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1. Introduction

It was an interested and important problem to give the description of quan-

tization, ie of passing ffom classical physical systems to the corresponding

quantum ones, ffom the moment that quantum mechanics came into existence.

In the end Heisenberg and Schrod inger succeeded in giving the description

based on the notion of operators. On the other hand in 1948 Feynman pr0-

posed an essentially new description in [2] based on the notion of the s0-called

Feynman path integrals. His description is that the probability amplitudes can

be constructed from the classical systems in adirect way with physical mean-

ings. In 1951 Feynman himself gave the description reformulated by means of

the path integrals in phase space in [3]. Now we know that his description is

very useful and applied to wide areas in physics (cf. [7, 20]).

Since Feynman published his paper, much work has been done by physists

and mathematicians to give the rigorous meaning to the Feynman path inte-

yak. Some definitions of the Feynman path integrals are proposed and proved
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to be well-defined under some assumptions. See [6, 14, 21] and their references.

Recently the author in [9-12] studied the time-slicing approximate integrals,

determined through broken line paths as oscillatory integrals, of the path in-

tegral in configuration space and also in phase space and then proved in a

general way their convergence in $L^{2}$ space. It is noted that the approximate

integrals studied in [9-12] are very familiar in physics (cf. [4, 5, 20, 21]).

Our aim in the present paper is to study the path integral representation

of correlation functions of the position and also the momentum operators and

then to give arigorous meaning to their representation. It seems that there

have been no results of this problem. Our path integral representation of

correlation functions is defined by the limit of the time-slicing approximate in-

tegrals, determined through broken line paths as oscillatory integrals, similarly

to the path integral in [9 –12]. As is well known, correlation functions are

some of the most important quantities in quantum mechanics and quantum

field theory (cf. [16, 20]). In physics the path integral representation is well

known of correlation functions of only the position operators, though it has

not been rigorous. We note that in the present paper amore general represen-

tation, ie of correlation functions including the momentum operators, is given

rigorously and the Feynman path integrals in phase space determined in [12]

are used for obtaining our results. In addition, we note that we can give the

path integral representation of the canonical commutation relations , which

are the most fundamental in quantum mechanics.

The plan of the proof is as follows. The approximate integral of the Feyn-

man path integral is determined correspondingly to each subdivision of the

time interval. We consider the family of all approximate integrals. We first

show the uniform boundedness of the family of approximate integrals in some

weighted Sobolev spaces. This result is essential in our proof. By using this re
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suit of the boundedness we show the equi-continuity w.r.t the time variable of

the family of approximate integrals in our weighted Sobolev spaces. Then, by

applying the abstract Ascoli-Arzel\‘a theorem we can prove convergence of the

approxim.ate integrals of the Feynman path integral in our weighted Sobolev
spaces as the size of subdivisions tends to zero. We note that our method of

proving convergence is direct compared to that in [9-12], where convergence
in only $L^{2}$ space was proved by using the results in [8] about solutions of the

corresponding Schrod inger equation. Convergence of the approximate integrals

of correlation functions is proved by using the result above of convergence of
the Feynman path integral in the weighted Sobolev spaces and some delicate

calculus that is special to oscillatory integrals.

In the present paper we will only state main results and some remarks,

which will be given in fi2. See [13] for their proofs.

2. Main Results and Remarks

We consider some charged non-relativistic particles in an electromagnetic

field. For the sake of simplicity we suppose charge and mass of every particle

to be one and $m>0$ , respectively. We consider $x\in R^{n}$ and $t\in[0,T]$ . Let
$E(t, x)=(E_{1}, \cdots, E_{||})\in R^{n}$ and $(B_{jk}(t, x))_{1\leq j<k\leq n}\in R^{n(n-1)/2}$ denote electric

strength and magnetic strength tensor, respectively and $(V(t, x)$ , $A(t, x))=$

$(V,A_{1}, \cdots, A_{n})\in R^{\mathrm{n}+1}$ an electromagnetic potential, ie

$E=- \frac{\partial A}{\partial t}-\frac{\partial V}{\partial x}$,

$d( \sum_{j=1}^{n}A_{j}dx_{j})=\sum_{1\leq j<k\leq’\iota}B_{jk}dx_{j}\wedge dx_{k}$ on $R^{n}$ , (2.1
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where $\partial V/\partial x=$ $(\partial V/\partial x_{1}, \cdots, \partial V/\partial x_{n})$ . Then the Lagrangian function $\mathcal{L}(t,$ $x,\dot{x}$

.

