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Abstract. In the present note we discuss aphase field system with memory:

(PFM) $\{$

$u_{t}+ \Sigma{}^{\mathrm{t}}\phi_{t}=\int_{-\infty}^{t}a_{1}(t-s)\triangle u(s)ds$ $(x, t)\in\Omega \mathrm{x}(0, T)$,

$\tau\phi_{t}=\int_{-\infty}^{t}a_{2}(t-s)[\xi^{2}\Delta\phi+\frac{\phi-\phi^{S}}{\eta}+u](s)$ ds $(x, t)\in\Omega \mathrm{x}(0, T)$ ,
$\mathrm{n}$ . Vu $=\mathrm{n}\cdot\nabla\phi=0$ $(x, t)\in\partial\Omega \mathrm{x}(0, T)$ ,
$u(x, 0)$ $=u_{0}(x)$ , $\phi(x, 0)=\phi(x)$ $x\in\Omega$ ,

for $T>0$ , which has been proposed [18] as aphenomenological model to de
scribe phase transitions in the presence of slowly relaxing internal variables. The
system yields motion by mean curvature with memory under suitable aesump-
tions in asharp interface limit. We outline here aproof of global existence of
asolution $(u, \phi)\in \mathrm{C}([0, T];L^{2}(\Omega)\mathrm{x}H^{1}(\Omega))$ for (PFM) assuming that 0is a
smooth bounded domain in $R^{n}$ , $n=1,2$, or 3, the kernels 01, $02\in L^{1}(R^{+})$

are of positive type, the initial data is in $L^{2}(\Omega)\mathrm{x}H^{1}(\Omega)$, and the history is
in $L^{1}(-\infty, 0;H^{2}(\Omega))$ and $L^{1}(-\infty, 0;H^{3}(\Omega))\cap L^{5}(-\infty, 0;L^{6}(\Omega))$ , respectively.
Our methodology combines results from the theory of Volterra integral equations
with Galerkin methods and energy estimates.

1Introduction
Aproof of global existence is outlined of a $\mathrm{C}([0, T];L^{2}(\Omega)\mathrm{x}H^{1}(\Omega))$ , T $>0$ , solution for the
system:

$u_{t}+ \frac{l}{2}\phi_{t}=a_{1}*\triangle u+f_{1}$ $(x, t)\in\Omega \mathrm{x}(0, T)$ , (1.1)
$\tau\phi_{t}=a_{2}*[\xi^{2}\triangle\phi+\frac{\phi-\phi^{S}}{\eta}+u]+f_{2}$ $(x, t)\in\Omega \mathrm{x}(0, T)$ , (1.2)

$\mathrm{n}\cdot\nabla u=\mathrm{n}\cdot\nabla\phi=0$ $(x, t)\in 8\Omega$ $\mathrm{x}(0, T)$ , (1.3)
$u(x, 0)=u_{0}(x)$ , $\phi(x, 0)=\phi_{0}(x)$ $x\in\Omega$, (1.1)

where u $=u(x,$t) represents adimensionless temperature and $\phi$ $=\phi(x,$t) is anonconserved
order parameter. For further details, see [14]. The constant l is adimensionless latent
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A. Novick-Cohen A phase field system with memory

heat, $\tau$ is adimensionless relaxation time, 4is adimensionless interaction length, and $\eta$ is a
dimensionless potential well depth. Equation (1.1) constitutes an energy balance equation,
and equation (1.2) is atype of phase relaxation equation. The underlying constitutive
assumption here is that the system responds in adelayed or time averaged fashion to thermal
gradients and to deviations from equilibrium [18]. We shall assume 0to be bounded domain
in $H^{\iota}$ , $n=1,2$ , or 3, with asufficiently smooth boundary, and we shall take the initial data
$\{u_{0}, \phi_{0}\}$ to be prescribd in $L^{2}(\Omega)\mathrm{x}H^{1}(\Omega)$ .

In (1.1)-(1.2), the first terms on the right hand side are convolution terms, and

$(a_{i}* \Psi)(t):=\int_{0}^{t}a:(t-s)\Psi(s)ds$ i $=1$ , or 2,

for $0\leq t<T$, $?\in L^{p}(0, T;L^{p}(\Omega))$ , $1\leq p\leq\infty$ . Here $a:$ , $i=1,2$ act as “memory kernels”
mediating the delayed or averaged response of the system. With regard to the memory
kernels, we shall assume throughout that $a:\in L^{1}(R^{+})$ , $i=1,2$, and that the kernels $a_{\dot{1}}$ are
of positive type.

