \mathrm{t}(1/2,1/2, -1/2, -1/2, -1/2, -1/2, -1/2, -1/2)$ and
$(^{1}/2, -1/2,1/2, -1/2, -1/\cdot 2, -1/2, -1/\cdot-,, -1/2)$ (the indices refer to the signs of the second and
third coordinates) and the four $\tau_{2,\epsilon}\dot{\epsilon}\iota \mathrm{r}\mathrm{l}\mathrm{d}$ $\tau_{3.\epsilon}(\epsilon=\pm 1)$ at the points $(1, \epsilon, 0,0,0,0,0,0)$ and
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$(1, 0, \epsilon, 0,0,0,0,0)$ . Indeed, $X$ is the midpoint of the two NNN pairs $\{\mathcal{T}j+, \mathcal{T}j-\}i=2,3$

while $\mathrm{Y}$ is that of the NNN pairs $\{\tau_{+-}, \tau_{2}-\}$ , $\{\tau_{-_{\iota}+}, \tau.\cdot;-\}.\mathrm{a}\mathrm{n}\mathrm{d}W$ that of the pairs $\{\tau_{+-}, \tau_{3+}\}$

and $\{\tau_{-+}, \tau_{2+}\}$ . Note that the vectors $\overline{\tau_{-+}\tau_{+-^{r}}},\cdot\frac{1}{\tau_{2-}\tau_{3-}’}$ and $. \frac{\mathrm{t}}{\tau_{3+}\tau_{2+’}}$ are all equal to the
vector $\partial=(0,1,-1,0,0,0,0,0)$ and that any two of these three vectors form asquare. The
whole picture is atriangular right prism having the six $\tau$ ’s at its vertices. Each basis
$\{\tau_{-+}, \tau_{2-}, \tau_{3+}\}$ and $\{\tau_{+-}, \tau_{3-}, \tau_{2+}\}$ of this prism is an equilateral triangle of side $\sqrt{2}$ ,

while the height $\partial$ has the same length so the three faces are the aforementioned squares
having for centers the points $X$ , $\mathrm{Y}$ and $\mathrm{V}V_{23}$.respectively.

Next we compute the $C,$;’s corresponding to the pairs around $X$ , scalar products of
$\overline{o}’7$ with the corresponding NNV’s (0,2,0,0,0,0,0,0) and (0, 0, 2, 0, 0, 0, 0, 0) and firid $2n’,\cdot$ ,

$i=2,3$ respectively. The relevant $F_{j}$ around $\mathrm{Y}$ corresponding to the pairs $\{\tau_{+-}, \mathrm{r}_{2-}\}_{\backslash }$

$\{\tau_{-+}, \tau_{3-}\}$ are $F_{2}=2\zeta-2b_{2}’$.and $F_{3}=2\zeta-2b_{\}}.’.$ . The relevant $K_{1’\}}$ around $\nu \mathfrak{s}^{\gamma_{\underline{y}3}}$.correspond
to the pairs $\{\tau_{-+}, \tau_{2+}\}$ , $\{\tau_{+-}, \tau_{3+}\}$ and turn out to be $I\mathrm{f}_{2}=-2z+1/2-c_{\underline{\prime}}’+c_{3}’\dot{\epsilon}.\iota \mathrm{n}\mathrm{d}$

$K_{3}=-2z+1/2+c_{2}’.-\mathrm{c}_{3}’$ respectively (again $c_{\iota}’,,=C_{\}\uparrow},-\alpha_{t},$, where the $C_{\}’\}}$ are the
coordinates of $W_{23}$ ). The origin of the 1/2 shift comes from the analog of $z$ computed at
$W_{23}$ using the $c_{m}$ ’s, which turn out to be $z-1/4$ .

Up to this point, this is apurely geometric description. We have not yet expressed
the $f,g$ in terms of the $C_{1}$. ’s. We have $X$ by specifying $i=3,j=2$ in (3.1)

$X=. \cdot\frac{f(C_{2})\phi_{3}-f(C_{3})\phi_{2}}{g(C_{2})\phi_{3}\backslash -g(C_{3})\phi_{2}}$ (3.3)

with $\phi_{i}=\tau_{i+}\tau_{i-}$ . Solving for the ratio of $\tau$ ’s we find.