$(\dot{x}\in R^{n})$ is given by

$\mathcal{L}(t, x,\dot{x})=\frac{m}{2}|\dot{x}|^{2}+\dot{x}\cdot$ $A$ -V. (2.2)

The Hamiltonian function $H(t, x,p)(p\in R^{n})$ is defined through the Legendre

transformation of $\mathcal{L}$ by

$H(t,x,p)= \frac{1}{2m}|p-A|^{2}+V$. (2.3)

Let $T^{*}R^{n}=H_{x}^{l}\cross R_{p}^{n}$ denote phase space, and $(R^{n})^{[s,t]}$ and $(T^{*}R^{n})^{[s,t]}$

the spaces of all paths $q$ : $[s, t]\ni\thetaarrow q(\theta)\in R^{n}$ and $(q,p)$ : $[s, t]\ni$

$\thetaarrow(q(\theta),p(\theta))\in T^{*}R^{n}$ , respectively. The classical actions $S_{c}(t, s;q)$ for
$q\in(R^{n})^{[s,t]}$ in configuration space and $S(t, s;q,p)$ for $(q,p)\in(T^{*}R^{n})^{[s,t]}$ in

phase spaxie are given by

$S_{c}(t, s;q)= \int_{s}^{t}\mathcal{L}(\theta, q(\theta),\dot{q}(\theta))d\theta$ , $\cdot$

$( \theta)=\frac{dq}{d\theta}(\theta)$ (2.4)

and

$S(t, s;q,p)= \int_{s}^{t}p(\theta)\cdot\dot{q}(\theta)-H(\theta, q(\theta),p(\theta))d\theta$ , (2.5)

respectively (cf. [1]).

Let $\Delta$ : $0=\tau_{0}<\tau_{1}<\ldots<\tau_{\nu}=T$ be asubdivision of the interval $[0, T]$ .

We set $| \Delta|=\max_{1\leq j\leq\nu}(\tau_{j}-\tau_{j-1})$ . Let $0\leq s\leq t\leq T$ and $f\in C_{0}^{\infty}(R^{n})$ ,

where $C_{0}^{\infty}(R^{n})$ is the space of all infinitely differentiate functions in $R^{n}$ with

compact support. For $\Delta$ above we define the time-slicing approximate integrals
$\mathrm{C}_{\Delta}(t, s)f$ and $G_{\Delta}(t, s)f$ of the Feynman path integrals in configuration space

and in phase space, respectively as follows.

At first we define $\mathrm{C}_{\Delta}(t, s)f$ . We set $\mathrm{C}_{\Delta}(s, s)f=f$ . Let $0\leq s<t\leq$

$T$ . We take 1 $\leq\mu’\leq\mu\leq\nu$ such that $\tau_{\mu’-1}\leq s<\tau_{\mu’}$ and $\tau_{\mu-1}<$

$t\leq\tau_{\mu}$ . For $y$ , $x^{(j)}$ $(j=\mu’, \mu’+1, \ldots, \mu-1)$ and $x$ in $H^{\iota}$ let’s define
$q_{\Delta}(\theta;y, x^{(\mu’)}, \ldots, x^{(\mu-1)}, x)\in(R^{n})^{[s,t]}$ by the broken line path joining point$\mathrm{s}$

173



$y$ at $s$ , $x^{\mathrm{U})}$ at $\tau_{j}$ $(j=\mu’, \mu’+1, \ldots, \mu-1)$ and $x$ at $t$ in order. We define
$\mathrm{C}_{\Delta}(t, s)f$ by

