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Abstract

We construct ageneralized Fourier transformation $\mathcal{F}(\lambda)$ associated with the 3-
body Schrodinger operator $H=- \triangle+\sum_{a}V_{a}(x^{a})$ and characterize all solutions of
$(H-\lambda)u=0$ in the Agmon-Hormander space $B^{*}$ as the image of $\mathcal{F}(\lambda)^{*}$ . These
stationary solutions admit asymptotic expansions in $B^{*}$ in terms of spherical waves
associated with scattering channels.

1Introduction
1.1 Helmholtz equation. Consider the Helmholtz equation in $\mathrm{R}^{n}$

$(-\triangle-\lambda)u=0$ , $\lambda>0$ . (1.1)

According to aclassical theorem of Sommerfeld-Rellich, $u=0$ if $u$ satisfies (1.1) and
$u=O(|x|^{-s})$ as $|x|arrow\infty$ for $s>(n-1)/2$ . Non-trivial solutions arise ffom the decay
rate $s\leq(n-1)/2$ , and the border line case $s=(n-1)/2$ was characterized by Agmon-
H\"ormander [2] : Let $u$ be asolution to (1.1). Then $u$ satisfies

$\sup_{R>1}\frac{1}{R}\int_{|x|<R}|u(x)|^{2}dx<\infty$ (1.2)

if and only if $u$ is written as

$u(x)= \int_{S^{n-1}}e^{i\sqrt{\lambda}\omega\cdot x}\varphi(\omega)d\omega$ (1.3)

for some $\varphi\in L^{2}(S^{n-1})$ . This, combined with the stationary phase method on the sphere,
implies that all the solution $u$ of (1.1) satisfying (1.2) admits an asymptotic expansion

$u\simeq C(\lambda)r^{-(n-1)/2}e^{i\sqrt{\lambda}r}\varphi(\hat{x})+\overline{C(\lambda)}r^{-(n-1)/2}e^{-i\sqrt{\lambda}r}\varphi(-\hat{x})$ , (1.4)

where $r=|x|,\hat{x}=x/r$ , and the asymptotic relation $u\simeq v$ means that

$\lim_{Rarrow\infty}\frac{1}{R}\int_{|x|<R}|u(x)-v(x)|^{2}dx=0$ . (1.5)
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The intention of Agmon-Hormander is to characterize the restriction of Fourier trans-
forms on submanifolds in $\mathrm{R}^{n}$ and they introduced the following Besov type space \yen It is
the Banach space 8equipped with the norm

$||u||_{B}=( \int_{\Omega_{0}}|u(x)|^{2}dx)^{1/2}+\sum_{j=1}^{\infty}(2^{j-1}\int_{\Omega_{j}}|u(x)|^{2}dx)^{1/2}<\infty$,

where $\Omega_{0}=\{x\in \mathrm{R}^{n};|x|<1\}$ , $\Omega_{j}=\{x\in \mathrm{R}^{n};2^{j-1}<|x|<2^{j}\}$ for $j\geq 1$ . The norm of
the dual space $B^{*}$ is equivalent to the following one

$||u||_{B^{2}}= \sup_{R>0}(\frac{1}{R}\int_{|x|<R}|u(x)|^{2}dx)^{1/2}$

Let for $s\in \mathrm{Y}\mathrm{L}$

$u\in L^{2,s}\Leftrightarrow||u||_{s}=||(1+|x|)^{s}u(x)||_{L^{2}(\mathrm{R}^{n})}<\infty$ .

For $s>1/2$ we have the following inclusion relations

$L^{2,s}\subset B\subset L^{2,1/2}\subset L^{2}\subset L^{2,-1/2}\subset g*\subset L^{2,-s}$ .

We also have
$|(u,v)|\leq C||u||_{B}||v||_{B}\cdot$ .

1.22-body Schr\"odinger equation. There are two directions for generalization of the above
facts. One is the extension to Laplacians on non-compact Riemannian manifolds. This is
actually aclassical problem and had been studied by Helgason [12], [13] for example. The
general case was studied by Agmon [1], Melrose [24], Melrose-Zworski [25]. Another is
the extension to Schr\"odinger equations. Kato [23] proved that the solution of the 2-b0dy
Schr\"odinger equation

$(-\triangle+V(x)-\lambda)u(x)=0$ , $\lambda>0$

satisfying $u\in L^{2,-}’$ , $\alpha<1/2$ , vanishes identically. Non-trivial solutions to the critical
case were charac terized by Yafaev [31], G\^atel-Yafaev [6].

