goboobooobog 120560 2001 0 1-6

An Extended Depth-first Search
— How to Decrease Backtracking —

MEEAKRE KE % (Jun Kiniwa)

" Department of Management Science, Kobe University of Commerce,
8-2-1 Gakuen nishi-machi, Nishi-ku, Kobe-shi, 651-2197 Japan
kiniwaQkobeuc.ac. jp

1 Introduction

In usual algorithms based on the depth-first search, there is no problem about this method. The number
of steps for this search is ©(V + E). So most people have paid no attention to this method. However,
there are some areas, say distributed algorithms, in which one step costs much time. In particular, the
backtracking property is a drawback in distributed mutual exclusion because no process is allowed to get
into the critical section during the time. For an exhaustive search in the Web, the backtracking cost is
extremely high. In this case, it is difficult to know the whole link structure in advance. Thus we cannot
take an approach such as examining a near-hamiltonian circuit. So it is worth while to investigate how
to decrease backtracking.

Since Tarjan’s research [8] on the depth-first search, its technique has been widely used in computer
science. Though other variant (parallel) traversal algorithms, K-depth or breadth-depth search, are also
known [7], they are not so popular. From the viewpoint of artificial intelligence, Freuder (3, 4] investigated
the condition of backtrack-free or backtrack-bounded structure. In the context of distributed algorithms,
the depth-first search technique is also used [5]. It seems, however, that there are few efforts to reduce
backtracking. So our research may be a fundamental work on these areas.

In this paper we present an extended depth-first search. The traversal does not always move along
the tree if possible. The characteristics of our method are :

— If all the reachable nodes have been visited along the traversal starting from a node u to a node v,
we can return directly from v to u.
— If the underlying graph has articulation points, our method is effective.

The rest of this paper is organized as follows. Section 2 presents our basic method and proves its
correctness. It also involves successful probabilities in some graphs. Section 3 introduces an additional
way which makes our method more effective. Section 4 concludes the paper.

2 Basic Method

2.1 Algorithm

In this section we describe our algorithm. Fundamental terminologies concerning graph theory can be
seen in [9]. Since our idea reminds us of flow problems, we use a word “flow” to express some quantity.
Suppose that the numbers of nodes and edges are unknown. Informally, our method works as follows. For
each unvisited adjacent node, 1 flow is distributed so that the nodes to be visited can be memorized. The
distributed flow is collected when the search visits the node. This is because there is no need to memorize
the visited nodes any more. In this way, the distribution and the collection of flow is iterated repeatedly.
Gradually the collected flow grows, meaning that the number of visited nodes grows. At the end, if we
can collect the same amount of the initial flow, it means that every node has been visited. If we are at
the node adjacent to the input node then, we can return without backtracking.

Let flow(v) be the flow that the node v currently possesses, and level(v) the amount of flow when
the node v was visited. Let us consider the portion of a search from the starting node to the output node.
Suppose that the length of the search from the starting node, order(v), is associated with each node v.
When a flow is distributed to a node v from adjacent nodes {u}, the minimum order of the received flow

minorder(v) = (m%rexE{o'rder(u) | v € S(in,out)}

is recorded. When a node v is visited, it distributes a flow for each unvisited adjacent node. Then the
maximum order of the adjacent nodes

mazorder(v) = (ma)lécE{arder(u) | v € S(in,out)}

is recorded. Note that the order is not defined when we are at v,y if the node has not been visited yet.
Its order, however, is greater than order(v,y:). We introduce the circuit condition which enables us to
make a circuit. :

Definition 1. We say that an output node v, satisfies the circuit condition for an input node v;, if,
for every node v € S(in, out),

order(vin) < minorder(v), (1)
mazorder(v) < order(vVout), and (2)
level (vin) = flow(Vout)- (3)

O

In particular, the first two inequalities are called the order conditions, where the expression (1) (resp.
(2)) guarantees there is no inflow (resp. outflow) from S(start,in) to S(in, out) (resp. from S(in,out) to
S(out, term)). The third expression is called the flow condition, which guarantees the flow conservation.
We just refer to the circuit condition if we mean all of them.

Without loss of generality, suppose that a connected graph is given.