$( \mathrm{C}_{\Delta}(t, s)f)(x)=\sqrt{\frac{m}{2\pi i\hslash(t-\tau_{\mu-1})}}^{n}\prod_{j=\mu’+1}^{\mu-1}\sqrt{\frac{m}{2\pi i\hslash(\tau_{j}-\tau_{j-1})}}^{n}\sqrt{\frac{m}{2\pi i\hslash(\tau_{\mu’}-s)}}^{n}$

$\cross \mathrm{O}\mathrm{s}-\int\cdots\int(\exp i\hslash^{-1}S_{c}(t, s;q_{\Delta}))f(y)dydx^{(\mu’)}\cdots dx^{(\mu-1)}$ . (2.6)

Here $\mathrm{O}\mathrm{s}-\int\cdots\int g(y, x^{(\mu’)}, \ldots,x^{(\mu-1)})dydx^{(\mu)}’\cdots dx^{(\mu-1)}$ means the oscillatory

integral (cf. [15]).

We define $G_{\Delta}(t, s)$ . For the sake of simplicity we set $s=0$ . The general case
can be defined in the same way that $\mathrm{C}_{\Delta}(t, s)$ was done. We set $G_{\Delta}(0,0)f=f$ .

For $0<t\leq T$ take a $1\leq\mu\leq\nu$ such that $\tau_{\mu-1}<t\leq\tau_{\mu}$ . For $v^{(j)}(j=$

$0,1$ , $\ldots$ , $\mu-1$ ) in velocity space $R^{n}$ we define $v_{\Delta}(\theta;v^{(0)}, \ldots,v^{(\mu-1)})\in(R^{n})^{[0,t]}$

in velocity space by the piecewise constant path taking $v^{(0)}$ at $\theta=0$ , $v^{(j)}$

for $\tau_{j}<\theta\leq\tau_{j+1}$ $(j=0,1, \ldots,\mu-2)$ and $v^{(\mu-1)}$ for $\tau_{\mu-1}<\theta\leq t$ . Let
$q_{\Delta}(\theta;x^{(0)}, \ldots,x^{(\mu-1)},x)\in(R^{n})^{[0,t]}(x^{(0)}=y)$ be the path in configuration space

defined above. Then we determine the path $p_{\Delta}(\theta;x^{(0)}$ , $\ldots$ , $x^{(\mu-1)}$ , $x$ , $v^{(0)}$ , $\ldots$ ,

$v^{(\mu-1)})\in(R^{n})^{[0,t]}$ in momentum space by

$p_{\Delta}( \theta):=\frac{\partial \mathcal{L}}{\partial i}(\theta, q_{\Delta}(\theta),v_{\Delta}(\theta))=mv_{\Delta}(\theta)+A(\theta, q_{\Delta}(\theta))$ . (2.7)

We define $G_{\Delta}(t, 0)f$ by

$-(G_{\Delta}(t,0)f)(x)=(2 \pi\hslash)^{-n\mu}\mathrm{O}\mathrm{s}-\int\cdots\int(\exp i\hslash^{-1}S(t,0;q_{\Delta},p_{\Delta}))$

$\cross f(x^{(0)})dmv^{(0)}dx^{(0)}dmv^{(1)}dx^{(1)}\cdots dmv^{(\mu-1)}dx^{(\mu-1)}$. (2.8)

Let $L^{2}=L^{2}(R^{n})$ be the space of all square integrable functions in $R^{n}$ with

inner product $(\cdot, \cdot)$ and norm $||\cdot||$ . For amulti-index $\alpha=(\alpha_{1}, \ldots, \alpha_{n})$ we write

$| \alpha|=\sum_{j=1}^{n}\alpha_{j}$ , $r_{x}=(\partial/\partial x_{1})^{\alpha_{1}}\cdots(\partial/\partial x_{n})^{\alpha_{n}}$ and $<x>=\sqrt{1+|x|^{2}}$ . In [9-

12] we proved the following
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Theorem A. Let $\Psi_{x}E_{j}(t, x)(j=1,2, \cdots,n),\partial_{x}^{\alpha}B_{jk}(t,x)$ and $\partial_{t}B_{jk}(t, x)(1($

