
A Primal-Dual Approximation Algorithm for the Survivable
Network Design Problem in Hypergraphs
Liang Zhao \dagger , Hiroshi Nagamochi \ddagger , and Toshihide Ibaraki \dagger

\dagger Dep.of Applied Mathematics and Physics, \ddagger Dep.of Information and Computer Sciences,
Graduate School of Informatics, Kyoto University Toyohashi University of Technology

Kyoto 606-8501,Japan Toyohashi 441-8580,Japan
{zhao,ibaraki}@amp.i.kyoto-u.ac.jp naga@ics.tut.ac.jp

趙 亮 \dagger , 永持 仁 \ddagger , 茨木俊秀 \dagger

\dagger 京都大学情報学研究科数理工学専攻 \ddagger 豊橋技術科学大学情報工学系
〒 606-8501 京都府京都市左京区吉田本町 〒 441-8580 愛知県豊橋市天伯町雲雀ヶ丘 1-1

Abstract: Given ahypergraph with nonnegative hyperedge cost and afunction $r:2^{V}arrow \mathrm{Z}^{+}$ ,
where $V$ is the vertex set, we consider the problem of finding aminimum cost hyperedge subset
$E^{*}$ such that for all $S\subseteq V$ , $E^{*}$ contains at least $\mathrm{r}(5)$ hyperedges incident to $S$ . If $r$ is weakly
supermodular and the s0-called minimum violated sets can be found in polynomial time,
we present aprimal-dual approximation algorithm with performance guarantee $d_{\max}H(r_{\max})$ ,
where $d_{\max}$ is the maximum degree of hyperedges with positive cost, $r_{\max}= \max\{r(S)|S\subseteq V\}$

and $H(i)= \sum_{j=1}^{i}\frac{1}{j}$ . In particular, it can be applied to the survivable network design problem
in which the requirement is that there should be at least $rst$ hyperedge disjoint paths between
each pair of distinct vertices $s$ and $t$ , for which $r_{st}$ is prescribed.

Keywords: approximation algorithm, primal-dual method, survivable network design prob
$\mathrm{l}\mathrm{e}\mathrm{m}$ , connectivity, graph, hypergraph

1Introduction
Given an undirected graph with nonnegative edge
cost, the network design problem is to find amin-
imum cost subgraph satisfying certain connectiv-
ity requirements. In the survivable netw $ork$ design
problem (SNDP), the connectivity requirement is
that there should be at least $r_{st}$ edge-disjoint paths
between each pair of distinct vertices $s$ and $t$ , for
which $r_{st}$ is prescribed. It is known that the SNDP
is $\mathrm{N}\mathrm{P}$-hard even for unit cost and $r_{st}\in\{0, 1\}$ [9].
Thus we focus on developing approximation algo
rithms. A-approximation algorithm is apolyno
mial time algorithm which always outputs afeasible
solution of cost at most $\rho$ times the optimum.

The first approximation algorithm for the SNDP
is given by Williamson et $al$ $[9]$ . They formalize a
basic mechanism for using the primal-dual method.
It picks edge sets in $r_{\max}= \max\{r_{st}\}$ phases, and
each phase tries to augment the size of cuts with
deficiency by using an integer program, which is
solved within factor 2by aprimal-dual approach.
Their algorithm has aperformance guarantee of
$2r_{\max}$ . In [2] Goemans et al. show that by augment-
ing the size of only those cuts with maximum de
ficiency, a $2\mathcal{H}(r_{\max})$-approximation algorithm can

be obtained, where $H(i)= \sum_{j=1}^{i}.\frac{1}{j}$ is the harmonic
function. For adetailed overview of these primal-
dual algorithms, we refer the readers to the well-
written surveys [4]. Recently, Jain [5] shows that
there is an edge $e$ with $x_{e}^{*} \geq\frac{1}{2}$ in any basic solution
$x^{*}$ to the LP relaxation of SNDP (where the con-
straint $x_{e}\in\{0, 1\}$ is relaxed to $0\leq x_{e}\leq 1$ for all
edge $e$). Then it is shown that an iterative rounding
process yields a2-approximation algorithm.

In arecent paper [6], Jain et al. considered the
element connectivity $p$ roblem (ECP) in graphs. In
that problem, the vertex set consists of two types
of vertices: terminals and non-terminals. Edges
and non-terminals are called the elements. And
only each pair of terminals has connectivity require
ment, the least number of element-disjoint paths to
be realized. The objective is to find aminimum
cost spanning subgraph satisfying the requirements.
(Notice that only the edges have costs.) The SNDP
is aspecial case of ECP with empty non-terminal
set. Following the basic algorithmic schema estab
lished in $[2, 9]$ , they proposed aprimal-dual ap-
proximation algorithm for the ECP. And by having
verified that their algorithm satisfies three condi-
tions stated in [7], they claim that it is a $2?\mathrm{t}(r_{\max})-$
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approximation algorithm. However, we note that
even if the three conditions are satisfied it is still
unclear whether the desired guarantee can be ob
tained or not. (As will be shown later, our result
implies that the ECP is $2H(r_{\max})$-approximable.)