For the sake of simplicity, let us mention the 2-body Schr\"odinger operator with short-
range potential $H=-\triangle+V(x)$ , $V(x)=O(|x|^{-1-\epsilon})(\epsilon>0)$ . Suppose $u$ is asolution to
the equation

$(H-\lambda)u=0$ , $\lambda>0$ . (1.6)

Then $u$ satisfies (1.2) if and only if $u$ is written as

$u=\mathcal{F}(\lambda)^{*}\varphi$ , $\varphi\in L^{2}(S^{n-1})$ , (1.7)

where $\mathcal{F}(\lambda)$ is the operator defined by

$\mathcal{F}(\lambda)f=\int_{\mathrm{R}^{n}}e^{-:\sqrt{\lambda}\omega\cdot x}f(x)dx-\int_{\mathrm{R}^{n}}e^{-i\sqrt{\lambda}\omega\cdot x}V(x)R(\lambda+i0)fdx$, (1.8)

with $R(z)=(H-z)^{-1}$ . The solution $u$ of (1.6) satisfying (1.2) admits an asymptotic
expansion

$u\simeq C(\lambda)r^{-(n-1)/2}e^{i\sqrt{\lambda}}{}^{t}\varphi_{+}(\hat{x})+\overline{C(\lambda)}r^{-(n-1)/2}e^{-i\sqrt{\lambda}r}\varphi_{-}(\hat{x})$ , (1.6)
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and $\varphi\pm \mathrm{a}\mathrm{r}\mathrm{e}$ related as follows
$\varphi_{+}=\hat{S}(\lambda)J\varphi_{-}$ , (1.10)

where $(J\varphi)(\omega)=\varphi(-\omega)$ and $\hat{S}(\lambda)$ is the scattering matrix for $H$ . The operator $\mathcal{F}(\lambda)$

is aspectral representation (generalized Fourier transformation) for $H$ . In fact there are
two types of generalized Fourier transformation $\mathcal{F}_{\pm}(\lambda)$ , which are related to the spatial
asymptotics of the resolvent in the following way :

$\mathcal{F}_{\pm}(\lambda)f=\lim_{rarrow\infty}C_{\pm}(\lambda)r^{(n-1)/2}e^{\mp i\sqrt{\lambda}r}(R(\lambda\pm i0)f)(r\cdot)$ .

Moreover
$\mathcal{F}(\lambda)f=\mathcal{F}_{+}(\lambda)f=J\overline{\mathcal{F}_{-}(\lambda)\overline{f}}$.

The above facts (1.7), (1.9) and (1.10) are thus closely related each other and arise from
fundamental properties of the generalized Fourier transformation associated with $H$ .

1.33-body Schr\"odinger equation. To extend the above results to many-body Schr\"odinger
equations is avery difficult problem. It was shown in [18] that asolution $u$ of the TV-body
Schrodinger equation $(H-\lambda)u=0$ vanishes identically if $u\in L^{2,-}$’for some $\alpha<1/2$ and
if Ais neither the eigenvalue nor in the set of thresholds of $H$ . This is ageneralization
of Sommerfeld-Rellich’s classical result to the many-body problem. To charcterize the
solutions of the border line case is much harder, since it requires adetailed knowledge
of the $N$-body stationary Schr\"odinger equation, which remains unknown in spite of the
success of the proof of asymptotic completeness by the time-dependent method [4], [26],
[8], [3].

In this paper, we shall study this problem in the case of 3-particle systems in $\mathrm{R}^{3}$ . We
consider 3particles with mass $m_{i}>0$ and position $q_{i}\in \mathrm{R}$ . To remove the motion of the
center of mass, our Hamiltonian is defined over the space

$\mathcal{X}=\{-(q_{1}, q_{2}, q_{3});\sum_{i=1}^{3}m_{i}q_{i}=0\}\simeq \mathrm{R}^{6}$.