$j<k$ $\leq n)$ be continuous in $[0, T]\cross R^{n}$ for all $\alpha$ . We suppose

$|\partial_{x}^{a}E_{j}(t, x)|\leq C_{\alpha}$, $|\alpha|\geq 1$ , $|F_{x}B_{jk}(t,x)|\leq C_{\alpha}<x>^{-(1+\delta)}$ , $|\alpha|\geq 1(2.9)$

in $[0, T]$ $\cross R^{n}$ for some constants $\delta>0$ and $C_{\alpha}$ , where 6is independent

of $\alpha$ . Let $(V, A)$ be an arbit rary potential such that $V$, $\partial V/\partial x_{j}$ , $\partial A_{j}/\partial t$ and

$\partial A_{j}/\partial x_{k}$ $(j, k =1,2, \cdots, n)$ are continuous in $[0, T]\cross R^{n}$ . Then we have: (1)

Let $|\Delta|$ be small Then both of $\mathrm{C}_{\Delta}(t, s)$ and $G_{\Delta}(t, s)$ on $C_{0}^{\infty}$ are well-defined
and can be extended to bounded operators on $L^{2}$ . They are equal to one other.

(2) Let $|\Delta|$ be small Then there exists a constant $K\geq 0$ independent of $\Delta$

such that

$||\mathrm{C}_{\Delta}(t, s)f||\leq e^{K(t-s)}||f||$ , $0\leq s\leq t\leq T$ (2.10)

for all $f\in L^{2}$ . (3) $As|\Delta|arrow \mathrm{O}$ , C&(t, $s$ ) $f$ for $f\in L^{2}$ converges in $L^{2}$ unifomly

in $0\leq s\leq t\leq T$ and this limit satisfies the Schrodinger equation

$i \hslash\frac{\partial}{\partial t}u(t)=H(t)u(t)$ , $u(s)=f$, (2.11)

where

$H(t)= \frac{1}{2m}\sum_{j=1}^{n}(\frac{\hslash}{i}\frac{\partial}{\partial x_{j}}-A_{j})^{2}+V$. (2.12)

We write $\int(\exp i\hslash^{-1}S_{c}(t, s;q))f(q(s))Dq$ and $\int\int(\exp i\hslash^{-1}S(t, s;q,p))$

$\cross f(q(s))DpDq$ for the limit of $\mathrm{C}\mathrm{A}(\mathrm{t}, s)f$ and $G_{\Delta}(t, s)f$ as $|\Delta|arrow 0$ , respectively.

Remark 2.1. In (2.8) we make the change of variables: $R^{n\mu}\ni(v^{(0)},$
$\ldots$ ,

$v^{(\mu-1)})arrow(p^{(0)}, \ldots,p^{(\mu-1)})\in R^{n\mu}$, setting $p^{(j)}=\partial \mathcal{L}(\tau j, q\Delta(\tau j),v_{\Delta}(\tau j))/\partial\dot{x}=$

$mv^{(j)}+A(\tau_{j}, x^{(j)})$ . Then $G_{\Delta}(t, 0)f$ is written

$(G_{\Delta}(t, 0)f)(x)=(2 \pi\hslash)^{-n\mu}\mathrm{O}\mathrm{s}-\int\cdots\int(\exp i\hslash^{-1}S(t, 0;q_{\Delta},p_{\Delta}))$

$\cross f(x^{(0)})dp^{(0)}dx^{(0)}dp^{(1)}dx^{(1)}\cdots$ $dp^{(\mu-1)}dx^{(\mu-1)}$
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in the form of an integral on the product space of phase space.