$\frac{\tau_{2+}\tau_{2-}}{\tau_{3+}\tau_{13-}}=.\frac{g(C_{2})X-f(C_{2})}{g(C_{3})X-f(C_{3})}$ (3.4)

Similarly we have
$\frac{\tau_{+-}\tau_{2-}}{\tau_{-+}\tau_{3-}}.=\frac{g(F_{2})\mathrm{Y}-f(F_{2})}{g(F_{3})\mathrm{Y}-f(F_{3})}$ (3.5)

and
$\frac{\tau_{-+}\tau_{2+}}{\tau_{+-}\tau_{3+}}=.\frac{g(K_{2})W_{23}-f(K_{2})}{g(K_{3})W_{23}-f(IC_{3})}.$

. (3.6)

It is straightforward to eliminate all the $\mathrm{r}’ \mathrm{s}$ from (3.4-6) and find the contiguity relation:

$. \frac{g(C_{3})X-f(C_{3})}{g(C_{2})X-f(C_{2})}‘\frac{g(F_{2})\mathrm{Y}-f(F_{2})}{g(F_{3})\mathrm{Y}-f(F_{3})}\frac{g(K_{2})W_{23}-f(K_{2})}{g(K_{3})W_{23}-f(K_{3})}=1$ (3.7)

This is what we call aMiura transformation: given any two of the $X$ , $\mathrm{Y}$ and $\mathrm{M}_{23}^{f}$.we
can obtain the third one. It is clear from (3.7) that all three variables play asymmetric
role. Prom (3.7) the nonlinear equations satified by $\mathrm{Y}$ , $\overline{\mathrm{Y}}$ and $X$ can be derived from the
analysis of the geometry.

4. COMPATIBILITY CONDITIONS AND THE NONLINEAR EQUATIONS.
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We still haven’t considered the compatibility of the Hirota-Miwa equations (3.2). It
will $\mathrm{i}\mathrm{r}\mathrm{l}$ fact turn out to be simpler to check their consistency on the Miura equations (3.7).
Indeed, if two variables are known on two summits of an equilateral triangle of side $\sqrt{2}/2$ ,
the one on the third summit is determined by (3.7). If we consider atetrahedron of the
same side, then any two variables determine both the others, using (3.7)\iota on the two sides
which contain the two known variables. But then there are two more sides where all
three variables are now determined, and acompatibility condition must be satisfied on
them. Such atetrahedron is, for instance, the one with apices $X$ , $\mathrm{Y}$ , $W_{23}$ and $W_{24}$ of
coordinates $(^{3}/4,1/4, -1/4,1/4, -1/4, -1/4, -1/4, -1/4)$ . It turns out that the condition on the
even functions $f$ and $g$ for the compatibility to be satisfied is that there exists some odd
function $h$ such that

$f(C)g(D)-f(D)g(C. )=h(C+D)h(C-D)$ $(4\cdot 1)$

for all $C$ , $D$ . Obtaining the general solution of (4.1) appears to be avery difficult task.
However, we are able to find several interesting solutions. In particular let us make the
simplifying assumption that $g$ is constant (which we can take equal to 1). In this case
we can show that (4.1) has only two solutions (up to arescaling of the dependent and
independent variables). The first corresponds to $f(x)\equiv x^{2}$.and $h(x)\equiv x$ , leading to
adifference discrete Painleve’ equation with 7-parameters. The second corresponds to
$f(x)\equiv\sinh^{2}\lambda x$ and $h(x)\equiv\sinh\lambda x$ and leads to $\dot{\mathrm{c}}\iota q$-type equation. In these cases (3.7)
becomes respectively

$\frac{X-C_{3}^{2}}{X-C_{2}^{2}}.\frac{\mathrm{Y}-F\underline{)}}{\mathrm{Y}-F_{3}^{2}}\underline’\frac{W_{23}-K_{2}^{2}}{\mathrm{V}V_{23}-K_{3}^{2}}=1$ (4.2)