Algorithm ExtendedDFS

input: a graph G = (V, E) and a sufficient flow(v,¢,,:) for the starting node v 40, € V
output: a sequence of nodes with no more backtrackings than the depth-first search

ExtendedDFS(v)
begin
Receive a flow into flow(v) from the previous node ;
if v is visited then
Subtract (from flow(v)) and distribute 1 flow
to each unvisited adjacent node ;
if there is some unvisited adjacent node u then
EztendedDFS(u) ;
else if v is not the input node v;,, then begin
if an adjacent node w satisfies the circuit condition then
EztendedDFS(w) ;
else ExtendedDFS(p) for v’s parent p ;
end
end.
In usual depth-first search, if a node has more than one unvisited adjacent nodes, an arbitrary node
is selected. The example below illustrates the behavior of our algorithm and the disadvantage of such
nondeterminism which will be investigated in Section 2.3.

Ezample 1. Consider the scenario depicted in Fig. 1. When we visit (the gray node) v;,,, we first distribute
1 flow for each adjacent node (a dotted arrow in (a)). Then we explore an unvisited node. In this case we
have three choices for v;,v; and v3, and we select v, (a solid arrow in (b)). Next we iterate distributing
1 flow (c), exploring v3 (d), and fail to make a circuit because flow(vs) = 5 and level(v;,) = 6. We have
to go backward just like a depth-first search (e)-(f). If we selected v, in (b), we could successfully make
a circuit. O

Ezample 2. Fig. 2 shows the structure of search which enables us to make a circuit. The bold arrows
mean the routing of search. Since there are no direct edges between S(in,out) and other portions, the
flow is conserved. O

S(start,in) . -S(out, term) .

\V
(d) (e) (4] S(in;out)
Fig. 1. Behavior of ExtendedDFS(v) Fig. 2. Structure of search

2.2 Correctness

In this section we show the correctness of our ErtendedDFS (v). The following lemma states the relation
between the order conditions and the flow conservation.

Lemma 1. If an output node v,y satisfies the order conditions for an input node v;,, the flow conser-
vation holds between v;, and voy:.

Proof. Since our algorithm distributes a flow for each adjacent node when we visit a node v, the condition
(1) means that there are no edges between the nodes on S(start,in) and those on S(in, out). Similarly, the
condition (2) means that there are no edges between the nodes on S(in,out) and those on S(out, term).
Thus the flow conservation must be held during the search S(in, out). o

Lemma 2. Suppose that the order condition is satisfied. The output node v,y satisfies the flow condition
for the input node v;,, if and only if all the nodes in the component have been visited.

Proof. Since the order condition holds, the flow is conserved. Suppose that an output node v, satisfies
the flow condition for an input node v;,, and that there is some unvisited node adjacent to some node
u € S(in,out). Then such node u has not received a flow because the output node collects the entire
flow. Hence the adjacent nodes to u also have not. This is because u would have distributed if they had
received. Since the component is connected, all the nodes have not been visited; a contradiction. \
Next suppose that all the nodes in the component have been visited. Since no flow is distributed to
visited nodes, each node can collect all the flow to be received. Thus all the flow input at the input node
is collected by the output node. o

2.3 Properties

Now we examine probabilities of making a circuit in some graphs. For simplicity, the distribution of flows
is not explicitly described here. We call a node of degree at least three a branch node.

Theorem 1. If there exist disjoint paths from any branch node to the output node, the search always
makes a circuit.

Proof. Consider a branch node v with unvisited adjacent nodes U = {v1,...vq}. Suppose that every node
reachable from ancestors of v has been visited. Then we visit v and apply our EztendedDFS(v) to U from
v; to vq. Let vg be the last visited node in U (other nodes U — vy are visited in a depth-first manner).
Then all the reachable nodes from U — v, are visited. Even if v,,; is visited before other nodes, there exist
disjoint paths from v,,; to them. Thus we can go forward from v,,: and backtrack to v,,: repeatedly as
shown in Fig. 3. If there is no branch node in the descendants of v4, then we can make a circuit because
every node can be explored and there is a disjoint path from vy to the output node. Otherwise, we have
unvisited vy and some branch nodes in its descendants. Thus we can show the fact by induction. a

Corollary 1. If the ﬁven graph is a complete graph or a ring, the search always makes a circuit.
Proof. Both complete graphs and rings satisfy the condition of Theorem 1. |

In what follows, we show how to compute the probability of making a circuit in some series-parallel
graphs. In usual, a series-parallel graph is defined to be a multigraph. We, however, only consider a simple
graph and slightly modify the definition in [2].