Definition 1A kernel $a$ is said to be of positive type on the interval $[0, T]$ for $T>0$ if
$a\in L^{1}(0, T)$ , and

$\int_{0}^{T}<\psi$ , $a:*\psi$ $>dt\geq 0$ , $\forall\psi$ $\in L^{2}(0, T;L^{2}(\Omega))$ . (1.5)

The terms $f_{1}$ and $f_{2}$ reflect the influence of the “history” of the system. We shall assume
that $\{f_{1}, f_{2}\}\in L^{1}(R^{+};L^{1}(\Omega)\mathrm{x}H^{1}(\Omega))$ . It shall be assumed, moreover, that $f_{1}$ and $f_{2}$ are
of the $\mathrm{f}\mathrm{o}\mathrm{m}$:

$\mathrm{f}\mathrm{i}(\mathrm{x}, t)=\int_{-\infty}^{0}a_{1}(t-s)\triangle u(x, s)ds$ $(x, t)\in\Omega \mathrm{x}[0, T]$ (1.6)

and

$f_{2}(x, t)= \int_{-\infty}^{0}a_{2}(t-s)[\xi^{2}\Delta\phi+\frac{\phi-\phi^{3}}{\eta}+u](x, s)ds$ $(x, t)\in\Omega \mathrm{x}[0, T]$ , (1.7)

respectively, where

$u(x, t)=u_{h}(x, t)$ and $\phi(x, t)=\phi_{h}(x, t)$ $(x, t)\in\Omega \mathrm{x}(-\infty, 0)$

for prescribed functions $u_{h}$ and $\phi_{h}$ , the history, where

$u_{h}\in L^{1}(-\infty, 0;H^{2}(\Omega))$ and $\phi_{h}(x, t)\in L^{1}(-\infty, 0;H^{3}(\Omega))\cap L^{f}(-\infty, 0;L^{6}(\Omega))$ .

Thus (1.1)-(1.2) may be written equivalently as they appear in (PFM). We remark here
that though the effects of possible body heating and boundary heating have been neglecte
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for simplicity in (PFM), they can be included in the system (1.1)-(1.4) by incorporating
appropriate forcing terms into $f_{1}$ and $f_{2}$ , and the analysis which we present here may be suit-
ably modified accordingly. See for example the discussion in [13], where possible boui dary
heating was taken into account.

Note that if the kernels are chosen as $\Phi.(t)=\alpha:\delta(t)$ , where $\alpha_{i}$ is aconstant, then the
system (PFM) reduces to the classical phase field equations which were first treated by
Caginalp [3] and which have their roots in Landau-Ginzburg theory $[11, 10]$ . Classicd phase
field equations were designed to describe nonisothermal phase transitions, and the literature
treating their analysis and predictions is vast. We only remark here that existence and
uniqueness results for the classical phase field equations are given in Bates&Zheng [2] for
initial data in $L^{2}(\Omega)\mathrm{x}H^{1}(\Omega)$ .

There is also alarge literature concerning phase field equations in which memory effects
have been included in the energy balance equation, but not in the phase relaxation equation.
The rationale behind the inclusion of the memory effects in the energy balance equation is to
rid the system of the anomaly of infinite speed of heat propagation, essentially incorporating
aGurtin-Pipkin type formulation [9] for memory effects into an energy balance equation
in aphase field setting. With regard to papers which have been published treating such
systems, we note that existence was first proven by Aizicovici&Barbu [1] under somewhat
restrictive assumptions and for Dirichlet boundary conditions. In [6] existence of weak
solutions is proven assuming the initial data to be in $L^{2}(\Omega)\mathrm{x}H^{1}(\Omega)$ , the thermal history in
$L^{1}(0, \infty;L^{2}(\Omega))$ and the thermal memory kernel to belong to $L^{1}(0, \infty)$ and to be of positive
type. In [7], uniqueness is established under similar assumptions.

The present formulation essentially constitutes aphenomenological extension of the clae-
sical phase field equations in which memory effects are taken into account both in the energy
balance equation and in the phase relaxation equation. The rationale for including memory
effects in the phase relaxation equation is to take into account in an averaged way the pres-
ence of slowly relaxing “internal variables” which are troublesome to represent explicitely.
Such internal variables could represent for example configurationaJ degrees of freedom which
are important in polymer melts during phase separation in the proximity of the glass tran-
sition temperature. Equation (1.2) can be seen to have the structure

$\tau\phi_{t}=-\int_{\infty}^{t}a_{2}(t-s)\frac{\delta F(u,\phi)}{\delta\phi}(s)ds$ , (1.8)

where $F(u, \phi)$ is an appropriately defined free energy, as opposed to classical phase relaxation
which has the form

$\tau\phi_{t}=-\frac{\delta \mathcal{F}(u,\phi)}{\delta\phi}$ .