Remark 2.2. In Theorem Aonly smooth electromagnetic fields are consid-

ered. We can apply Theorem Aas follows to the case that electromagnetic

fields have singularities. For example consider atomic Hamiltonians

H $=- \frac{\hslash^{2}}{2m}\sum_{j=1}^{n}\Delta_{j}-\sum_{j=1}^{n}\frac{n}{|x^{(j)}|}+\sum_{1\leq j<k\leq n}\frac{1}{|x^{(j)}-x^{(k)}|}$ ,

where $x^{(j)}\in R^{3}$ and $\Delta_{j}$ denotes the Laplacian operator in $x^{(j)}$ . Let $\chi_{l}(l=$

$1,2$ , $\ldots$ ) be real valued infinitely differentiable functions in $R^{3}$ such that $\sup_{x\in R^{3}}$

$|P_{x}\chi\iota(x)|<\infty$ for $|\alpha|\geq 2$ and

$\lim_{larrow\infty}\chi\iota(x)=-\frac{1}{|x|}$ $.\mathrm{n}L^{2}(R^{3})+L^{\infty}(R^{3})$ .

We set

$H_{l}=- \frac{\hslash^{2}}{2m}\sum_{j=1}^{n}\Delta_{j}+\sum_{j=1}^{n}n\chi\iota(x^{(j)})-.\sum_{\lrcorner 1<<k\leq n}\chi_{l}(x^{(j)}-x^{(k)})$ .

We know that $e^{-:\hslash^{-1}(t-\epsilon)H_{l}}$ converges to $e^{-\dot{|}\hslash^{-1}(t-\epsilon)H}$ strongly in $L^{2}$ as $\mathit{1}arrow\infty$ .

See Example 2of \S X.2 in [18] and Theorems VIII.21, VIII.25 in [17] and also

see [22]. It follows from Theorem Ain the present paper that $e^{-:\hslash^{-1}(t-s)H}{}^{\mathrm{t}}f$

for $f\in L^{2}$ can be written in the form of our path integrals. So we see that
$e^{-:\hslash^{-1}(t-\epsilon)H}f$ can be written in the form of the limit of our path integrals. The

same argument can be applied to the general case of electromagnetic fields

having singularities.

Let $B^{a}$ $(a=1,2, \ldots)$ be the weighted Sobolev space $\{f\in L^{2};||f||_{B^{a}}:=$

$||f||+ \sum_{|\alpha|=a}(||x^{\alpha}f||+||\Psi_{x}f||)<\infty\}$ and $B^{-a}$ its dual space. We write $B^{0}=L^{2}$ .

As the first result in the present paper we have

Theorem 1. Besides the assumption of Theorem A we suppose

$|P_{x}A_{j}|\leq C_{\alpha}$ , $|\alpha|\geq 1$ , $|F_{x}V|\leq C_{\alpha}<x>$ , $|\alpha|\geq 1$ (2.13
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in $[0, T]$ $\cross R^{n}$ . Let $a=0,1$ , $\ldots$ . Then we have: (1) Let $|\Delta|$ be small Then

there eists a constant $K_{a}\geq 0$ such that

$||\mathrm{C}_{\Delta}(t, s)f||_{B^{a}}\leq e^{K_{a}(t-s)}||f||_{B^{a}}$ , $0\leq s\leq t\leq T$ (2.14)

for all $f\in B^{a}$ . In addition, $\mathrm{C}_{\Delta}(t, s)f$ for $f\in B^{a}$ is continuous as a $B^{a}$ -valued

function in $0\leq s\leq t\leq T$ . (2) As $|\Delta|arrow 0_{f}\mathrm{C}_{\Delta}(t, s)f$ for $f\in B^{a}$ converges in

$B^{a}$ uniforrmly in $0\leq s\leq t\leq T$ .

Remark 2.3. Suppose that $E$ and $B_{jk}$ satisfy the assumption of Theorem

A. We remark that then, we can find apotential $(V, A)$ satisfying (2.13), which

was proved in Lemma 6.1 of [10]. In addition, we can easily prove Theorem

Afrom Theorem 1where $a=0$ by using the gauge transformation as in the

proof of Theorem of [10].