In this paper we consider the SNDP in hyper-
graphs (SNDPHG). The difference between hyper-
graph and graph is that edges in hypergraph, called
the hyperedges, may contain more than two vertices
as their endpoints. The degree of ahyperedge $e$

is the number of endpoints of $e$ . The definition of
SNDPHG is obtained by replacing edges with hyper-
edges in the definition of SNDP. Thus the SNDP is
aspecial case of the SNDPHG in which the degrees
of all the hyperedges are 2. We note that the ECP is
also aspecial case of SNDPHG. To see this, consider
anon-terminal $w$ . Let { $\mathrm{v}\mathrm{i}$ , $\ldots$, $\{v_{k},w\}$ be the
edges that are incident to $w$ . For each $i=1$ , $\ldots$ , $k$ ,
replace edge $\{v:,w\}$ with two edges $\{v:,w_{\dot{1}}\}$ and
$\{w:,w\}$ , introducing anew terminal $w:$ . Let the
cost of edge {$v:$ ,Wi} be the same as $\{v_{\dot{1}},w\}$ . Let
$r_{\epsilon t}=0$ if at least one of $\mathrm{s}$ and $t$ is anew termi-
nal. Then replace $w$ and all the edges $\{\{w:,w\}|i=$
$1$ , $\ldots$ , $k$} with hyperedge $e_{w}=\{\mathrm{v}\mathrm{i}, \ldots, w_{k}\}$ of zero
cost. Repeat this process until there is no non-
terminal left. Clearly in this way we can reduce
ECP to SNDPHG in linear time. In fact, let $d_{\max}$

denote the maximum degree of hyperedges with pos-
itive cost, we have shown that the ECP is aspecial
case of SNDPHG with $d_{\max}=2$ .

In [8] Takeshita et $d$. extend the primal-dual ap
proximation algorithm of [3] to the SNDPHG with
$r_{\iota t}\in\{0, 1\}$ . They show a $k$ approximation algo
rithm, where $k$ is the maximum degree of hyper-
edges. In this paper we design an approximation al-
gorithm to the SNDPHG based on the primal-dual
schema established in $[2, 9]$ . As aresult, we show
that aperformance guarantee of $d_{\max}H(r_{\max})$ can
be obtained. Thus our result includes or improves
the former results of [2, 6, 9] (with $d_{\max}=2$) and
[8] (with $r_{\max}=1$ ). (We note that the guarantee
cannot be derived in astraightforward manner by
simply combining the results of $[2, 9]$ and [8].) Like
the previous algorithms in [2, 8, 9], our algorithm
is also applicable to more general problems, pro
vided that they satisfy certain conditions which are
described in the next two sections.

This paper is organized as follows. Section 2
contains some definitions and the formulation of the
problem. Section 3presents an algorithm for prob-
lems formulated in Sect. 2that satisfy Conditions 1
and 2. Section 4gives aproof of the performance
guarantee. Section 5shows that the SNDPHG sat-
isfies the two conditions. Some prooffi are omitted
due to the page limit.

2Definitions and Formulation
All hypergraphs treated in this paper are undirected
unless stated otherwise. Let $G$ be ahypergraph,
and let $V(G)$ and $E(G)$ denote the vertex set and
hyperedge set of $G$ , respectively. Ahyperedge $e$ with
endpoints $v_{1}$ , $\ldots$ , $v_{k}$ is denoted by $e=$ { $v_{1}$ , $\ldots$ , Vk}
and it may be treated as the set $\{v_{1}, \ldots, v_{k}\}$ of ver-
tices. The subgraph of $G$ induced by aset $S\subseteq$

$V(G)$ is denoted by $G[S]$ (i.e., $G[S]=(S, \mathrm{E}\{\mathrm{G})\cap$

$2^{S}))$ . The neighbors of $S$ in $G$ is denoted by $\Gamma(S)$ ,
i.e., $\mathrm{r}(\mathrm{S})=\Delta\{v\in \mathrm{V}(\mathrm{G})-S|\exists e\in E(G)$ , $v\in e$ ,
$e\cap S\neq\emptyset\}$ . The set of hyperedges incident to
$S$ is denoted by $\delta(S)$ , i.e., $\mathrm{T}(\mathrm{S})=\Delta\{e\in \mathrm{E}\{\mathrm{G})|$

$F\emptyset \mathit{1}\neq e\cap S\neq e\}$ . Let $6\mathrm{A}(\mathrm{S})=\Delta \mathrm{T}(\mathrm{S})\cap A$ for aset
$A\subseteq E(G)$ . It is well known that for any subset
$A\subseteq E(G)$ , $|\delta_{A}|$ : $2^{V(G)}arrow \mathrm{Z}^{+}$ is asymmetric and
submodular function.