While the effects of delayed or averaged response in the energy balance equation are predicted
to be noticeable under extreme thermal conditions –such as very very high temperatur$\mathrm{a}\mathrm{e}$
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or very very low temperatures, the effects of delayed or averaged response in the phase
relaxation equation should not require such extreme conditions to be influential. For a
lengthier discussion of the derivation and the implications of (1.8), see [18]. We believe that
we present here the first proof of existence for such asystem.

To gain intuition into our expectations from the system (PFM), it is possible to consider
the long time behavior. In terms of general analysis, adiscussion of attractors and inertial
sets for the classical phase field equations is given in [2]. Convergence of the classical phase
field equations to sharp interface limiting motion is considered in [5]. See also references
mentioned therein. It is shown in [5], that depending on which particular distinguished
limit is considered, the predicted Omiting motion may be the classical Stefan problem, a
type of surface tension model- with or without attachment kinetics, atwo phase Hele-Shaw
model, or motion by mean curvature. In particular, we note that motion by mean curvature
is predicted when $\tau=O(\epsilon)$ , $\xi=O(\epsilon^{1/2})$ , $\eta=O(\epsilon)$ , and $l=O(\epsilon)$ , for $0<\epsilon\ll 1$ . For
the standard phase field model with memory, where memory effects are included in the
energy balance equation, but not in the phase relaxation equation, analytical work has
been undertaken regarding certain aspects of the long time behavior, see e.g. [1] and [8].
Recently Giorgi, Grasselli&Pata [8] have demonstrated the existence of absorbing sets for
the standard phase field model with memory under somewhat restrictive assumptions, by
considering it as anon-autonomous dynamical system. To best of our knowledge, however,
astudy of limiting motions for this model has yet to be undertaken.

With regard to the system (PFM), we remark that while the long time behavior has
yet to be studied carefully, certain sharp interface limiting motions have been worked out
formally. For example, if the distinguished limit $\tau=O(\epsilon)$ , $\xi=O(\epsilon^{1/2})$ , $\eta=O(\epsilon)$ , and
$l=O(\epsilon^{2})$ is considered, and the kmels are taken to be exponential functions, then the
limiting motion is $\dot{g}\mathrm{v}\mathrm{e}\mathrm{n}$ by $[18, 16]$

$V_{t}+\gamma V(1-V^{2})=\kappa(1-V^{2})$ , (1.9)

where $V$ denotes the normal velocity of the front, $\kappa$ denotes the mean curvature, and $\gamma$ is the
rate of exponential decay of the phase memory kernel, or if the distinguished limit $\tau=O(\epsilon)$ ,
$\xi=O(\epsilon^{1/2})$ , $\eta=O(\epsilon^{2})$ , and $l$ $=O(\epsilon)$ is considered, and the kernels are taken to be “weakly
singular” exponentials; i.e., $a:=b_{}\gamma_{\dot{1}}\alpha \mathrm{p}(-\gamma_{\dot{1}}t)$ where $b_{i}=O(1)$ and $\gamma_{\dot{1}}$

$=O(\epsilon^{3/2})$ , then the
(scaled) limiting motion:

$\epsilon^{S/2}V‘+V=\kappa$ (1.10)

[15] is predicted. Acrystalline algorithm was contracted to study equations such as (1.9)
and (1.10), [16]. Implementing the crystalline algorithm for initially convex polygonal phase
boundaries with vanishing initial velocity, it could be seen that while monotone melting
occurred for regular polygonal initial conditions, for certain sufficiently irregular polygonal
initial conditions $\mathrm{t}\mathrm{w}\triangleright \mathrm{d}\mathrm{i}\cdot \mathrm{e}\mathrm{n}\epsilon \mathrm{i}\mathrm{o}\mathrm{n}\mathrm{d}$ damped oscillations appeared $[17, 18]$ . Further study of
the equations (1.9),(1.10) is forthcoming
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We now focus on existence. For simplicity and without loss ofgenerality, we set $\tau=\eta=1$ .
In the next and main section of this note we prove:

Theorem 1Suppose that $\{u_{0}, \phi_{0}\}\in L^{2}(\Omega)\mathrm{x}H^{1}(\Omega)$ and {fl,$f_{2}\}\in L^{1}(0, T;L^{2}(\Omega)\mathrm{x}$

$H^{1}(\Omega))$ , then there exists a global solution to (1.1)-(L4) in the sense of Definition B.