Let $a=(i, j)$ be apair of particles $i$ and $j$ , and $k$ be the 3rd partcle. The reduced masses
$m_{a}$ , $n_{a}$ and the Jacobi-coordinates are defined by

$\frac{1}{m_{a}}=\frac{1}{m_{i}}+\frac{1}{m_{j}}$ , $\frac{1}{n_{a}}=\frac{1}{m_{i}+m_{j}}+\frac{1}{m_{k}}$ ,

$x^{a}=\sqrt{2m_{a}}(q_{i}-q_{j})$ , $x_{a}= \sqrt{2n_{a}}(q_{k}-\frac{m_{i}q_{i}+m_{j}q_{j}}{m_{i}+m_{j}})$ .

The 3-particle Hamiltonians Ho, $H$ are defined by

$H_{0}=-\triangle_{x_{a}}-\triangle_{x^{a}}$ , $H=H_{0}+ \sum_{a}V_{a}(x^{a})$ ,

where $\triangle_{x_{a}}(\triangle_{x^{a}})$ denotes the Laplacian with respect to the variable $x_{a}(x^{a})$ . We put

$T_{a}=-\triangle_{x_{a}}$ , $H^{a}=-\triangle_{x^{a}}+V_{a}(x^{a})$ ,
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$H_{a}=T_{a}+H^{a}=H_{0}+V_{a}(x^{a})$ .

Let
$R(z)=(H-z)^{-1}$ , $R_{a}(z)=(H_{a}-z)^{-1}$ , $R^{a}(z)=(H^{a}-z)^{-1}$ .

Let $\mathcal{T}$ be the set of thresholds of $H$ , namely

$\mathcal{T}$ $= \{0\}\cup\bigcup_{a}\sigma_{p}(H^{a})$ ,

where $\sigma_{p}(H^{a})$ is the set of eigenvalues of $H^{a}$ . Let $\mathcal{T}’=\mathcal{T}\cup\sigma_{p}(H)$ . We define

$a( \lambda)=\inf\{\lambda-t;t\in \mathcal{T}’, t<\lambda\}$ .

$a(\lambda)=\lambda$ if $\lambda>0$ .
To get the complete result, we assume that each pair potential decays rapidly. More

precisely, each pair potential $V_{ij}(y)$ is assumed to be areal $C^{\infty}$ function on $\mathrm{R}^{3}$ and to
satisfy

Assumption $\partial_{y}^{m}V_{ij}(y)=O(|y|^{-m-\rho})$ , $\forall m\geq 0$ (1.11)

for some $\rho>5$ . Here $\partial_{y}^{m}$ stands for any differentia tion of order $m$ .

Let us stress that this is the only assumption we impose on our 3-particle systems. We
assume no extra assumptions such as nonexistence of zer0-eigenvlue or zer0-resonances.

One can allow Coulombic singularities for $V_{\dot{l}j}$ . Namely our results below also hold if
$V_{ij}=V_{\dot{\iota}j}^{(1)}+V_{\dot{l}j}^{(2)}$ , where $V_{\dot{l}j}^{(1)}$ is asmooth function satisfying (1.11), $V_{ij}^{(2)}$ is acompactly

supported function satisfying $|V_{\dot{l}j}^{(2)}(y)|\leq C|y|^{-1}$ , and all the multiple commutators of $V_{ij}^{(2)}$

and $A= \frac{1}{2_{\dot{l}}}(x\cdot\nabla+\nabla\cdot x)$ extend to bounded operators.

1.4 Main results. Let us summarize our main results in this paper. Let $H=H_{0}+ \sum_{a}V_{a}(x^{a})$

be the 3-body Schr\"odinger operator with center of mass removed. Each pair potential is
assumed to satisfy (1.11). Let $\mathcal{T}$ be the set of thresholds for $H$ and $\mathcal{T}’=\mathcal{T}\cup\sigma_{p}(H)$ . In
the following, $\sum_{a,n}=\Sigma_{a}\Sigma_{n}$ denotes the sum ranging over all pairs of particles and over
the eigenvalues of the subsystem $H^{a}=-\triangle_{x^{a}}+V_{a}(x^{a})$ . The meaning of the notation $\oplus_{a,n}$

is similar to this.