We first treat the SNDPHG with afunction.
Given ahypergraph $H$ with nonnegative hyperedge
cost and function $r;2^{V(H)}arrow \mathrm{Z}^{+}$ , find aminimum
cost $E^{*}\subseteq E(H)$ such that $|\delta_{E}\cdot(S)|\geq r(S)$ for all
$S\subseteq V(H)$ . We consider the problem by converting
it into the next equivalent problem.

Definition 1(Problem $\mathcal{P}$) Let $G=(T, W, E)$ be
a bipartite graph eryith disjoint vertex sets $T$ and
$W$ and an edge set $E$, where vertices in $T$ and $W$

are called terminals and non-terminals, respectively.
Let $c:Warrow \mathrm{R}^{+}$ be a nonnegative cost function and
$r:2^{T}arrow \mathrm{Z}^{+}k$ a nonnegative requirement function.
Find a minimum cost subset $W^{*}\subseteq W$ such that for
all $S\subseteq T$, $|\Gamma(S)\cap\Gamma(T-S)\cap W^{*}|\geq \mathrm{r}(\mathrm{S})$.
The equivalence can be easily seen as follows. Let
$T=V(H)$ . Replace each hyperedge $e=\{\mathrm{v}\mathrm{i}, \ldots, v_{k}\}$

with anew non-terminal vertex $w_{e}$ and $k$ edges
$\{v_{1},w_{e}\}$ , $\ldots$ , $\{v_{k},w_{e}\}$ . Assign $w_{\mathrm{e}}$ the same cost as
the hyperedge $e$ . Notice that $e\in 8(\mathrm{S})$ in $H$ if and
only if $w_{\mathrm{e}}\in \mathrm{r}(\mathrm{S})\cap\Gamma(T-S)$ in $G$ .

Let $\mathrm{T}(\mathrm{S})=\mathrm{r}(\mathrm{S})\cap\Gamma(T-S)$ for $S\subseteq T$ in $G$

(in what follows, notations $\Gamma$ and Aare defined
with respect to the input bipartite graph $G$). Let
$\Delta_{A}(S)=\Delta\Delta(S)\cap A$ for aset $A\subseteq W$ . Notice that
for any $X\subseteq T=V(H)$ , $|\Delta(X)|$ defined in $G$ equals
to $|\delta(X)|$ in $H$ . Thus $|\Delta_{A}|$ : $2^{T}arrow \mathrm{Z}^{+}$ is also asym-
metric and submodular function.

In what follows, we will consider problem $\mathcal{P}$ in-
stead of the original form defined on hypergraph $H$ .
It can be written as the next integer program.

(IP) $\min$ $\sum_{w\in W}c_{w}x_{w}$

$\mathrm{s}.\mathrm{t}$ . $\mathrm{x}(\mathrm{A}(\mathrm{S}))\geq \mathrm{r}(\mathrm{S})$ $\forall S\subseteq T$ ,
$x_{w}\in\{0, 1\}$ $\forall w\in W$ ,

where we use the notation $x(A)= \Delta\sum_{w\in A}x_{w}$ .
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W.l.o.g we assume that $r(\emptyset)=r(T)=0$ and
$r_{\max}= \max\{r(S)|S\subseteq T\}\leq|W|$ . We assume that
r satisfies two conditions. The first condition is as
follows while the second will be stated in Sect. 3.

Condition 1 $r$ is weakly supermodular. That is,
$r(T)=0$ and for any $X$, $\mathrm{Y}\subseteq T$

$r(X)+r( \mathrm{Y})\leq\max\{r(X\cap \mathrm{Y})+r(X\cup \mathrm{Y})$,
$r(X-\mathrm{Y})+r(\mathrm{Y}-X)\}$ . (1)

3APrimal-Dual Approxima-
tion Algorithm for (IP)

In this section we describe our algorithm for (IP)
according to the primal-dual schema established in
$[2, 9]$ . We then show that it runs in polynomial
time. The proof of the performance guarantee will
be given in the next section.

For an $S\subseteq T$ and $A\subseteq W$ , the deficiency of
$S$ with respect to $A$ is defined as $r(S)-|\Delta_{A}(S)|$ .
Analogously with $[2, 9]$ , our algorithm consists of
$r_{\max}$ phases. Let $W_{0}=\emptyset$ , and let $W_{i}\subseteq W$ denote
the set of non-terminals picked so far by phase $i$ . At
the beginning of phase $i$ , the maximum deficiency
(with respect to $W_{i-1}$ ) is $r_{\max}-i+1$ . We decrease
it by 1in phase $i$ , by adding aset $A_{i}\subseteq W$ -will
to the current temporary solution $W_{i-1}$ . We then
set $W_{i}=\mathrm{w}\mathrm{i}\mathrm{l}\mathrm{l}\cup A_{i}$ and proceed to phase $\mathrm{i}1$ $1$

until $i=r_{\max}$ . Finally we output $W_{r_{\max}}$ , which
is feasible to (IP) since our algorithm ensures that
the maximum deficiency with respect to $W_{r_{\mathrm{m}\mathrm{m}}}$ is
zero. In each phase $i$ , we consider the next integer
program to find such $A_{i}$ with the minimum cost.