$\frac{X-\sinh^{2}C_{3}}{X-\sinh^{2}C_{2}},\frac{\mathrm{Y}-\sinh^{arrow)}F_{2}}{1^{-}-\sinh^{\sim}F_{3})}.\cdot.\frac{\mathrm{f}l^{\Gamma_{\underline{)}}}3-\sinh^{2}K_{2}}{\mathrm{P}\mathrm{T}^{\gamma_{23}}-\sinh^{2}K_{3}}.\cdot=1$ (4.3)

In the general case we can exhibit one solution, but we cannot prove that it is the only
existing one. This solution is expressed in terms of theta functions. Indeed (4.1) is satisfied
if we take $f(x)\equiv\theta_{1}^{2}.(\kappa x|rn)$ , $g(x)\equiv\theta_{0}^{2}(\kappa x|m)$ and $h(x)\equiv\theta_{0}(0|m)\theta_{1}(\kappa x|m)$ for arbitrary
parameter $m$ . Using these expressions $f$ , $g$ , $h$ one can write the Miura (3.7) in terms of
Jacobi elliptic functions only, and the same is true for the nonlinear equation between $\mathrm{Y}$ ,
$X$ and $\overline{\mathrm{Y}}$ . Indeed, (3.7) becomes (up to arenormalisation of $X$ , $\mathrm{Y}$ and $\mathrm{P}V_{23}$ )

$\frac{X-\mathrm{s}\mathrm{n}^{2}C_{3}}{X-\mathrm{s}\mathrm{n}^{2}C_{2}}\frac{\mathrm{Y}-\mathrm{s}\mathrm{n}^{\underline{)}}F_{2}}{\mathrm{Y}-\mathrm{s}\mathrm{n}^{2}F_{3}}.\frac{W_{23}-\mathrm{s}\mathrm{n}^{2}K_{2}}{W_{23}-\mathrm{s}\mathrm{n}^{2}K_{3}}=\frac{\theta_{0}^{2}(C_{2})}{\theta_{0}^{2}(C_{3})}\frac{\theta_{0}^{2}(F_{3})}{\theta_{0}^{2}(F_{2})}\frac{\theta_{0}^{2}(K_{3})}{\theta_{0}^{2}(K_{2})}$ (4.4)

where we have dropped the parameter $m$ . Moreover one can check that the 6quantities
$C$ , $F$ , $K$ have zero sum and moreover satisfy the relations $C_{2}-C_{3}=F_{3}$. $-F_{2}=K_{3}-K_{2}$ . In
this case one can show that the right hand side of (4.4) can in fact be written in terms of
Jacobi elliptic functions only.

Suppose we now consider some other equilateral triangle, one summit of which is $X$ ,
but where $\mathrm{Y}$ is not necessarily asummit. Around this triangle we will get an analogue
of equation (3.7). In particular we are interested in the triangle $XW_{23}V$ where $V$ has
coordinates $(^{5}/4,/11/4,4,/1-4,1/4, -1/4)-1/4,$ -1/4) so $Xn$ is orthogonal to $\mathrm{Y}\mathrm{X}$ . Eliminatin$\mathrm{g}$
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$W_{23}$ between the Miura in these two triangles, one can obtain aMiura in the isosceles right
triangle $\mathrm{Y}XV$ . One can easily convince oneself that this relation is still linear separately
in $\mathrm{Y}$ and $V$ (but not in $X$ anymore). On the other hand, the point $\mathrm{P}\tilde{V}_{78}$ of coordinates
$(.\ulcorner)/4,1/4,1/4,1/4,1/4,1/\mathrm{g}$ $-1/4,$ -1/4) forms an equilateral triangle not only with $X$ and $\overline{\mathrm{Y}}$

(as any $\tilde{W}$ does), but also with $X$ and $V$ . So just as in the above construction, one can
obtain aMiura in the isosceles right triangle $VX\overline{\mathrm{Y}}$ , which is linear separately in $V$ and $\overline{\mathrm{Y}}$ .