Definition 2. [2] A simple series-parallel graph (SP) is a triple SP = (G, s,t), where G = (V,E),V D
Vi # ¢ and V — V' = {s,t}, of a simple graph with the source s of degree one and the sink t of
degree one. Some edges (3,s') and (t',t) for ',t' € V' are incident on s and t, respectively. The series
composition of SPs ((V1, E1),s1,t1) and ((Va, E3), 82,t2) with t; = sy € V] or s = t; € V{ is the SP
(1 U Ve, Ey U Ey), 81,t2). The parallel composition of SPs ((Vi,Ei1),s1,t1) and ((Va, Ez), s2,t2) with
(51 = 82) A (t] = t3) for s # t| is the SP (Vi U Vo, E; U E3), 81, t,), called a parallel composition
of the first kind, and with (s, = 82) A (tr = t;) is the SP (Vi UVa UV,E, U E, U E),s,t), where
{s1,82,t1,t2} € V! =V UV,, V = {3,t} and E = {(3,81), (t1,2)}, called a parallel composition of the
second kind. O

Informally, we just append two edges whose ends are s and ¢ if no one-degree terminals are generated.
If we regard s as v;, and t as voy:, the probability p(SP) of making a circuit in SP can be obtained on
condition that each unexplored edge is selected equally likely. The most fundamental SP consisting of an
intermediate node u is C = ({s,u,t}, {(s,u), (u,t)},s,t) with p(C) = 1, called a series-parallel unit.

Lemma 3. The composition of k series-parallel umts Cl, , Ch genemtes the composed probability
H.—1 p(C;) = 1 if it is the series composition, and Z,_l o(C) = } if it is the parallel composition of
the second kind .

Proof. It is obvious for the series composition. Next con51der the parallel composition. Suppose we select
one of parallel edges from s¢' € V' with probablhty and reach ¢ € V' via an intermediate node.
At the node t', there are k unexplored edges mc1dent on t' and we have to select the one other than
(t',t) for t € V to make a circuit (with probablhty E=1). After selecting the one, we have to backtrack
from the intermediate node because the node s' has alrea.dy been visited. At the node ¢’ again, we have
to select one other than (¢, t) from k — 1 unexplored edges, and so forth. In this way, the probablhty of
visiting every node before t € V is £14=2...1 = L Since there are k choices for the edge from s', we

k k=1 "2
have k- ; - + = {. Fig. 4 (a)—(c) illustrate the case for k=3. o
(a) (b) (c)
Fig. 3. Disjoint paths from every branch node Fig. 4. Composed probability for series-parallel units

! Note that the parallel composition of the first kind cannot be defined for series-parallel units.

Lemma 4. Let SP1,. .., SP; be simple series-parallel graphs. The composition of SP1, ..., SP;. generates
the composed probability Hf=1 p(SP;) if it is the series composition, and ;1; Zf=1 p(SP;) if it is the parallel
composition.

Proof. Consider the case for k = 2. If we have a series composition, the composed probability is p(SP;) -
p(SP;) because every node in SP; must be successfully visited before the input node of SP;. If we
have a parallel composition, there are two choices from s' € V'. Suppose that we first select SP, with
probability 1. After visiting every node in SPy, we reach ¢ with probability p(SP;). Then there are two
choices at t' € V' and select SP2 with probability ,i—, Every node in SP, is visited with probability 1
because backtracking begins until arriving at ¢'. Then we traverse (t',) and make a circuit. If we first
select SP, the graph is similarly traversed as above. Thus the probability is 3 - (p(SP1) + p(SP2)) - 3
Next suppose that our claim holds for k — 1. For series composition, it is easily verified that the
composed probability is (Hf;ll p(SP;)) - p(SP}) because the traversal cannot successfully proceed until
the first k— 1 composed graph is traversed. For parallel composition, let SPj}_, denote the graph applying
the parallel composition to SPy, ..., SPg_1. If we first select SPj from the node s’ with probability %, we
can successfully reach t' with probability p(SPy) - (5;—1-';—:—% -+ 2). If we first select SP;_, from the node
s' with probability ’“—;—1, the successful probability of traversal is obtained by conditioning the first choice
from #', that is ’“—;l Then the successful probability of traversal is -(;_il—)y >, p(SP;) by the induction

hypothesis. Thus we have % -p(SPk)- k—gl-z—:—f-)+ koL ((k—;%yg 22:11 p(SP;))- k—Zl =3z Ef=1 p(SP;).
: 0

Theorem 2. If we have a simple series-parallel graph by disconnecting an edge (Vin,Vout) Of @ given
graph, the probability of making a circuit can be obtained by the same operations of which it is composed.
]

3 Labeling Method

This section provides a useful method which enables us to make a circuit. It is effective if we know the
entire graph structure and we can specify cycles. Thus, unlike the previous section, we label the nodes
in advance and traverse the graph. Our idea is to delay visiting the output node until all the nodes in
the component are visited. For this purpose, we find biconnected components using depth-first search,
and label the nodes consistently with the distance from the output node. Then whenever we come to a
branch node, we first select the largest labeled node. Our algorithms have properties as follows.