$(\mathrm{I}\mathrm{P})_{i}$

$\min\sum_{w\in W-W_{-1}}\dot{.}c_{w}x_{w}$

$\mathrm{s}.\mathrm{t}$ . $x(\Delta_{W-W_{-1}}.\cdot(S))\geq h_{i}(S)$ $\forall S\subseteq T$ ,
$x_{w}\in\{0, 1\}$ $\forall w\in W-W_{i-1}$ ,

where $h_{i}(\cdot)$ is defined as

$h_{i}(S)=\{_{0}^{1}$ $\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{i}\mathrm{f}r(S)-|\Delta_{W_{-1}}\dot{.}(S)|=r_{\max}-i+1$

,

In the following, we solve $(\mathrm{I}\mathrm{P})_{i}$ approximately
by aprimal-dual approach based on that of [9]. We
need anotation of violated sets.

Definition 2(violated set) Let $A\subseteq W-W_{i-1}$

be a non-terminal subset. A terminal subset $S\subseteq T$

is said to be violated with respect to $A$ if $h_{i}(S)=1$

and Aa{S) $=\emptyset$ . It is $a$ minimal violated set if it is
a violated set and minimal under set inclusion.

Let $\mathcal{V}(A)$ denote the family of minimal violated sets
w.r.t A. Clearly, A is feasible to $(\mathrm{I}\mathrm{P})_{i}$ if and only
if $\mathrm{V}(\mathrm{A})=\emptyset$. Under the assumption of Condition 1,
the violated sets enjoy the following property.

Lemma 1Let $X$, $\mathrm{Y}\subseteq T$ be two violated sets with
respect to some A. Then $X\cap \mathrm{Y},X\cup \mathrm{Y}$ or $X-\mathrm{Y}$, $\mathrm{Y}-$

$X$ are violated sets with respect to $A$ .

Proof. Analogously with [9]. Notice that $|\Delta_{A}|$ is a
symmetric and submodular function. $\square$

Two sets $X$ and $\mathrm{Y}$ are said to intersect $\mathrm{i}\mathrm{f}X\cap \mathrm{Y}\neq$

$\emptyset$ , $X-\mathrm{Y}\neq\emptyset$ and $\mathrm{Y}-X\neq\emptyset$ . An immediate
conclusion is the next corollary, where for simplicity,
the words of “with respect to $A$”are omitted.

Corollary 1LetX be a minimal violated set. Then
any violated set $\mathrm{Y}$ does not intersect $X$ , $i.e.$ , either
$X\subseteq \mathrm{Y}$ or $X\cap \mathrm{Y}=\emptyset$ . Moreover, if $\mathrm{Y}$ is also $a$

minimal violated set then $X\cap \mathrm{Y}=\emptyset$. El

Another condition that $r$ satisfies is the next.

Condition 2For any $A\subseteq W$ -will, the family
$\mathcal{V}(A)$ of rninirnurn violated sets can be computed in
polynomial time.

We now consider an algorithm to $(\mathrm{I}\mathrm{P})_{i}$ according
to the primal-dual schema established in [9]. Relax
each constraint $x_{w}\in\{0, 1\}$ to $x_{w}\geq 0$ in $(\mathrm{I}\mathrm{P})_{i}$ . The
dual of this relaxation is given by

$(\mathrm{D})_{i}$

$\max\sum_{S\subseteq T}h_{i}(S)y_{S}$

$\mathrm{s}.\mathrm{t}$ .
$. \sum_{s\subseteq T\cdot w\in\Delta(S)}ys\leq c_{w}$

$\forall w\in W-W_{i-1}$ ,

$y\geq 0$ .

In the algorithm (Table 1), we use $\overline{c}$, $A$ , $y$ and $j$

to denote the reduced cost, primal solution, dual
variable and number of iterations, respectively.

Let us consider the running time. We store only
those $ys$ of positive value. Thus step 1takes $O(|W|)$

time. Since $|A|$ increases by 1after one WHILE
iteration, there are at most $|W$ –wi11 $\leq|W|$

WHILE iterations. Let $\theta$ denote the time complex-
ity to compute $\mathcal{V}(A)$ . Then steps 2, 4and 11 can
be done in $\theta$ time since $A$ is feasible if and only if
$\mathrm{V}(\mathrm{A})=\emptyset$ . It is not difficult to see that step 6can
be done in $O(|T||W|)$ time since $|\mathcal{V}(A)|\leq|T|$ by
Corollary 1, and this dominates other steps. Hence
the algorithm for $(\mathrm{I}\mathrm{P})_{i}$ takes $O(|W|(\theta+|T||W|))$

time to compute A{. Therefore the entire complex-
ity to construct the solution $W_{r_{\mathrm{m}\mathrm{w}}}= \bigcup_{i=1}^{\mathrm{r}_{\mathrm{m}}}" A_{i}$ to
(IP) is in $O(r_{\max}|W|(\theta+|T||W|))$ time. This is
polynomial since $r_{\max}\leq|W|$ by assumption
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Table 1: Approximation Algorithm for $(\mathrm{I}\mathrm{P})_{i}$