Eliminating $V$ leads to arelation involving only $\mathrm{Y}$ , $X$ and $\overline{\mathrm{Y}}$ , which is still linear separately
in $\mathrm{Y}$ and $\overline{\mathrm{Y}}$ , though not in $X$ . We thus obtain the first half of the nonlinear equation.

one full $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p}\not\supset$ .
The construction we just presented allows one to derive the nonlinear equation. It

goes without saying that the bulk of computations is considerable and, as amatter of fact,
in the case of the elliptic discrete Painlev\’e equation, prohibitively so. Thus we shall not
present its explicit form and limit ourselves to those of the q- and $\delta-$ equations. Below
we present just their final forms, which are obtained after the appropriate scalings of the
dependent and independent variables are introduced.

For the $q$ equation we shall use the notation $q_{n}=q\circ\lambda^{r\iota}$ and $\rho_{\tau\iota}=q_{n}/\sqrt{\lambda}$ . We start from
eight constants $d_{i}’ \mathrm{s}$ with the constraint that their product is unity. Let $m_{1}$ , $m_{2}$ , $\ldots$ , $m_{7}$

be the elementary symmetric functions of order 1to 7, i.e. $m_{1}= \sum_{i}d_{i}$ , $m_{2}= \sum_{i<;}djd_{7}$

(the constraint meaning $m_{8}= \prod_{i}d_{\dot{f}}=1$ ) of these eight constants. Then the equations
are:

$\frac{(y_{n+1}\rho_{n+1}q_{n}-x_{n})(y_{n}\rho_{n}q_{n}-x_{n})-(\rho_{r\iota+1}^{2}q_{n}^{2}-1)(\rho^{\frac{\cdot\prime}{n}}q_{n}^{2}-1)}{(y_{n+1}/(\rho_{n+1}q_{n})-x_{n})(y_{\gamma 1}/(\rho_{71}q_{l})-x_{71})-(1-1/(\rho_{n+1}^{2}q_{r\iota}^{2}))(1-1/(\rho_{\iota}^{2}q_{l}^{2}))},\cdot..\cdot.,$

,
$x_{n}^{4}-m_{1}q_{n}x_{n}^{3}+(m_{2}q_{\gamma 1}^{2}-3-q^{8}|’)x_{1l}^{2}.+(m_{7}q_{r\iota}^{7}-m_{3}q_{n}^{3}.+2m_{1}q_{l},)x,\mathrm{t}$

$=. \frac{+q_{n}^{8}-\dot{m}_{6}q_{n}^{6}+m_{4}q_{n}^{4}-m_{2}q_{n}^{2}+1}{x_{n}^{4}-m_{7}x_{n}^{3}/q_{n}+(m_{6}/q_{n}^{2}-3-1/q_{\overline{n}}^{8})x_{\iota}^{2}+(m_{1}/q_{n}^{7}-m_{5}/q_{n}^{3}+2m_{7}/q_{n})x.|},..(4.5(\iota)$

$+1/q_{n}^{8}-m_{2}/q_{n}^{C)}+m_{4}/q_{n}^{4}-m_{C)}/q_{n}^{2}.+1$

$\frac{(x_{n-1}\rho_{n}q_{n-1}-y_{n})(x_{n}\rho_{r\iota}q_{n}-y_{n})-(\rho_{n}^{2}q_{n-1}^{2}-1)(\rho_{n}^{2}q_{n}^{2}-1)}{(x_{n-1}/(\rho_{n}q_{n-1})-y_{n})(x_{n}/(\rho_{n}q_{n})-y_{n})-(1-1/(\rho_{n}^{2}q_{n-1}^{2}))(1-1/(\rho_{\iota}^{2}q_{rl}^{2}))}....$

,
$y_{n}^{4}-m_{7}\rho_{n}y_{n}^{3}+(m_{6}\rho_{71}^{2}.-3-\rho_{n}^{8})y_{n}^{2}.+(m_{1}\rho_{n}^{7}-m.r_{)}\rho_{n}^{3}.+2m_{7\beta,\prime})y,)$

$=. \frac{+\rho_{7l}^{8}-m_{2}\rho_{ll}^{6}+m_{4}\rho^{4}|\iota-m_{6}\rho_{n}^{2}+1}{y_{n}^{4}-m_{1}y_{n}^{3}/\rho_{n}+(m_{2}/\rho_{n}^{2}-3-1/\rho_{n}^{8})y^{2}+(m_{7}/\rho_{f\prime}^{7}-m_{3}/\rho_{n}^{3}+2m_{1}/\rho_{\mathrm{I}1})y,|},,(4.5b)$