Definition 2We shall say that $\{u, \phi\}$ constitutes a solution to (J. $\mathit{1}$) $-(\mathit{1}.\mathit{4})$ on the interval
$[0, T]$ , $0<T<\infty$ , if

$\{u, \phi\}\in \mathrm{C}([0, T];L^{2}(\Omega)\mathrm{x}H^{1}(\Omega))$

$\{u_{t}, \phi_{\mathrm{t}}\}\in L^{\infty}(0, T;H^{-2}(\Omega)\mathrm{x}H^{-1}(\Omega))+L^{1}(0, T;L^{2}(\Omega)\mathrm{x}H^{1}(\Omega))$,

$\{u, \phi\}$ satisfy the initial conditions (L4), and

$\int_{0}^{T}\int_{\Omega}y(x, t)[u_{t}+\frac{l}{2}\phi_{t}-f_{1}](x, t)dxdt-\int_{0}^{T}\int_{\Omega}\triangle y(x, t)(a_{1}*u)(x, t)$ $dxdt=0$,

$\int_{0}^{T}\int_{\Omega}z(x, t)[\phi_{t}-a_{2}*(\phi-\phi^{3}-u)-f_{2}](x, t)dxdt+$

$+ \xi^{2}\int_{0}^{T}\int_{\Omega}$ Vz{x, t) $\cdot a_{2}*\nabla\phi(x,$t) dxdt $=0$ ,

for any y $\in L^{1}(0, T;H^{2}(\Omega))\cap L^{\infty}(0, T;L^{2}(\Omega))$ and z $\in L^{1}(0, T;H^{1}(\Omega))\cap L^{\infty}(0, T;L^{2}(\Omega))$ .

We remark that if $u_{h}\in L^{1}(0, T;H^{2}(\Omega))$ and $\phi_{h}\in L^{1}(0, T;H^{3}(\Omega))\cap L^{5}(0, T;L^{6}(\Omega))$,
then $\{f_{1}, f_{2}\}$ satisfy the assumptions stated in Theorem 1.

In ashort final section, we give afew closing remarks.

2Existence
In this section we outline the proof of Theorem 1stated in the Introduction. Our method of
proof relies on aGalerkin approximation based on the eigenfunctions of the linear operator
$A:L^{2}(\Omega)arrow H^{-2}(\Omega)$ ,

$A\Psi$ $=-\triangle\Psi$ , x $\in\Omega$ n. $\nabla\Psi=0$ x $\in 8\mathrm{O}$ . (2.1)

Let $\{\Psi_{i}\}$ denote an $L^{2}.\langle\Omega$ orthonormal sequence of eigenfunctions of the linear operator $A$

which are ordered sequentially so that the associated eigenvalues $\lambda_{:}$ satisfy

$0=\lambda_{0}<\lambda_{1}\leq\lambda_{2}\leq\ldots$ ,
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and note that $\Psi_{0}=|\Omega|^{-f}1$ . We shall seek approximations for u and $\phi$ of the form:

uN ) t) $:= \sum_{\dot{|}\ovalbox{\tt\small REJECT}}^{N}c_{N:}(t)\Psi:(x)$ (2.4)

$\phi_{N}(x, t):=\sum_{i=0}^{N}d_{N:}(t)\Psi:(x)$ . (2.8)

Let $Sp(N):=span\{\Psi_{0}, \ldots, \Psi_{N}\}$ . We denote by $\dot{P}$ : $L^{2}(\Omega)arrow Sp(N)$ the projection of
$L^{2}(\Omega)$ onto $\Psi_{:}$ , and by $P_{N}$ : $L^{2}(\Omega)arrow Sp(N)$ the projection of $L^{2}(\Omega)$ onto the span of the
first $N+1$ modes; i.e., $P_{N}=\Sigma_{=0}^{N}\dot{P}$ .

The functions $\{u_{N}, \phi_{N}\}$ shall constitute an approximation to asolution $\{u, \phi\}$ of (PFM)
in that they shall be required to satisfy

$\int_{0}^{T}b_{1:}<\Psi_{:}$ , $u_{Nt}+ \frac{l}{2}\phi_{Nt}-a_{1}*\triangle u_{N}-P_{N}f_{1}>_{0}dt$, (2.4)

$\int_{0}^{r_{h_{t}<\Psi}}:$ , $\phi_{Nt}-a_{2}*[\xi^{2}\triangle\phi_{N}+\phi_{N}-P_{N}(\phi_{N})^{3}+u_{N}]+P_{N}f_{2}>_{0}dt$, (2.5)

$<\Psi_{i}$ , $u_{N}>_{0}=P^{i}u_{0}$ $<\Psi_{:}$ , $\phi_{N}>_{0}=P^{:}$ L1(0, (2.6)

for : $=0,$ 1, \ldots , N and for all $b_{1:}$ , $h_{i}\in L^{\infty}(0,$T), where $<\cdot$ , $\cdot>_{0}$ denotes the $L^{2}(\Omega)$ inner
product. Equations (2.4)-(2.6) imply that $\{c_{N:}, d_{Ni}\}$ satisfy