$1$ $\overline{c}arrow c$ , $Aarrow\emptyset$ , $yarrow 0$ , $jarrow 0$

2WILE $A$ is not feasible
3 $jarrow j+1$

4 $\mathcal{V}_{j}arrow \mathcal{V}(A)$

5IF $\exists S\in \mathcal{V}_{j}$ , Aw-Wt-i-AlS) $=\emptyset$ THEN
HALT ((IP) has no feasible solution)

6 $w_{j} arrow \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}\{\frac{\overline{c}_{w}}{|\{S\in \mathcal{V}_{j}|w\in\Delta(S)\}|}|$

$w\in W-W_{\dot{\iota}-1}-A\}$

7 $\epsilon_{j}arrow\frac{\epsilon_{w_{\mathrm{j}}}}{|\{S\in \mathcal{V}_{j}|w_{\mathrm{j}}\in\Delta(S)\}|}$ ,
$ysarrow ys+\epsilon_{j}$ for all $S\in \mathcal{V}_{j}$

8 $c-warrow\overline{c}_{w}-|\{S\in \mathcal{V}_{j}|w\in\Delta(S)\}|\epsilon_{j}$ ,
for all $w\in W-W_{\dot{l}-1}-A$

9 $Aarrow A\cup\{w_{j}\}$

10 FOR l $=j$ DOWN TO 1
11 IF $A-\{w\iota\}$ is feasible THEN

$Aarrow A-\{w_{l}\}$

12 Output $A$ (as $A_{\dot{1}}$ ).

4Proof of Performance Guar-

On the other hand, since $y_{S}= \sum_{j:S\in \mathcal{V}_{j}}\epsilon_{j}$ ,

$\sum_{S\subseteq T}h_{i}(S)ys=\sum_{S\subseteq Tj:}\sum_{S\in \mathcal{V}_{\mathrm{j}}}\epsilon_{j}$

$=1L1L\mathrm{I}\mathrm{I}_{j}^{\epsilon_{j}=}\mathrm{I}^{|\mathcal{V}_{j}|\epsilon_{j}}$
.

Thus to show Lemma 2it suffices to show that

$\sum|\Delta_{A}(:S)|\leq d_{\mathrm{m}\mathrm{a})\mathrm{c}}|\mathcal{V}_{j}|$ for all $j=1$ , $\ldots$ , L. (3)
$S\in \mathcal{V}_{j}$

For aset $A\subseteq W-W_{\dot{\iota}-1}$ which is infeasible to $(\mathrm{I}\mathrm{P})_{i}$ ,
$B\subseteq W-W_{\dot{\iota}-1}$ is called aminimal augmentation
of $A$ if $A\subseteq B$ and $B$ is feasible to $(\mathrm{I}\mathrm{P})_{i}$ but the
removal of any $w\in B-A$ violates the feasibility.
We here claim that for any infeasible $A$ and any
minimal augmentation $B$ of $A$ , it holds

$\sum$ $|\Delta_{B}(S)|\leq d_{\max}|\mathcal{V}(A)|$ . (4)
$S\in \mathcal{V}(A)$

antee
Lemma 2Let $A_{:}$ and $y$ be the output and the cor-
responding dual variable obtained at the end of the
primal-dual algorithm for (IP):, respectively. Then

$\sum_{w\in A:}c_{w}\leq d_{\mathrm{m}\mathrm{a}]\mathrm{c}}\sum_{S\subseteq T}h:(S)ys\cdot\square$

Before proving Lemma 2, we show that it implies
the claimed performance guarantee $d_{\max}?t(r_{\max})$ .

Theorem 1Let $opt_{\mathrm{I}\mathrm{P}}$ be the optimal value of (IP).
Let $W_{\mathrm{r}_{\mathrm{m}\infty}}= \bigcup_{\dot{\iota}=1}^{t_{\mathrm{m}\infty}}A_{\dot{\iota}}$ be the output of the $r_{\mathrm{m}\mathrm{a}]\mathrm{c}^{-}}$

phases algorithm for (IP). Then

$\sum_{w\in W_{r_{\mathrm{m}\infty}}}c_{w}\leq d_{\max}H(r_{\max})\varphi t_{\mathrm{I}\mathrm{P}}$
. (2)

Proof. Using Lemma 2. Other part is analogous to
the proof in [2]. $\square$

Proof of Lemma 2. (The proof ends at the end
of this section.) First suppose that $c_{w}>0$ for
all $w\in W$ . Then $d_{\max}$ is the maximum degree
of non-terminals. Let $L$ be the number of WHILE
$\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}.\mathrm{N}\mathrm{o}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}c_{w\iota}=\sum_{\mathrm{T}\Delta(S)\}|\epsilon_{j}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}l=\mathrm{l},2,\ldots,L.i_{\overline{\mathrm{u}}\mathrm{s}}^{-1}}L|\{S\in \mathcal{V}_{j}|w_{l}\in$

$\sum_{w\in A}.c_{w}$

$=$
$\sum_{w\in A.1}\sum_{\leq j\leq L}|\{S\in \mathcal{V}_{j}|w\in\Delta(S)\}|\epsilon_{j}$

$=$
$\sum_{1\leq j\leq L}\sum_{\mathrm{S}\in \mathcal{V}_{j}}|\Delta_{A:}(S)|\epsilon_{j}$

.