$+1/\rho_{\iota}^{8},-m_{6}/p_{1}^{C)},+m_{4}/p_{1}^{4},-m_{2}./\rho_{11}^{2}+1$

For the $\delta$ equation we shall use the notation $z,,$ $=z_{0}+n\delta$ and $\zeta_{?l}=\sim$$\mathit{7}_{\gamma\}}-\delta/2$ . Here
we start from eight constants $k_{i}$ with the constraint that their sum is zero. Let $s_{2}$ , $S_{\backslash }$,

’

. . . ’ $s_{8}$ be their elementary symmetric functions of order 2to 8(from the constraint,
$s_{1}= \sum_{i}k_{i}=0)$ . Then the equations are:

$\frac{(x_{n}-y_{n+1}+(z_{n}+\zeta_{n+1})^{2})(x_{n}-y_{n}+(z,+\prime\zeta_{r\iota})\underline{)})+4x_{n}(z_{n}+\zeta_{\iota+1})(z,\prime+\zeta,\prime)}{(z_{n}+\zeta_{n})(x_{n}-y_{n+1}+(z_{\tau\iota}+\zeta_{n+1})^{2})+(z_{n}+\zeta_{n+1})(x_{n}-y,,+(z_{n}+\zeta,,)^{2})}.$

’

$=2 \frac{x_{n}^{4}+S_{2}x_{n}^{3}+S_{4}x_{n}^{2}+S_{6}x_{r\iota}+S_{8}}{8z_{n}x_{n}^{3}+S_{3}x_{n}^{2}+s_{r_{)}}x_{n}+S_{7}}$

.
$(4.6‘\iota)$
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where the Si’s are the elementary symmetric functions of the quantities $k_{i}+z_{n}$ (which are
essentially what was called $C_{i}$, in $\mathrm{s}\mathrm{e}\mathrm{c}.\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}3$ ), so $S_{2}=28z_{l}^{2},+s_{2}.$ , $S_{3}=56z_{n}^{3}+6z,$ ’ $s_{2}+s_{3}$ ,
$\mathrm{c}\mathrm{t}\mathrm{c}$ . (and $8z_{1},=S_{1}$ ).

$., \cdot\frac{(y_{7\prime}-x_{?1-1}+(z_{n-1}+\zeta_{n})^{\underline{\prime}})(y_{\iota}-x,|+(z,|+\zeta_{n})^{2})+4y_{n}(z,\iota+\zeta_{\iota})(z_{n-1}+\zeta_{n})}{(z,\iota+\zeta_{l})(y_{ll}-x,\prime-1+(z,\iota-1+\zeta_{n})^{\underline{\prime}})+(z_{r\iota-1}+\zeta_{71})(y_{l}-x_{n}+(z_{n}+\zeta_{n})^{2})},,$

’

$=2’. \frac{y_{n}^{4}+\Sigma_{2}y_{\iota}^{3}+\Sigma_{4}y_{n}^{2}+\Sigma_{6}y_{\tau\prime}+\Sigma_{8}}{8\zeta_{n}y_{n}^{3}+\Sigma_{3}y_{n}^{2}+\Sigma_{\mathrm{J}}\ulcorner y_{n}+\Sigma_{7}}$ (4.6b)

where the Si’s are the elementary symmetric functions of the quantities $\zeta_{?\iota}-k_{i}^{\alpha}$ (which
are essentially the $F_{l}$ of section 3), so $\Sigma\underline,,$ $=28 \zeta..,,\frac{..\prime}{1},,+s\underline{)}$ , $\Sigma_{3}.=56\zeta^{3},$, $+6\zeta_{1},s_{2}-s_{3}$ , etc. (and
$8\zeta_{1},=\Sigma_{1})$ .