— For any connected graph with at least one cycle, we can make a circuit.
— If it has k biconnected components, we can make circuits k times.

DesignBC

input: a connected graph G = (V, E) containing at least one cycle
output: a node-labeled, edge-marked graph which enables us to make a circuit

begin

Find biconnected components BC = {bc;,bcs, . ..,bcr}, where be; (i > 2) shares an articulation point
with some be; (j < 4).
fori:=1,...,k do begin
1. Let the input node v;, € bc; be the articulation point shared with bc; (j < 1), and voyt € be; the
output node adjacent to v;p,.
2. Disconnect the edge (Vin, Vout)-
For bc;, construct a spanning tree rooted at vou: With a leaf v;,, and mark the tree edges.
4. Label the nodes of spanning tree the distance from vout 2

w

2 The labeled v;, in the previous iteration is not relabeled again.

Our EztendedDFS(v) is changed regarding how to distribute a flow, which node to be selected, and
how to traverse.

LabelExtendedDFS
— When we visit an articulation point v;, € be;, a flow is not distributed outside the component bc;.

— At a branch node of the spanning tree, we next select the unvisited largest labeled node.
— We traverse the spanning tree (only marked tree edge) from v;, t0 Voyu:.

For the first rule, if a flow is distributed outside the biconnected component, the output node cannot
satisfy the flow condition. If the given graph has an articulation point with a bridge as shown in Fig. 2,
there is no need to keep this rule. The second rule is related to our idea described above. The third rule
forces the search to proceed along the path.

Lemma 5. If the path of S(in, out) is a biconnected component with an articulation point v;,, the output
node vy salisfies the circuit condition for the input node v;, by our LabelExtendedDFS(v).

Proof. Since the biconnected component can be reached only via an articulation point, the order condi-
tions are satisfied. Let v, be any node with more than two degrees in a spanning tree. Since the children
of vy have larger label than its parent, our LabelExtendedDFS(v) visits all the children before the parent.
Thus every node in the spanning tree has been visited when the search comes to v,,;. Thus the flow
condition is satisfied from Lemma 2. o

Definition 3. [6] A biconnected tree Tg = (V;, E;) of a graph G 13 a tree whose node v € V; corresponds
to a biconnected component be, in G, and T has an edge (u,v) € E; if two biconnected components bc,,

and bc, share an articulation point. a
Lemma 6. If we regard the graph G as a biconnected tree T, then the LabelExtendedDFS visits the
nodes v € V; in a depth-first manner. |

From lemmas above, the next theorem holds.

Theorem 3. Given a graph with k biconnected components, DesignBC can order the nodes such that
LabelExtendedDFS makes circuits k times. O

4 Conclusion

We investigated how to decrease backtracking. The circuit condition guarantees every node has been
visited. Thus we can make a circuit if the condition holds. The condition has also revealed a structure of
graphs, biconnected components, which enables us to make circuits. This work has an application to the
problems in which backtracking cost is extremely high.

References

1. E.M.Bakker and J.Van Leeuwen, “Uniform d-emulations of rings, with application to distributed virtual ring
construction,” Networks, 23: 237-248, 1993.

2. A.Brandstidt, V.B.Le and J.P.Spinrad, “Graph classes: a survey,” SIAM Monographs on Discrete Mathemat-
ics and Applications, SIAM, 1999.

3. E.C.Freuder, “A sufficient condition for backtrack-free search,” Journal of the Association for Computing
Machinery, 29, 1: 301-305, 1982.

4. E.C.Freuder, “A sufficient condition for backtrack-bounded search,” Journal of the Association for Computing
Machinery, 32, 4: 755-761, 1985.

5. S.A.M.Makki and G.Havas, “Distributed algorithms for depth-first search,” Information Processing Letters,
60: 7-12, 1996.

6. U.Manber, “Introduction to algorithms : a creative approach,” Addison- Wesley, 1989.

7. E.Reghbati and D.G.Corneil, “Parallel computations in graph theory,” SIAM Journal on Computing, 7, 2:
230-237, 1978.

8. R.E.Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal on Computing, 1, 2: 146-160,
1972.

9. D.B.West, “Introduction to graph theory,” Prentice-Hall, 1996.