Then (3) holds by (4) by letting $A=\{w_{1}, \ldots, \mathrm{W}\mathrm{j}-\mathrm{i}\}$

and $B=A\cup A_{\dot{1}}$ for all $j=1$ , $\ldots$ , $L$ . Thus we only
need to show (4). For this, we introduce anotation
of witness set. Let $U= \Delta\bigcup_{S\in \mathcal{V}(A)}$ AB(C) $\subseteq B-A$ .

Definition 3(witness set) $C\subseteq T$ is a witness
set of $w\in U$ if it satisfies (i) $h_{i}(C)=1$ , and (ii)
$\Delta_{B}(C)=\{w\}$ .
By (i) and (ii), we see that $C$ is aviolated set (notice
that $w\not\in A$). For any $w\in U$ , there must exist a
witness set of $w$ since the removal of $w$ violates the
feasibility of $B$ . Call $\{C_{w}|w\in U\}$ awitness set
family, in which for each $w\in U$ , exact one witness
set of $w$ , $C_{w}$ , is included.

Lemma 3There exists a laminar ( $i.e.$ , intersect-
free) witness set family.

Proof. Using Lemma 1, it is analogous with [9]. $\square$

Let $\mathcal{F}=\{T\}\cup\{C_{w}|w\in U\}$ be the family ob
tained by adding $T$ to alaminar witness set family.
Construct arooted tree $\mathcal{T}$ ffom $T$ by set inclusion
relationship as follows. (To avoid confusion, we will
use the word “node” for the nodes of tree $\mathcal{T}$ , and use
the word “vertex” for the vertices of graph $G.$ ) The
node set of $\mathcal{T}$ consists of $|\mathcal{F}|$ nodes: $u_{C}$ for $C\in \mathcal{F}$ .
The root is $\mathrm{u}\mathrm{t}$ , and for each non-root node $uc$ in
$\mathcal{T}$, the parent of $uc$ is the node $uc$ for the mini-
mum $C’\in \mathcal{F}$ such that $C\subset C’$ (i.e., $C\subseteq C’$ and
$C\neq C’)$ . For each $S\in \mathcal{V}(A)$ , let $u(S)=\Delta uc$ for the
minimum $C\in \mathcal{F}$ such that $S\subseteq C$ . An $S\in \mathcal{V}(A)$

is said to be associated with $u(S)$ . For each $C\in \mathcal{F}$ ,
let $nc=|\{S\in \mathcal{V}(A)|u(S)=uc\}|$ be the number of
minimal violated sets that are associated with $u_{C}$ .
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Let $Q=\{uc\in V(\mathcal{T})|nc\geq 1\}$ be the subset of
nodes with which at least one minimal violated set
is associated. It is clear that

$| \mathcal{V}(A)|=\sum_{uc\in V(\mathcal{T})}n_{C}=\sum_{uc\in Q}nc$
. (5)

Let $d(u_{C})$ denote the degree of anode $uc$ in $\mathcal{T}$. For
anon-root node $uc$ , $C$ is awitness set (thus avio
lated set). Hence it must include some minimal vi0-
lated set, implying that if $uc$ is aleaf then $C=u(S)$
for some $S\in \mathrm{V}(\mathrm{A})$ . Hence all non-root nodes of de-
gree 1belong to $Q$ . This observation shows that
$\sum_{u_{C}\in V(\mathcal{T})-Q}d(uc)\geq 2(|V(\mathcal{T})|-|Q|)-1$ . Since $\mathcal{T}$

is atree, $\sum_{uc\in V(T)}d(uc)=2(|V(\mathcal{T})|-1)$ . Thus

$\sum_{u_{C}\in Q}d(uc)\leq 2|Q|-1$
. (6)

We next show that

$\sum_{uc\in Q}\min\{d_{\max}-1, n_{C}\}d(u_{C})\leq d_{\max}\sum_{u_{C}\in Q}n_{C}$
. (7)

Let $X=\{uc\in Q|nc\geq d_{\max}-1\}$ , $\mathrm{Y}=\{uc\in$

$Q|n_{C}=1\}-X$ and $Z=Q-X$ -Y. It is easy to
see (7) by comparing the two sides.