THEOREM 1. For $\lambda\in\sigma_{cmt}(H)\backslash \mathcal{T}’$ , there exists a bounded operator

$\mathcal{F}(\lambda)$ : $B$ $arrow L^{2}(S^{5})\oplus\oplus_{a,n}L^{2}(S^{2})$

having the following properties :
(1) $\mathcal{F}(\lambda)$ diagonalizes $H$ :

$\mathcal{F}(\lambda)Hf=\lambda \mathcal{F}(\lambda)f$.
(2) Define $(\mathcal{F}f)(\lambda)$ by $\mathcal{F}(\lambda)f$ . Then the operator $\mathcal{F}$ is uniquely extended to a partial
isometry with initial set $H_{ac}(H)=the$ absolutely continuous subspace for $H$ , and final set

$L^{2}((0, \infty);L^{2}(S^{5});\rho_{0}(\lambda)d\lambda)\oplus\oplus_{a,n}L^{2}((\lambda^{a,n}, \infty);L^{2}(S^{2});\rho_{a,n}(\lambda)d\lambda)$ ,
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$\rho_{0}(\lambda)=\frac{\lambda^{2}}{2}$ , $\rho_{a,n}(\lambda)=\frac{1}{2}\sqrt{\lambda-\lambda^{a,n}}$ ,

where $\lambda^{a,n}\in\sigma_{p}(H^{a})$ .
(3) Let $\mathcal{F}_{0}(\lambda)$ , $\mathcal{F}_{a,1}(\lambda)$ , $\cdots$ be the components of $\mathcal{F}(\lambda)$ . They are eigenoperators of $H$ in
the sense that

$(H-\lambda)\mathcal{F}_{0}(\lambda)^{*}\varphi_{0}=0$, $(H-\lambda)\mathcal{F}_{a,n}(\lambda)^{*}\varphi_{a,n}=0$

hold for $\varphi_{0}\in L^{2}(S^{5})$ , $\varphi_{a,n}\in L^{2}(S^{2})$ .
(4) For $f\in H_{ac}(H)$ , the following inversion formula holds:

$f= \int_{0}^{\infty}\mathcal{F}_{0}(\lambda)^{*}(\mathcal{F}_{0}f)(\lambda)\rho_{0}(\lambda)d\lambda+\sum_{a,n}\int_{\lambda^{a,n}}^{\infty}\mathcal{F}_{a,n}(\lambda)^{*}(\mathcal{F}_{a,n}f)(\lambda)\rho_{a,n}(\lambda)d\lambda$.

THEOREM 2. For $f\in B$ and A $\in\sigma_{cmt}(H)\backslash \mathcal{T}’$ , the boundary value of the resolvent of
$H$ admits the following asymptotic expansion in the sense of (1.5)

$R(\lambda+i0)f$ $\simeq$
$C( \lambda)\frac{e^{i\sqrt{\lambda}r}}{r^{5/2}}\mathcal{F}_{0}(\lambda)f$

$+$ $\sum_{a,n}C_{a,n}(\lambda)\frac{e^{i\sqrt{\lambda-\lambda^{a,n}}r_{a}}}{r_{a}}\mathcal{F}_{a,n}(\lambda)f(\omega_{a})\otimes\varphi^{a,n}(x^{a})$,

$C(\lambda)=\sqrt{\frac{\pi}{2}}e^{-3\pi i/4}(\lambda_{+})^{3/4}$, $C_{a,n}(\lambda)=\sqrt{\frac{\pi}{2}}h(\lambda-\lambda^{a,n})$ ,

where $k_{+}= \max\{k, 0\}$ and $h(t)=1$ if $t\geq 0$ , $h(t)=0$ if $t<0$ , and $\varphi^{a,n}$ is the eigenvector

of $H^{a}$ associated with the eigenvalue $\lambda^{a,n}$ .

THEOREM 3. Let $\lambda\in\sigma_{cmt}(H)\backslash \mathcal{T}’$ . Let $u$ satisfy $(H-\lambda)u=0$ . Then $u\in B^{*}$ if and
only if $u$ is written as

$u=\mathcal{F}(\lambda)^{*}\varphi$

for some $\varphi\in L^{2}(S^{5})\oplus\oplus_{a,n}L^{2}(S^{2})$ .