Remark 2.4. Let $\mathcal{E}_{t,s}^{0}([0, T];B^{a+2})\cap \mathcal{E}_{t,s}^{1}([0, T];B^{a})$ denote the space of all
$B^{a+2}$-valued continuous and $B^{a}$-valued continuously differentiable functions in

$0\leq s\leq t\leq T$ . Suppose (2.13) and consider the Schrodinger equation (2.11)

for $f \in\bigcup_{a=0}^{\infty}B^{a}$ . Then uniqueness of the solutions in $\bigcup_{a=-\infty}^{\infty}\mathcal{E}_{t,s}^{0}([0, T];B^{a+2})\cap$

$\mathcal{E}_{t,s}^{1}([0, T];B^{a})$ has been proved in [8]. So we write the solution of (2.11) as

$U(t, s)f$ hereafter. As was noted in introduction, Theorem 1is proved directly

without the use of the results in [8]. We also note that we can prove uniqueness

stated above of the solutions of (2.11) from Theorem 1as in the proof of

Theorem in [8].

Let $\Delta$ be subdivision and $(q_{\Delta}(\theta;x^{(0)}, \ldots, x^{(\nu-1)}, x),p\Delta(\theta;x^{(0)}$ , $\ldots$ , $x^{(\nu-1)}$ , $x$ ,

$v^{(0)}$ , $\ldots$ , $v^{(\nu-1)}$ ) $)\in(T^{*}R^{n})^{[0,T]}$ the path determined before for $\Delta$ . Let $0\leq t_{1}\leq$
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$t_{2}\leq\ldots\leq t_{k}\leq T$. For $z=q$ or $p$ we write

$\int\int(\exp i\hslash^{-1}S(T, 0;q_{\Delta},p_{\Delta}))(z_{\Delta})_{j_{k}}(t_{k})\cdots(z_{\Delta})_{j_{1}}(t_{1})f(q_{\Delta}(0))Dp_{\Delta}Dq_{\Delta}$

$:= \mathrm{O}\mathrm{s}-\int\cdots\int(\exp i\hslash^{-1}S(T, 0;q_{\Delta},p_{\Delta}))(z_{\Delta})_{j_{k}}(t_{k})\cdots(z_{\Delta})_{j_{1}}(t_{1})$

$\cross$ $f(x^{(0)})(2\pi\hslash)^{-n\nu}dmv^{(0)}dx^{(0)}dmv^{(1)}dx^{(1)}\cdots dmv^{(\nu-1)}dx^{(\nu-1)}$

(2.15)

and

$\int(\exp i\hslash^{-1}S_{c}(T, 0;q_{\Delta}))(q_{\Delta})_{j_{k}}(t_{k})\cdots(q_{\Delta})_{j_{1}}(t_{1})f(q_{\Delta}(0))Dq_{\Delta}$

$:= \mathrm{O}\mathrm{s}-\int\cdots\int(\exp i\hslash^{-1}S_{c}(T, 0;q_{\Delta}))(q_{\Delta})_{j_{k}}(t_{k})\cdots(q_{\Delta})_{j_{1}}(t_{1})f(x^{(0)})$

$\cross\prod_{j=1}^{\nu}\sqrt{\frac{m}{2\pi i\hslash(t_{j}-t_{j-1})}}ndx^{(0)}dx^{(1)}\cdots dx^{(\nu-1)}$, (2.16)

where $(z_{\Delta})_{j}$ is the $\mathrm{j}$-th component of $z_{\Delta}\in(R^{n})^{[0,\eta}$ .

Theorem 2. Let $0\leq t_{1}\leq t_{2}\leq\ldots\leq t_{k}\leq T$ and $a=0,1$ , $\ldots$ . Under the
assumption of Theorem 1we have: (1) Let $|\Delta|$ is small. Then the operator
(2.15) on $C_{0}^{\infty}$ is well-defined and can be extended to a bounded operator from
$B^{a+k}$ into $B^{a}$ . In more detail, we have

$|| \iint(\exp i\hslash^{-1}S(T,0;q_{\Delta},p_{\Delta}))(z_{\Delta})_{j_{k}}(t_{k})\cdots$