Finally we show that for each $uc\in Q$ ,

$. \sum_{S\in \mathcal{V}(A)\cdot u(S)=uc}|\Delta_{B}(S)|$

$\leq\min\{d_{\max}-1, nc\}d(uc)$ . (8)

Notice that (5), (7) and (8) imply (4). Therefore
we only need to show (8) to complete the proof of
Lemma 2. Consider an $S\in \mathrm{V}(\mathrm{A})$ and a $w\in \mathrm{u}(\mathrm{S})$ .
Let $C_{w}$ be the witness set of $w$ in the family $\mathcal{F}$ . By
the definition of witness set family, we see that for
any $C’\in \mathcal{F}$ , $C’\subset C_{w}$ implies $\Gamma(w)\cap C’=\emptyset$ , while
$C_{w}\subset C’$ implies $\mathrm{T}(\mathrm{w})\subseteq C’$ . By Corollary 1, either
$S\subseteq C_{w}$ or $S\cap C_{w}=\emptyset$ holds.

Case 1: Suppose that $S\subseteq C_{w}$ . Notice that
there is no $C’\in \mathcal{F}$ such that $S\subseteq C’\subset C_{w}$ . Hence
$\mathrm{u}(\mathrm{S})=uc_{w}$ . Let $uc$ be the parent of $uc_{w}$ . Then
$\mathrm{T}(\mathrm{w})\subseteq C$ . We use an directed edge $(u_{C_{w}}, uc)$ to
represent that this case occurs for an $S\in \mathrm{V}(\mathrm{A})$ and
a $w\in\Delta_{B}(S)$ such that $u(S)=ucw$ . The directed
edge $(u_{C_{w}}, uc)$ may not be unique since there may
exists some other $S’\in \mathcal{V}(A)$ such that $w\in\Delta_{B}(S’)$

and $\mathrm{u}(\mathrm{S})=u_{C_{w}}$ . In such cases multiple directed
edges {$ucw,$ $uc)$ are allowed, but for each $S’$ of such
sets only one edge is assigned. Notice that such sets
$S’$ are disjoint by Corollary 1. Therefore the total
number of the directed $(ucw, uc)$ edges is at most
$\min\{|\Gamma(w)|-1, nc_{w}\}\leq\min\{d_{\max}-1, nc_{w}\}$ (notice
that $\mathrm{T}(\mathrm{w})\cap(T-C_{w})\neq\emptyset)$ .

Case 2: Otherwise $S\cap C_{w}=\emptyset$ . Similarly, we see
that $u(S)=uc$ for the parent $uc$ of $ucw$ . We use a
directed edge $(uc, u_{C_{w}})$ to represent this case. The
total number of these $(u_{C}, uc)$ edges is at most
$\min\{d_{\max}-1, n_{C}\}$ .

For any fixed $u_{C}\in Q$ , the two cases may hap
pen simultaneously. But we see that for one (undi-
rected) edge $\{\varphi, u_{C’}\}$ in tree $\mathcal{T}$, there are at most
$\min\{d_{\max}-1,nc\}$ directed $(uc, u_{C’})$ edges that are
produced in Case 1or 2. Thus there are at most
$\min\{d_{\max}-1,n_{C}\}d(uc)$ directed edges with tail $uc$ .
On the other hand, the way that the directed edges
are produced ensures that the total number of the
directed edges with tail $uc$ (over all $S\in \mathcal{V}(A)$ and
all $w\in\Delta_{B}(S))$ equals to $\sum_{S\in \mathcal{V}(A):u(S)=u_{C}}|\Delta_{B}(S)|$ .
Hence (8) has been shown.

Thus we have proved Lemma 2under the as-
sumption that $c_{w}>0$ for all $w\in W$ . It is easy
to see that it is also true when there exists some
$w\in W$ of zero cost. To see this, notice that we
only need to show (3) for $j$ with $\epsilon_{j}>0$ , which
implies that $c_{w}>0$ for all $w \in\bigcup_{S\in \mathcal{V}_{\mathrm{j}}}\Delta_{A:-A}(S)$ .
$\mathrm{a}\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{s}|\Gamma(w)|\leq d_{\max}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}11w\in\bigcup_{\mathrm{S}\mathrm{n}\mathrm{d}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{f}\mathrm{g}\mathrm{o}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{w}\mathrm{a}\mathrm{r}}s\in v_{\mathrm{d}\mathrm{w}\mathrm{a}\mathrm{y}.\square }\Delta_{A.-A}(S)$

,

5Survivable Network Design
Problem in Hypergraphs

In this section we consider the SNDPHG. By re
placing the hyperedges with non-terminals as we
did in Sect. 2, the SNDPHG can be converted to
the next equivalent problem defined in abipartite
graph $G=(T, W, E)$ . Given $c$ : $Warrow \mathrm{R}^{+}$ , and
$r_{st}\in \mathrm{Z}^{+}$ for each pair of distinct terminals $s$ , $t\in T$ ,
find aminimum cost subset $W^{*}\subseteq W$ such that,
for each pair of terminals $s$ and $t$ , $G[T\cup W’]$ has
at least $r_{st}$ paths which are $W$-disjoint(i.e., no
$w\in W$ belongs to two or more paths). We first
show that it is equivalent to problem $\mathcal{P}$ (Sect. 2)
with $r(S)= \max\{r_{st}|s\in S, t\in T-S\}$ for all
$S\subseteq T(r(\emptyset)=r(T)=0)$ .