THEOREM 4Let $\lambda\in\sigma_{cmt}(H)\backslash \mathcal{T}’$ . Let $u\in B^{*}$ satisfy $(H-\lambda)u=0$ . Then tz admits
the asymptotic expansion

$u\simeq C(\lambda)r^{-5/2}e^{i\sqrt{\lambda}r}\varphi_{0}^{(+)}(\hat{x})+\overline{C(\lambda)}r^{-5/2}e^{-i\sqrt{\lambda}r}\varphi_{0}^{(-)}(\hat{x})$

$+ \sum_{a,n}[C_{a,n}(\lambda)r_{a}^{-1}e^{i\sqrt{\lambda-\lambda^{a,n}}r_{a}}\varphi_{a,n}^{(+)}(\omega_{a})\otimes\varphi^{a,n}(.x^{a})$

$+\overline{C_{a,n}(\lambda)}r_{a}^{-1}e^{-i\sqrt{\lambda-\lambda^{a,n}}r_{a}}\varphi_{a,n}^{(-)}(\omega_{a})\otimes\varphi^{a,n}(x^{a})]$ (1.12)

in the sense of (1.5), where

$C(\lambda)=(2\pi)^{-1/2}e^{-5\pi i/4}(\lambda_{+})^{-5/4}$ ,

$C_{a,n}(\lambda)=(2\pi)^{-1/2}e^{-\pi i/2}((\lambda-\lambda^{a,n})_{+})^{-1/2}$ .
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Let $\varphi^{(\pm)}={}^{t}(\varphi_{0}^{(\pm)}, \varphi_{a,1}^{(\pm)}, \cdots)$. Then

$\varphi^{(+)}=\hat{\mathrm{S}}(\lambda)\mathrm{J}\varphi^{(-)}$ , (1.13)

where $\hat{\mathrm{S}}(\lambda)$ is the $S$-matrix and $\mathrm{J}$ is the reflection
$\mathrm{J}$ : (to $(\theta)$ , $\varphi_{a,1}(\omega_{a})$ , $\cdots$ ) $arrow(\varphi_{0}(-\theta), \varphi_{a,1}(-\omega_{a}),$ $\cdots)$ . (1.14)

For any $\varphi^{(-)}$ , there exist a unique solution $u$ of $(H-\lambda)u=0$ and $\varphi^{(+)}$ for which the
expansion (1.12) is valid.

Theorem 2is afundamental result concerning the behavior at infinity of solutions to
stationary Schr\"odinger equations. We shall discuss its other applications elsewhere.

1.5 Related works. Let us consider the $N$-body Schr\"odinger operator $H=H_{0}+\Sigma_{1\leq i<j\leq N}$

$V_{ij}(q_{i}-q_{j})$ . As is inferred from the 2-body case, the above problem boils down to the
asymptotic expansion of the resolvent $(H-\lambda\mp i0)^{-1}$ at infinity, which leads to the
construction of generalized eigenfunctions for $H$ and to the properties of $\mathrm{S}$-matrices. All
the difficulties of the $N$-body problem arise ffom the directions $\{q_{i}=q_{j}\}$ , along which
the pair potential $V_{j}\dot,(q_{\dot{l}} -q_{j})$ does not decay. Let us call them singular directions in this
paper.

Most of the study of the stationary $N$-particle Schr\"odinger equation has been done
outside the singular directions. The asymptotic expansion of the resolvent outside the
singular directions (free region) was obtained by Herbst-Skibsted [14].

In aseries of papers [9], [10], [11], [27], [28] Hassell and Vasy continued the study of
generalized eigenfunction for $H$ and $\mathrm{S}$-matrices in the free region. As for the behavior
around the singular directions, Vasy [29] studied it by projecting the solution of $(H-\lambda)u=$

$0$ onto the bound states of subsystems and investigating the spatial asymptotics in the free
region for the subsystem. Let us also mention the work of Vasy [30] on the propagation of
singularirties for the $\mathrm{S}$-matrix, the underlying idea of which is to look at the micr0-local
behavior of the resolvent at infinity.

The works [15], [16] studied directly the scattering matrix and generalized eigenfunc-
tions around the singular directions. Since they lean heavily upon the spectral property
near the zero energy of subsystems, they are restricted to the 3-body case.

1.6 Methods. The present paper is essentially acontinuation of our previous works [15],
[16], which are based on the micr0-local resolvent estimates for $N$-body Schr\"odingcr op-
erators. The germ of the idea of the generalized Fourier transformation for 3-particle
system has already been given in [16]. However we need two optimal results to overcome
new difficulties in the many-body problem.