The system (4.6) can be obtained from (4.5) by acoalescence process. Here we shall
follow the convention [2] of using upper-case letters for the “higher” equation, here (4.5),

and lower-case letters for “lower”, here (4.6). Indeed, we take $Q\mathrm{o}=e^{\epsilon z_{0}}$ , $\Lambda=1+\epsilon\delta$ ,
$X=2+\epsilon^{2}x$ , $\mathrm{Y}=2+\epsilon^{2}y$ , $D_{i}=e^{\epsilon k;}$ . In the limit $\epsilonarrow 0$ (so that from $q$ and $\rho$ we obtain
$(Q,\iota-1)/\epsilonarrow z_{n}$ , $(R_{n}-1)/\epsilonarrow\zeta_{n})$ we recover (4.6) for $x$ and $y$ . This calculation is quite
delicate since the first few orders in the expansions of numerators and denominators on
both sides of (4.5) vanish and one has to go up to order 8in $\epsilon$ before finding all significant
quantities.

Another coalescence can lead from (4.5) to aknown $q- \mathrm{P}_{\mathrm{V}1}$ equation related to the

affine Weyl group $\mathrm{E}_{7}^{(1)}$ . We take $X=\Omega x$ , $Y=\Omega y$ , with $\Omegaarrow\infty$ . Among the 8quantities
$D$ ;we take 4large ones $(\propto\Omega)$ , and 4small ones $(\propto 1/\Omega)$ . Then the elementary symmetric
functions behave, at the dominant term, like powers of Q. In fact, up to such powers, $NI_{1)}$

$\Lambda’I_{2}$ , $\mathrm{J}/I_{3}$.become the three first elementary symmetric functions $m_{1}$ ,7712, $m_{3}$ of the four
“large” $D_{i}$ , and $M$-, , $l1/I_{()}\mathrm{J}/Ir_{)}$ those, namely $n_{1}$ , $n\underline,$ , $n_{3}$ , of the $in\mathrm{v}e\mathrm{z}\cdot se$ of the four “small”
ones, while $l\mathfrak{l}’I_{4}$ becomes the common value $p$ of the products. At the limit, keeping only
the dominant terms (4.5) becomes

$(y_{\mathit{7}l+1}R_{1+\rfloor},Q,’-x,1)(y\}\prime R,lQ,l -x_{n})$

$(y,’+1/(R_{1+1},Q_{n})-x,l)(y_{1\mathit{1}}/(R,,Q_{7\mathrm{L}})-x_{\mathrm{J}},)$

$=.. \frac{\prime c_{1l}^{4}-m_{1}Q|\prime x_{1}^{3}+\mathrm{c}?n_{\underline{J}}Q,\iota x^{2}-|\iota m_{3}Q_{?\iota}^{3}x,l+pQ_{n}^{4}}{x_{71}^{4}-n_{1}x_{n}^{3}/Q_{7\prime}’+n_{\underline{\lambda}}x_{\iota}^{\underline{)}}/Q_{\mathrm{I}l}^{2}-n\cdot;x,|/|Q_{7\prime}^{3}+p/Q_{l1}^{4}}.,’.\cdot$

.
$(4.7c\iota)$

$(x_{n-1}R,,Q,\mathrm{t}-1-y_{21})(x,\}R_{n}Q_{n}-y_{n})$

$(x_{n-1}/(R_{n}Q.1-1)-y\}1)(x,’/(R_{n}Q,’)-y_{1},)$

$=,, \cdot,’\frac{y_{n}^{4}-n_{1}R_{1}y_{\mathfrak{l}l}^{3}+n_{2}R_{1l}^{2}y_{?\iota}^{2}-n_{3}R_{n}^{3}y_{l}+pR_{\iota}^{4}}{y^{4}-m1\iota J_{1}^{3}/R,|+?n_{\underline{\lambda}}y_{l}^{2}/R_{1}^{\underline{\prime}}-rn_{3}y_{7\prime}/R_{n}^{3}+p/R_{n}^{4}},,$

” (4.7b)

Then let us replace the $y’ \mathrm{s}$ by their inverse. System (4.7) becomes:

$\frac{(R,\prime+1Q,|-\prime\iota \mathrm{I}1y,1+|)(R||Q,|-\prime \mathrm{C}_{||}y,\mathrm{t})}{(1/(R,|+1Q|\iota)-\prime \mathfrak{r}_{?1}y|\prime+1)(1/(R,\prime Q,l)-x_{r\iota}y_{n})}..\cdot$

.