Auseful idea when considering $W$ disjoint paths
in $G$ is the following transformation $V$ from $G$ to a
digraph $\partial$ with edge capacities.

Definition 4 $(\mathrm{V} :Garrow\partial)$ Replace all undirected
edge $\{v, w\}$ by $two$ directed edges $(v, w)$ and $(w, v)$ of
capacity $loo$ . Then for each non-te rminal $w$ , make
a copy named $w^{c}$ , change the tails of all directed
edges $(w, v)$ from $w$ to $w^{c}$ , and add a neut directed
edge $(w, w^{c})$ of capacity 1.

In the following, avertex in $\mathrm{V}\{\mathrm{G}$) $=T\cup W$ is
also treated as avertex in $V(\not\supset)$ . However, the
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notations of $\Gamma$ and Aare only used with respect
to $G$ . Given $W’\subseteq W$ , notice that in digraph
$\overline{G[T\cup W’}\mathrm{i}$, the capacity of acut $C$ (i.e., $\emptyset$ $\neq C\subset$

$V(^{\frac{\iota}{G[T\cup W’]}}))$ is not $+\infty$ if and only if $C=S\cup$

$\mathrm{T}\mathrm{W}’(\mathrm{S})\cup$ { $w^{c}|w\in \mathrm{T}\mathrm{W}’(\mathrm{S})$ -Aw(S)} for the $S=$
$C\cap T$ , where the capacity is exactly $|\Delta_{W’}(S)|$ .

Notice that for any pair of terminals $\mathrm{s}$ and $t$ , any
$hW$-disjoint $s$ , $t$-paths in $G$ are transformed to an
integer $s$ , $t$-flow of value $h$ in ff vice versa. Thus
by the maxflow-mincut theorem it is not difficult to
show that the SNDPHG is equivalent to problem $\mathcal{P}$

with $r(S)= \max\{r_{st}|s\in S, t\in T-S\}$ .
We next show that Condition 1and 2are satis-

fied. It is easy to verify that this $r$ satisfying Con-
dition 1. We show that in phase $i$ of the algorithm
in Table 1, the minimum violated sets with respect
to any $A\subseteq W-W_{\dot{\iota}-1}$ can be found in polynomial
time (i.e., Condition 2).

Lemma 4Denote $W_{\dot{|}-1}\cup A$ by A. Let $S$ be $a \min-$

imal violated set, and let $s$ and $t$ be two terminals
such that $r_{st}=r(S)$ and $s\in S$, $t\in T$ -S. Then
$\underline{S=C_{\epsilon t}}\cap T$ for the minimum $s,t$ cut $C_{\ell t}$ in digraph
$G[T\cup\tilde{A}]$ that is minimal under set inclusion.

Proof. It is not difficult and omitted here. $\square$

Lemma 4shows that we can identify the mini-
mal violated sets by computing the minimal mini-
mum $s$ , $t$ cut in $G[T\cup\tilde{A}]$ for all pairs of distinct ter-
minals $s$ and $t$ and checking if they are violated and
minimal among these $O(|T|^{2})$ cuts. It is well known
that for each pair of $\mathrm{s}$ and $t$ , the minimal minimum
$s,t$-cut can be found by one maxflow computation
in $O(p^{3})$ time for adigraph with $p$ vertices [1]. Thus
the total running time of finding the minimal vio
lated sets is dominated by $O(|T|^{2})$ maxflow com-
putations. Thus our algorithm for the SNDPHG
can be implemented to run in $O(r_{\max}|W||T|^{2}(|T|+$

$|W|)^{3})$ time. We summary this as the next theorem.

Theorem 2Let $d_{\max}$ be the maximum degree of
hyperedges with positive cost and $r_{\max}$ be the $\max-$

irnum requirement. The SNDPHG can be apprvi-
mated within $factord_{\mathrm{m}\mathrm{a}]\epsilon}\mathcal{H}(r_{\max})$ in $O(r_{\max}mn^{2}(n+$

$m)^{3})$ time, where $m$ and $n$ are the numbers of hy-
peredges and vertices respectively. 0

6Remark
We remark that the performance guarantee $d_{\max}$ in
Lemma 2of the primal-dual algorithm for (IP) is
tight. Atight example will be given in the full pa-
per. Notice that in [2] Goemans et al. have shown
that for the SNDP in graphs the performance guar-
antee $2\mathcal{H}(r_{\max})$ is tight up to factor 2. It is thus

interesting to know whether an algorithm with im-
proved performance guarantee can be developed,
e.g., via an iterative rounding process for the SNDP
in graphs as used by Jain in [5].
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