$\cross$ $(z_{\Delta})_{j_{1}}(t_{1})f(q_{\Delta}(0))Dp_{\Delta}Dq_{\Delta}||_{B^{l}}\leq C_{l}||f||_{B^{a+k}}$ , (2.17)

where $C_{a}$ is a constant independent of $\Delta,t_{1}$ , $\ldots$ , $t_{k-1}$ and $t_{k}$ . (2) We assume
$t_{:}\neq t_{j}(i\neq j)$ . Then as $|\Delta|arrow 0$ , (2.15) for $f\in B^{a+k}$ converges in $B^{a}$ , which
we write $\iint(\exp i\hslash^{-1}S(T, 0;q,p))z_{j_{k}}(t_{k})\cdots z_{j_{1}}(t_{1})f(q(0))DpDq$. This limit is
equal to $U(T,tk)zjhU\{tk,$ $\mathrm{t}\mathrm{k}-\mathrm{i}$) $\cdots\hat{z}_{j_{1}}U(t_{1},0)f$ , where $\hat{z}_{j}$ denotes a multiplication
operator $x_{j}$ when $z=q$ and denotes $i^{-1}\hslash\partial_{x_{j}}$ when $z=p$. (3) Let $t\in[0, T]$
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and $f\in B^{a+2}$ . We take a $\mu$ for each Aso that $\tau_{\mu-1}<t\leq\tau_{\mu}$ . Then we have

$\lim_{|\Delta|arrow 0}\int\int(\exp i\hslash^{-1}S(T, 0;q_{\Delta},p_{\Delta}))(p_{\Delta})_{k}(t)(q_{\Delta})_{j}(t)f(q_{\Delta}(0))Dp_{\Delta}Dq_{\Delta}$

$=U(T,t) \hat{q}_{j}\hat{p}_{k}U(t,0)f+\frac{\hslash}{i}\delta_{jk}\lim_{|\Delta|arrow 0}(\frac{\tau_{\mu}-t}{\tau_{\mu}-\tau_{\mu-1}})U(T,0)f$ (2.18)

in $B^{l}$ , where $6jk$ is the Kronecker delta. It is noted that the right-hand side
above is divergent if $j=k$. (4) Here we don’t assume $t_{:}\neq t_{j}(i\neq j)$ . Let
$|\Delta|$ be small. Then the operator (2.16) on $C_{0}^{\infty}$ is well-defined and is equal to
(2.15) where $z=q$ . In addition, in this case, $ie$ all $z=q(\mathit{2}.\mathit{1}\mathit{5})$ for $f\in B^{a+k}$

converges in $B^{a}$ , as $|\Delta|arrow 0$ .

We write $\int(\exp i\hslash^{-1}S_{c}(T, 0;q))qjk(tk)\cdots q_{j_{1}}(t_{1})f(q(0))Dq$ for the limit of
(2.16) as $|\Delta|arrow 0$ . Let’s use the notations of the Heisenberg picture of quan-
tum mechanics, $\hat{z}_{j}$ (t)=%(t) $0)^{-1}\hat{z}_{j}U(t, 0)$ , $|f$, $t>=\%(\mathrm{t})0)^{-1}f$ and $<f,t|=$
$|f$ , $t>*$ , where $g^{*}$ is the complex conjugate of $g$ .

Corollary. Under the assumption of Theorem 1we have: (1) Let $0\leq t_{1}<$

$t_{2}<\ldots<t_{k}\leq T,g\in L^{2}$ and $f\in B^{k}$ . Then we obtain the path integral
representation of correlation functions

$<g,T|\hat{z}_{j_{k}}(t_{k})\cdots\hat{z}_{j_{1}}(t_{1})|f$, $0>(:=(|g, T>,\hat{z}_{j_{k}}(t_{k})\cdots\hat{z}_{j_{1}}(t_{1})|f, 0>))$

$=(g, \int\int(\exp i\hslash^{-1}S(T, 0;q,p))z_{j_{k}}(t_{k})\cdots z_{j_{1}}(t_{1})f(q(0))DpDq)$ .
(2.19)

We also have

$<g,T|\hat{q}_{j_{k}}(t_{k})\cdots\hat{q}_{j_{1}}(t_{1})|f$, $0>$

$=(g, \int(\exp i\hslash^{-1}S_{c}(T,0;q))q_{j_{k}}(t_{k})\cdots q_{j_{1}}(t_{1})f(q(0))Dq)$ .
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(2) Let $0\leq t$ $<t\leq T$ and $f\in B^{2}$ . Then we have for $j$ , $k=1,2$ , $\ldots$ , $n$

$, \lim_{tarrow t}\iint(\exp i\hslash^{-1}S(T, 0;q,p))(p_{j}(t)q_{k}(t’)-q_{k}(t)p_{j}(t’))f(q(0))DpDq$

$= \frac{\hslash}{i}\delta_{jk}\iint(\exp i\hslash^{-1}S(T, 0;q,p))f(q(0))DpDq$ (2.21)

in $L^{2}$ .