$c_{N:t}+ \frac{l}{2}d_{N:t}=-\lambda_{i}\xi^{2}a_{1}*c_{N:}+\dot{P}f_{1}$ , (2.7)
$d_{N:t}=-\lambda_{i}\xi^{2}a_{2}*d_{N:}+a_{2}*(c_{N:}+d_{N:})+g_{N:}(d_{N0}, \ldots, d_{NN})+\dot{P}f_{2}$ , (2.8)

$c_{Ni}(0)=P^{i}u_{0}$ $d_{N:}(0)=\dot{P}\phi_{0}$, (2.9)

for: $=0,1$ , $\ldots$ , $N$, in the $L^{1}(0, T)$ sense, where $g_{N:}$ denotes anonlinear term which can be
expressed explicitely as:

$g_{N:}$ $:=g_{Ni}(d_{N0}, d_{N1}, \ldots,d_{NN})=-<\Psi_{i}$ , $a_{2}*P_{N}(\phi_{N})^{3}>$ .

With regard to existence, uniqueness, and regularity of solutions to (2.7)-(2.9), we can
state the following:

Lemma 2.1 For $(u_{0}, h)$ $\in L^{2}(\Omega)\mathrm{x}L^{2}(\Omega))$ and $f_{1}$ , $f_{2}\in L^{1}(0, \infty;L^{2}(\Omega))$ , there existe $a$

unique solution $\{c_{N:}, d_{N:}\}\in[\mathrm{C}(0, T_{N})]^{2(N+1)}$ to the system $(l.7)-(B.\mathit{9})$ for $N=0,1$ , $\ldots$ ,
where ffie interval $(0, T_{N})$ is maximal; i.e., either $T_{N}=\mathrm{o}\mathrm{o}$ or else the solution becomes
unbounded as $t\uparrow T_{N}$ . Moreover, ffle solution is differentiable with values in $L^{1}(0, T_{N})$ .
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Proof: Substituting (2.8) into (2.7), integrating over the interval (0, t), for t $>0$ , and
formally exchanging the order of integration, yields the system:

$x(t)= \int_{0}^{t}\tilde{b}(t,$s,$\mathrm{x}\{\mathrm{s}))ds+\tilde{f}(t)+x(0)$, (2.10)

where $\tilde{b},\tilde{f}\in R^{2(N+1)}$ , $x=$ $(c_{N0}, \ldots, c_{NN},d_{N0}, \ldots,d_{NN})$ , and $\tilde{b}=\tilde{b}(t, s, x)$ and $\tilde{f}=\tilde{f}(t)$

depend continuously on their arguments. Thus written, standard theorems on Volterra
integral equations of the second kind can be invoked. In particular, by [12, Theorems 1.1&
2.2], there exists acontinuous solution $x(t)$ to (2.10) on maximal interval. The continuity of
the solution to (2.10) allows us to $\mathrm{r}\mathrm{e}$-exchange the order of integration, yielding acontinuous
solution $\{c_{N}|., d_{N:}\}:=0,\ldots,N$ to the integrated form of (2.7)-(2.8).

It can be readily checked that, in fact, (2.10) may be written more specifically as
$x(t)=\alpha_{1}*\tilde{h}_{1}(x(t))+\alpha_{2}*\tilde{h}_{2}(x(t))+\tilde{f}(t)+x(0)$, (2.11)

where $\mathrm{a}\mathrm{j}(\mathrm{t})=1*a_{j}(t)$, and $\tilde{h}_{j}(x)$ , and $\tilde{f}(t)$ are continuous functions of their arguments.
The assumptions that $a_{\mathrm{j}}\in L^{1}(R^{+})$ and $f_{1}$ , $f_{2}\in L^{1}(0, \infty;L^{2}(\Omega))$ in conjunction with (2.11)
imply the $L^{1}$ differentiability of $x(t)$ , and hence of $\{c_{N:}, d_{N:}\}:=0,\ldots,N$ . Moreover, it follows
now from [12, Theorem 2.3] that the solution $x(t)$ is unique. This readily implies in turn
that $\{c_{Ni}, d_{N:}\}:=0,\ldots,N$ constitute aunique continuous solution to (2.7)-(2.8). $\square$

It is now not difficult to prove that in fact for $\{u_{0}, \phi_{0}\}\in L^{2}(\Omega)\mathrm{x}H^{1}(\Omega)$ and $\{f_{1}, f_{2}\}\in$

$L^{1}(0, \infty;L^{2}(\Omega)\mathrm{x}H^{1}(\Omega))$ , $T_{N}=\infty$ for any $N=0,1,2$, $\ldots$ , where $T_{N}$ denotes the maximal
interval of existence of the solution attained in Lemma 2.1. This is accomplished by aetab-
lishing an apriori estimate which is uniform in $N$ and $T$ which is stated below as lemma
2.2.