The first one is the Agmon-H\"ormander space $B$ , $B^{*}$ , which is not only optimal for the
restriction of the Fourier transform on the sphere, but also appropriate to deal with the
multi-channel property of the many-body problem. We encounter two types of spherical
scattering waves, $r^{-5/2}e^{i\sqrt{\lambda}r}$ and $r_{a}^{-1}e^{i\sqrt{\lambda-\lambda^{a,n}}r_{a}}$ . The former is dominant in the free region,
while the latter is dominant near the singular direction $\{x^{a}=0\}$ . The space $B^{*}$ enables
us to show the orthogonality of these two waves and hence the expansion of the resolvent
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The second new tool employed in this paper is a $\mathrm{m}\mathrm{i}\mathrm{c}\mathrm{r}\mathrm{o}\ovalbox{\tt\small REJECT}$ ocal version of Yafaev’s resol-
vent estimates concerning the spherical part of the radiation condition [32]. Our Theorem
3.5 is amany-body counter part of Agmon-Hormander’s result [2], Theorem 7.4, and is
crucial to construct the generalized Fourier transformation near the singular directions.

1.6 Generalized eigenfunctions with 2-cluster incoming state. Finally, we shall discuss the
asymptotic expansion of generalized eigenfunction for $H$ . From the practical point of
view, in the real scattering experiment, the most important case is the one in which the
initial state is of 2-cluster. Suppose in the remote past the pair $a=(i,j)$ forms abound
state with energy $\lambda^{a,n}<0$ and eigenstate $\varphi^{a,n}(x^{a})$ . Then the generalized eigenfunction
$\Psi(x, \lambda, \omega_{a})$ is written as

$\Psi(x, \lambda,\omega_{a})=e^{i\sqrt{\lambda-\lambda^{an}|}\omega_{a}\cdot x_{a}}\varphi^{a,n}(x^{a})-v$ , (1.16)

$v=R(\lambda+i0)f$ , (1.16)

$f= \sum_{c\neq a}V_{c}(x^{c})\varphi^{a,n}(x^{a})e^{i\sqrt{\lambda-\lambda^{a,n}}\omega_{a}\cdot x_{a}}$
. (1.17)

In our previous work [16], we derived asymptotic expansions of $v$ at infinity. However,
the results were not satisfactory in that we have separated 3-cluster scattering and 2-
cluster scattering. Moreover in Theorem 1.3 of [16], we multiplied atechnical localization
factor $\psi_{b}(D_{x_{b}})$ to $v$ (we wrote it as $\psi_{\beta}(D_{x_{\beta}})$ ), although it was removed in [17], Theorem
6.6. By virtue of the analysis of the present paper, we can derive amore transparent
asymptotic expansion.

THEOREM 5Let $v$ be as in (1.16) and $\alpha=(a, \lambda^{a,n}, \varphi^{a,n})$ . Then in the sense of (1.5)

$v$ $\simeq$
$C_{0}(\lambda)r^{-5/2}e^{i\sqrt{\lambda}r}\hat{S}_{0\alpha}(\lambda;\hat{x},\omega_{a})$

$+$ $\sum_{\beta}C_{\beta}(\lambda)r_{b}^{-1}e^{i\sqrt{\lambda-\lambda^{b,m}}r_{b}}A_{\beta\alpha}(\lambda;\theta_{b}, \omega_{a})\otimes\varphi^{a,n}(x^{a})$,

where $r=|x|,\hat{x}=x/r$ , $r_{b}=|x_{b}|$ , $\theta_{b}=x_{b}/r_{b}$ ,

$C_{0}(\lambda)=e^{-\pi i/4}2\pi\lambda^{-1/4}(\lambda-\lambda^{a,n})^{-1/4}$ ,

$C_{\beta}(\lambda)=2\pi i(\lambda-\lambda^{a,n})^{-1/4}(\lambda-\lambda^{b,m})^{-1/4}$ ,

and $A_{\beta\alpha}(\lambda, \theta_{b}, \omega_{a})$ is the scattering amplitude associated with the scatter $.ng$ process, in
which after the collision the pair $b$ takes the bound state $\varphi^{b,m}(x^{b})$ with eigenvalue $\lambda^{b,m}$ .

If the initial state is of 3-cluster, the behavior of the generalized eigenfunction is much
more complicated. In fact, Hassell [9] derived an asymptotic expansion of $\Psi(x, \lambda, \theta)-$

$e^{i\sqrt{\lambda}\theta x}$ away from singular directions, which contains in addition to the expected term
$r^{-5/2}e^{i\sqrt{\lambda}r}a_{0}(\hat{x})$ extra terms like $r^{-p}e^{i\phi(\hat{x})r}a(\hat{x})$ with $0<p<5/2$ .
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