Proof. Since

$U(T,tk)zhU(tk, t_{k-1})\cdots\hat{z}_{j_{1}}U(t_{1},0)f=U(T,0)\hat{z}_{j_{k}}(tk)\cdots$ $\hat{z}_{j_{1}}(t_{1})f$ , (2.22)

we can easily prove (2.19) and (2.20) from the assertions (2) and (4) of Theorem

2. It follows ffom the assertion (2) of Theorem 2that the left-hand side of

(2.21) is equal to

$\lim_{tarrow t}(U(T,t)\hat{p}_{j}U(t,\#)\hat{q}_{k}U(t’,0)f-U(T,t)\hat{q}_{k}U(t, t’)\hat{p}_{j}U(t’, 0)f)$.

Here let’s use the fact that $||U(t, s)g||_{B^{t}}\leq \mathrm{e}^{K_{a}(t-\iota)}||g||_{B^{a}}$ and $U(t, s)g$ for $g\in$

$B^{a}$ is continuous as a $B^{a}$-valued function in $0\leq s\leq t\leq T$ , which follows from

Theorem 1. Then

$||U(t, t)\hat{q}_{k}U(t’, 0)f-\hat{q}_{k}U(t’, 0)f||_{B^{1}}$

$\leq \mathrm{e}^{K_{1}(t-t’)}||\hat{q}_{k}(U(t, \mathrm{O})-U(t, 0))f||_{B^{1}}+||U(t, t’)\hat{q}_{k}U(t, 0)f-\hat{q}_{k}U(t, 0)f||_{B^{1}}$

and so $\lim_{arrow t},\mathrm{U}(\mathrm{t},t)\hat{q}_{k}U(t, 0)f=\hat{q}_{k}U(t, 0)f$ in $B^{1}$ . Consequently we have

$\lim_{\nuarrow t}U(T,t)\hat{p}_{j}U(t, t’)\hat{q}_{k}U(t, 0)f=U(T,t)\hat{p}_{j}\hat{q}_{k}U(t, 0)f$

in $L^{2}$ . Hence we can prove (2.21). Q.E.D.

Remark 2.5. (i) The path integral representation (2.20) of correlation func-

tions of the position operators is well known in physics, though it has not been

rigorous ([16, 20]). It is noted that our result (2.19) gives amore general rep-

resentation of correlation functions including the momentum operators, (ii) It
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follows from Theorem 2and (2.22) that the equation (2.21) is equivalent to

$\lim_{\nu\nearrow t}(\hat{p}_{j}(t)\hat{q}_{k}(t’)f-\hat{q}_{k}(t)\hat{p}_{j}(t’)f)=\frac{\hslash}{i}\delta_{jk}f$, (2.22)

ie the canonical commutation relations.

Example 2.1. Let $(V, A)$ be an electromagnetic potential such that

$|\partial_{x}^{\alpha}V|+<x>^{1+\delta}|\partial_{x}^{a}A|\leq C_{\alpha}$, $|\alpha|\geq 2$ , $|\partial_{x}^{\alpha}\partial_{t}A|\leq C_{\alpha}$ , $|\alpha|\geq 1$

in $[0, T]$ $\cross R^{n}$ for some constant $\delta>0$ . Then since $E_{j}=-\partial A_{j}/$ リー�$V/\partial x_{j}$

and $B_{jk}=\partial A_{k}/\partial x_{j}-\partial A_{j}/\partial x_{k}$ from (2.1), we can see that the assumption of

Theorems 1and 2is satisfied.
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