Lemma 2.2 If $\{c_{N:}, d_{N:}\}:=0,\ldots,N$ denotes the solution of $(l.7)-(B.\mathit{9})$, $(u_{0}, \phi_{0})\in L^{2}(\Omega)\mathrm{x}$

$H^{1}(\Omega)$ and $\{f_{1}, f_{2}\}\in L^{1}(0, \infty;L^{2}(\Omega)\mathrm{x}H^{1}(\Omega))$ , then

$\sum_{=0}^{N}|c_{N:}(T)|^{2}\leq C$ $\sum_{i=0}^{N}|d_{N:}(T)|^{2}\leq C$ , (2.12)

for any $0<T<T_{N}$ , where C depends on initial conditions and history, but is independent
of N and T.

Proof: Let us now multiply (2.7) by $\frac{2}{\mathrm{t}}c_{N:}$ and (2.8) by $\lambda:\xi^{2}d_{N:}-d_{N:}+<\Psi_{:}$ , $P_{N}(\phi_{N}^{3})>$

$-c_{N;}$ , sum over $i$ , add together the two resultant expressions, and integrate from 0to $T$, for
$0<T<T_{N}$ . Subsequently integrating over $\Omega$ yields

$\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}-\frac{1}{2}|\phi_{N}|^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}](T)=$
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$= \int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}-\frac{1}{2}\phi_{N}^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}](0)-\frac{2}{l}\int_{0}^{T}<\psi_{1}(s),\int_{0}^{t}a_{1}(t-s)\psi_{1}(s)ds>dt$

$- \int_{0}^{T}<\psi_{2}(s)$ , $\int_{0}^{t}a_{2}(t-s)\psi_{2}(s)ds>dt$

$+ \frac{2}{l}\int_{0}^{T}<u_{N}$, $f_{1}(x, t)>dt- \int_{0}^{T}<\phi(s)$ , $f_{2}(x, t)>dt$ (2.13)

where
$\psi_{1}=\nabla u_{N}$ and $\psi_{2}=\xi^{2}\Delta\phi_{N}+\phi_{N}-P_{N}(\phi_{N})^{3}+u_{N}$ . (2.14)

Equation (2.13) can now be shown to imply the estimate:

$\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}-\frac{1}{2}\phi_{N}^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}](T)\leq\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{0}|^{2}-\frac{1}{2}\phi_{0}^{2}+\frac{1}{4}\phi_{0}^{4}+\frac{1}{l}u_{0}^{2}]$

$+C_{1} \int_{0}^{T}\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}]\{||f_{1}||_{L^{2}(\Omega)}+||f_{2}||_{H^{1}(\Omega)}\}dt$

$+C_{2}\{||f_{1}||_{L^{1}(0,T;L^{2}(\Omega))}+||f_{2}||_{L^{1}(0.T_{j}H^{1}(\Omega))\}}$ , (2.15)

where $C_{1}$ and $C_{2}$ depend on 0, $l$ , and 4only. Noting that

$- \int_{\Omega}\frac{1}{8}\phi_{N}^{4}-\frac{1}{2}|\Omega|\leq\int_{\Omega}-\frac{1}{2}\phi_{N}^{2}$,

and using GronwalP $\mathrm{s}$ inequality, we obtain

$\int_{\Omega}[\frac{1}{2}|\nabla\phi_{N}|^{2}+\frac{1}{8}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}](T)\leq C_{3}$ , (2.16)

where $C_{3}$ is independent of N and T. From (2.16) it follows that

$||u_{N}||_{t\infty(0,T;L^{2}(\Omega))}<C_{4}$ and $||\phi_{N}||_{L\infty(0,T;L^{2}(\Omega))}<C_{6}$ , (2.13)

where $C_{4}$ and $C_{f}$ are independent of N and T, which implies in turn (2.12). $\square$

To guarantee the existence of asolution to (PFM) in the sense indicated in Definition
2, we must ascertain convergence of asubsequence of the approximants $\{u_{N}, \phi_{N}\}$ in an
appropriate sense. The uniform estimates implied by (2.12) and the compactness results of
Simon [19, Corollary 4] enable us to conclude

Lemma 2.3 For any $T>\cdot \mathrm{O}$ , there $oe$$\dot{u}t$ functions $u$ , $\phi$ , $\chi_{0}$ , $\chi_{1}$ , and $\chi_{2}$ , and a subsequence
$\{u_{N’}, \phi_{N’}\}$ , denoted for simplicity again as $\{u_{N}, \phi_{N}\}$ , such fflat $\hslash e$ following convergences
$hoM$:

$u_{N}arrow u*$ in $L^{\infty}(0, T;L^{2}(\Omega))$ , (2.13)
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$\phi_{N}arrow^{*}\phi$ in $L^{\infty}(0, T;H^{1}(\Omega))$ , (2.19)

$u_{Nt}arrow u_{t}$ in $L^{1}(0, T;H^{-2}(\Omega))$ , (2.20)

$\phi_{Nt}arrow\phi_{t}$ in $L^{1}(0, T;H^{-1}(\Omega))$ , (2.21)

$u_{Nt}-P_{N}f_{1}+P_{N}f_{2}arrow^{*}u_{t}-f_{1}+f_{2}$ in $L^{\infty}(0, T;H^{-2}(\Omega))$ , (2.22)

$\phi_{N_{t}}-P_{N}f_{2}-\Delta*\phi_{t}-f_{2}$ in $L^{\infty}(0, T;H^{-1}(\Omega))$ , (2.23)

$a_{1}*uN-^{l}1\chi 0$ in $L^{\infty}(0, T;L^{2}(\Omega))$ , (2.24)
$a_{2}*\phi_{N}arrow^{*}\chi_{1}$ in $L^{\infty}(0, T;H^{1}(\Omega))$ , (2.25)

and
$a_{2}*\phi_{N^{3}}arrow^{l}\chi_{2}$ in $L^{\infty}(0, T;L^{2}(\Omega))$ . (2.26)

Moreover,
$u_{N}arrow u$ in $L^{p}(0, T;H^{s}(\Omega))$ , $1\leq p<\infty$ , $-1\leq s<0$ , (2.27)

$\phi_{N}arrow\phi$ in $L^{\mathrm{p}}(0, T;H^{f}(\Omega))$ , $1\leq p<\infty$ , $0\leq s<1$ . (2.28)

From Lemma 2.3 and equations (2.4)-(2.6), it is not difficult to conclude that $u\in$

$\mathrm{C}([0, T];H^{-2})$ and $\phi\in \mathrm{C}([0, T];H^{-1})$ . These results fall short of guaranteeing continu-
ity from initial data in $L^{2}(\Omega)\mathrm{x}H^{1}(\Omega)$ as claimed in Theorem 1. Also, to guarantee the
existence of asolution in the sense of Definition 2, it is necessary to be able to identify the
limiting functions $\chi_{0}$ , $\chi_{1}$ , and $\chi_{2}$ .

We address the latter issue first. Young’s inequality for convolutions and Lemma 2.3 im-
ply that $\chi_{0}$ and $a_{1}*u$ belong to $L^{\infty}(0, T;H^{-2}(\Omega))$ , and $\chi_{1}$ and $a_{2}*\phi$ belong to $L^{\infty}(0, T;H^{-1}(\Omega))$ .
Using (2.27)-(2.28) and weak lower semicontinuity, then allows us to make the appropriate
identifications. The proof that $\chi_{2}=a_{2}*\phi^{3}$ is alittle more involved, but basically relies on
noting that $\chi_{2}$ and $a_{2}*\phi^{3}$ both belong to $L^{\infty}(0, T;L^{2}(\Omega))$ , and hence to identify the limit
it suffices to prove that the two functions coincide in the weaker space $L^{4/3}(0, T;L^{4/3}(\Omega))$ .
Using weak lower semicontinuity, the embedding estimate

$||\phi_{N}-\phi||_{L^{4/3}}(0,\tau;L^{4}(\Omega))\leq C_{1}||\phi_{N}-\phi||_{L^{4/\mathrm{s}_{(0,T;H(\Omega))}}}.+C_{2}||\phi_{N}-\phi||_{L^{4/3}}(0,T_{j}L^{2}(\Omega))$

for any $s\in[3/4,1)$ , which follows from GagliardO-Nirenberg, and (2.28), allows us to com-
plete the proof of the third identification.

It remains now only to prove the desired continuity. With this end in mind, we first note
that it can be proved, in amanner which is roughly analogous to the proof of Lemma 1.2 in
Temam [20, Chapter III], that

Lemma 2.4 $\phi\in \mathrm{C}([0, T];L^{2}(\Omega))$ .
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We now prove:

Lemma 2.5 $u\in \mathrm{C}([0, T];L^{2}(\Omega))$ and $\phi\in \mathrm{C}([0, T];H^{1}(\Omega))$ .