$=.. \cdot,\frac{x_{1l}^{4}-\uparrow n_{1}Q_{r\iota}x_{1}^{3}+?n_{2}Q^{2}|\iota x^{2}-\iota m_{3}Q^{3}||x_{n}+pQ_{\mathit{7}1}^{4}}{x_{\iota}^{4}-n_{1}x_{71}^{3}/Q,|+n_{2}x_{l}^{2}/Q_{n}^{2}-n_{3}x_{?\iota}/Q_{?\prime}^{3}+p/Q_{\mathit{7}1}^{4}}.,’.\cdot$ (4.8a)
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$(x_{\mathrm{n}-h\ovalbox{\tt\small REJECT})nn}RQ_{n-\mathrm{h}} 1)(\mathrm{r}_{n}y_{\mathrm{t}\mathrm{t}-}\mathrm{R}_{\mathrm{r}\mathrm{z}}Q_{\mathrm{r}\mathrm{t}}$ 1)
$(\mathrm{z}.-\mathrm{t}y_{n}/(_{\ovalbox{\tt\small REJECT}}\mathrm{R}_{n}Q_{7?-\mathrm{t}})-1)(\mathrm{z}_{n}\mathrm{y}_{7?}/(7^{\ovalbox{\tt\small REJECT}}?_{7},Q_{n})-1)$

1 $n_{\ovalbox{\tt\small REJECT}}R_{n}y_{n}+n_{t}Rn_{t}’\ovalbox{\tt\small REJECT} \mathit{1}$ $\mathrm{n}_{3}\mathrm{R}\mathrm{J}\ovalbox{\tt\small REJECT} \mathrm{n}$ $+\ovalbox{\tt\small REJECT}/np"\ovalbox{\tt\small REJECT}$

$1-m_{\mathit{1}}y_{l\mathit{7}}/R$. $\ovalbox{\tt\small REJECT}$ $m_{\mathit{2}}y.j/R^{\cdot}p-m_{\mathit{3}}y\ovalbox{\tt\small REJECT}/R\mathit{3}|\ovalbox{\tt\small REJECT} \mathrm{q}\ovalbox{\tt\small REJECT}$ $y_{\ovalbox{\tt\small REJECT}}p/R\ovalbox{\tt\small REJECT}^{\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT}}}$

(4.8b)

Inverting both sides of (4.8b), gauging the $’.\iota’$ ’s and $y’ \mathrm{s}$ through $x_{1},arrow x_{\}},p^{1/4}/Q,$ , ’ $y_{r},$ $arrow$

$y,$ , $p^{-1/4}/R_{1}$, and redefining $q_{r1}=Q^{2},$, ’ $p,$ }
$=R^{\underline{\prime}},$, we obtain the syste $\mathrm{m}$ :

$\frac{(x_{r\}}y,|+1-q_{n}\rho,\iota+1)(x,|y_{t\prime}-q,,\beta_{||})}{(x_{n}y_{n+1}-1)(x_{l1}y_{\mathrm{t}}-1)}.\cdot,=.,.,’,\frac{\prime c_{1}^{4}-rn_{1}q_{?1}\prime x_{1}^{3}+rn_{2}q^{\frac{\prime}{r\iota}}x_{\eta \mathrm{t}}^{2}-rr\iota_{3}q_{\iota\iota}^{3}\prime c_{\iota\iota}+q_{\gamma 1}^{4}}{\prime\iota_{1}^{\prime 4}-n_{1}x_{\mathrm{t}}^{3}+n_{2}x^{2},-n_{3^{X},1}+1}.,\cdot$

.
$(4.9‘\iota)$

$\frac{(x_{n-1}y_{n}-q_{?l}-1\rho_{n})(x_{n}y_{?\prime}-q_{1}\rho_{l})}{(x_{n-1}y_{n}-1)(x_{n}y_{n}-1)},,=",\frac{y_{\iota}^{4}-rn_{3}p,y_{\iota\iota}1\}+m_{2}\rho_{\iota}^{2}y_{r\iota}^{2}-m_{1}\rho_{?l}^{\mathrm{J}}y_{?\prime}+p_{\iota}^{4}}{y_{\mathfrak{l}1}^{4}-n_{3}y_{1}^{3}+n_{2}y_{n}^{2}-n_{1}y_{n}+1},’.\cdot.$

,
(4.9b)

which is the equation we introduced in [11] under the name of asymmetric $q- \mathrm{P}_{\mathrm{V}1}$ . From
(4.6) asimilar coalescence would lead to the other equation associated to the affine Weyl
group $\mathrm{E}_{7}^{(1)}$ and introduced in [11], namely the asymmetric d-Py-.

Before completing this section we shall mention one last degeneration, that of the
elliptic equation towards the $q$ equation. Since we have not given the explicit form of the
elliptic-discrete $\mathrm{P}$ we shall present the coalescence at the level of the Miura transformations.
We start from (4.4) and consider the limit $marrow \mathrm{O}$ . At this limit the elliptic sines go over
to circular sines and moreover $\theta_{0}arrow 1$ . Thus, taking $\kappa=i\lambda$ (and with asign change of
$X$ , $\mathrm{Y}$, $W_{23})$ we recover exactly (4.3).

While all the discrete Painleve equations obtained here have 8parameters, their con-
tinuous limit is just $\mathrm{P}\backslash \prime \mathrm{I}$ (which has four parameters and one continuous independent
variable). As amatter of fact, all discrete $\mathrm{P}’ \mathrm{s}$ associated to the affine Weyl groups $\mathrm{E}_{8}^{(1)}$ ,
$\mathrm{E}_{7}^{(1)}$ and $\mathrm{E}_{6}^{(1)}[14]$ have $\mathrm{P}\backslash \prime \mathrm{I}$ as continuous limit ( $\dot{\not\subset}\mathrm{t}\mathrm{l}\mathrm{t}\mathrm{I}\mathrm{l}\mathrm{o}\mathrm{u}\mathrm{g}\mathrm{h}$ they contain more parameters
than $\mathrm{P}\mathrm{v}\mathrm{I}$ , to begin with). On the other hand, the asymmetric $q- \mathrm{P}_{\mathrm{I}1\mathrm{I}}$ equation [15], de-
scribed by the group $D_{5}.$ , contains exactly the same number of parameters as $\mathrm{P}_{\mathrm{V}\mathrm{I}}$ and was,
in fact, historically the first discrete form of $\mathrm{P}_{\mathrm{V}\mathrm{I}}$ discovered.

5. CONCLUSION

In this paper we have presented the geometric construction of the 8-parameter discrete
Painlev\’e equation. This approach, based on affine Weyl groups, is particularly interesting
in the present case because, given the complexity of the equations, there is no possibility
to obtain them through abrute-force calculation. As amatter of fact, this is the very first
instance where the geometrical approach allowed one to construct apreviously unknown
discrete Painlev\’e equation.

One important result obtained here, and which is unique (in the sense that it cannot
exist for d-P’s not described in $\mathrm{E}_{8}^{(1)}$ ) is the construction of elliptic-discrete $\mathrm{P}’ \mathrm{s}$ . Their
existence was first proven rigorously by Sakai in [7]. Here we have presented the explicit
construction in the bilinear case and also up to the Miura level for the nonlinear variables.
However the complexity (and sheer bulk) of computations did not allow us to produce the
explicit form of the elliptic d-P in nonlinear variables.
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Having obtained the basic discrete Painlev\’e equations does not exhaust the possibil-

ities related to the geometry of $\mathrm{E}_{8}^{(1)}$ . It is possible, within the same space of the weights
of $\mathrm{E}_{8}^{(1)}$ , to define evolutions along more complicated paths and obtain more second-0rder
discrete $\mathrm{P}’ \mathrm{s}$ (just as we have done for simpler Weyl groups). Given the richness of the $\mathrm{E}_{8}^{(1)}$

group this is aproject that must be undertaken with extreme care. We intend to return
to this question in some future work, once the analogous studies in $\mathrm{E}^{\underline{(}1)}$,and $\mathrm{E}_{6}^{(1)}$ have first
$\mathrm{b}$ een carried through.
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