Proof: The methodology employed here is alittle reminscent of the proof of continuity
given in [4]. By Lemma 2.4, $\phi\in \mathrm{C}([0, T];L^{2}(\Omega))$ , and hence in particular $\phi$ is weakly
continuous in $L^{2}(\Omega)$ . From the weak continuity which has been demonstrated for $\phi$ and
since by Lemma 2.3, $\phi\in L^{\infty}(0, T;H^{1}(\Omega))$ , it follows from Lemma 1.4 in [20, Chapter III]
that $\phi$ is weakly continuous in $H^{1}(\Omega)$ . Since by assumption $\phi_{0}\in H^{1}(\Omega)$ , this implies in turn
that

$0 \leq\lim\inf_{Tarrow 0}\int_{\Omega}|\nabla\phi(T)-\nabla\phi_{0}|^{2}=$

$= \lim\inf_{Tarrow 0}\{||\nabla\phi(T)||_{L^{2}(\Omega)}^{2}-2<\nabla\phi(T)$ , $\nabla\phi_{0}>_{0}+||\nabla\phi_{0}||_{t^{2}(\Omega)}^{2}\}$

$= \lim\inf_{Tarrow 0}||\nabla\phi(T)||_{L^{2}(\Omega)}^{2}-||\nabla\phi_{0}||_{L^{2}(\Omega)}^{2}$.
Therefore,

$\int_{\Omega}|\nabla\phi_{0}|^{2}\leq\lim\inf_{Tarrow 0}\int_{\Omega}|\nabla\phi(T)|^{2}$ . (2.29)

Using similar arguments for u and $\phi^{2}$ and the results of Lemma 2.4, we obtain

$\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{0}|^{2}-\frac{1}{2}|\phi|^{2}+\frac{1}{4}\phi_{0}^{4}+u_{0}^{2}]\leq\lim\inf_{Tarrow 0}\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi|^{2}-\frac{1}{2}|\phi|^{2}+\frac{1}{4}\phi^{4}+u^{2}](T)$. (2.30)

To obtain an estimate in the opposite direction, we return to the estimate (2.15) obtained
earlier which we write now as

$\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}](T)\leq\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}](0)$

$+ \frac{1}{2}\int_{\Omega}[\phi_{N}^{2}(T)-\phi_{N}^{2}(0)]+C_{1}\int_{0}^{T}\{||f_{1}||_{L^{2}(\Omega)}+||f_{2}||_{H^{1}(\Omega)}\}dt$

$+C_{2} \int_{0}^{T}\{\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}\}\{||f_{1}||_{L^{2}(\Omega)}+||f_{2}||_{H^{2}(\Omega)\}dt}$ , (2.31)

where the coefficients $C_{1}$ and $C_{2}$ depend on $\Omega$, $l$ , and 4only and are independent of $N$ and
$T$. By establishing the estimate

$\int_{\Omega}[\phi_{N}^{2}(T)-\phi_{N}^{2}(0)]\leq C$ $\int_{0}^{T}\{1+||f_{2}||_{H^{1}(\Omega)}\}dt$
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where $\overline{C}$ is independent of $N$ and $T$, we can conclude from (2.31) that

$\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}](T)\leq\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}](0)$

$+C_{6} \int_{0}^{T}\{1+||f_{1}||_{L^{2}(\Omega)}+||f_{2}||_{H^{1}(\Omega)}\}dt$

$+C_{2} \int_{0}^{T}\{\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}\}\{||f_{1}||_{L^{2}(\Omega)}+||f_{2}||_{H^{2}(\Omega)}\}dt$ .
Adding $C_{6}/C_{2}$ to both sides of the above equation and applying GromwalP $\mathrm{s}$ Lemma:

$\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}+\frac{C_{6}}{C_{2}}](T)\leq$

$\leq\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi_{N}|^{2}+\frac{1}{4}\phi_{N}^{4}+\frac{1}{l}u_{N}^{2}+\frac{C_{6}}{C_{2}}](0)e^{C_{2}\int_{0}^{T}\{1+||[_{1}||_{L^{2}(\Omega)}+||[_{2}||_{H^{1}(\Omega)}\}\ }$, (2.32)

which implies

$\lim\sup_{Tarrow 0}\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi|^{2}+\frac{1}{4}\phi^{4}+\frac{1}{l}u^{2}](T)\leq\int_{\Omega}[\frac{\xi^{2}}{2}|\nabla\phi|^{2}+\frac{1}{4}\phi^{4}+\frac{1}{l}u^{2}](0)$. (2.33)

Combining (2.33) with (2.30) completes the proof of the lemm\‘a. $\square$

3Some concluding remarks
Our proof of existence should be viewed as afirst step in putting the phase field equa-
tion with memory (PFM) on sound analytical grounds. Questions of uniqueness and long
time behavior should be approachable under appropriate assumptions, and further numer-
ical methods are under development. Long term goals include rigorous justification of the
predicted limiting motions.

Remark: It has just come to our attention that weaker existence results have been ob-
tained independently by Rotstein&Grasselli (JMAA, to appear) and Grasselli (Proceeding
of FBP99).
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