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For agiven smooth curve $\gamma$ , we denote by $\mathrm{n}$ its unit normal (it is the inner

unit normal when $\gamma$ is closed), and $k$ its curvature with respect to $\mathrm{n}$ . The initial

value problem for the curve shortening fioeu (CSF) is

(1) $\{$

$\frac{\partial\gamma}{\partial t}(\cdot,t)=k(\cdot, t)\mathrm{n}(\cdot,t)$ ,

$\gamma(\cdot,0)=\gamma_{0}$ given.

The CSF is the negative $L^{2}$-gradient flow of the length of the curve. It has been

studied rigorously and extensively in the past two decades. On one hand, it may be

viewed as the simplest curvature flow in geometry. On the other hand, it is related

to various models for interfacial motions in phase transition and wave fronts in

excitable media. In this talk we describe some of our, as well as others’ results on

(1) and its ramifications. We shall touch upon the following four topics:

$\bullet$ The CSF

\bullet The anisotropic generalized CSF

\bullet The CSF in Klein geometry

\bullet Integrable flows in Klein geometry

We shall stay in the realm of the classical theory of (1). For the very fruitful

theory of viscosity solutions of the mean curvature flow, which contains (1) as

aspecial case, the reader should consult Chen-Giga-Goto [13] and Evans-Spruck

[23].
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Ql The CSF: Basic Properties

We point out three basic properties of (1).

First, (1) is of parabolic nature. To see this, let’s fix asmooth curve $\Gamma$ neax

$\gamma_{0}$ and represent $\gamma(\cdot, t)$ as $\Gamma(p)+d(p, t)\mathrm{n}_{\Gamma}(p)$ , where $p$ parametrizes $\Gamma$ and np is

the unit normal of $\Gamma$ . Then (1), which is asystem of two equations, can be shown

to be equivalent to asingle parabolic equation for $d$ (see, e.g., Chou-Zhu [17]),

$\frac{\partial d}{\partial t}=\frac{(1-\kappa d)}{[(1-\kappa d)^{2}+d_{p}^{2}]}d_{pp}+\mathrm{l}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}$ order terms ,

where $\kappa$ is the curvature of $\Gamma$ (with respect to $\mathrm{n}_{\Gamma}$ ). It follows from astandard

argument that (1) admits aunique solution, and it persists as long as its curvature

is bounded. When the flow $\gamma(\cdot, t)$ is representable as afamily of local graphs

$\{(x, u(x, t))\}$ , (1) is equivalent to asimple parabolic equation

$\frac{\partial u}{\partial t}=\frac{u_{xx}}{1+u_{x}^{2}}$

(2) $=(\tan^{-1}u_{x})_{x}$ .

From standard parabolic regularity theory, acurvature bound follows ffom bound

on the gradient of $u$ . Together with the geometric nature of (1), which, in par-

ticular, means this equation is satisfied in any cartesian coordinates, one can use

powerful tools such as the Sturm Oscillation Theorem and the construction of

foliations (Angenent [8], [9] and Chou-Zhu [19]) to control the curvature of the

flow.

Second, we note that many geometric quantities are monotonic decreasing

along the flow or the flow obtained by recaling (1) so that the enclosed area is

always constant $(” \mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}")$ . These include the length, the area, the tota
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absolute curvature, the number of inflection points, the entropy, the isoperimetric

ratio (when $\gamma$ is convex), ... ancl so on. These monotonicity properties play crucial

roles in the study of the asymptotic behavior and the singularities of (1). Their

presence makes (1) very special among parabolic equations.

Third, Euclidean invariance of (1) leads to the existence of special invariant

solutions such as traveling waves, spirals and $\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}/\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ self-similar

solutions. The traveling waves (Grim Reapers) and the closed contracting self-

similar solutions (Abresch-Langer curves) are described as follows. In suitable

coordinates, the Grim Reaper with speed c is the graph of

$u(x,t)= \frac{1}{c}\log\sec cx+ct$ , $x\in(-\pi/2c,\pi/2c)$ , $t\in \mathrm{R}$ .

The Abresch-Langer curves are of the form $(-t)^{1/2}\gamma(\cdot)$ , $t<0$ . It can be shown that

circles are the only embedded self-similar solutions. For immersed ones, Abresch

and Langer [1] show that, for any given positive, relatively prime integers $n$ and

$m$ , satisfying $n/m \in(\frac{1}{2}, \frac{r_{2}}{2})$ , there exists aunique (up to homothety) closed,

contracting self-similar solutions with $m$ leaves and total curvature $2n\pi$ .

\S 2 The CSF: Results

First of all, the following two results characterize (1) for embedded, closed

initial curves.

Theorem 1(Gage-Hamilton [25]). Let $\gamma_{0}$ be aclosed, convex curve. Then

(1) preserves convexity and shrinks to apoint smoothly as t $\uparrow\omega$ , where $\omega$ is equal

to the initial enclosed area divided by $2\pi$ . After normalizing (1) so that it encloses

constant area for all time, the normalized flow converges to acircle smoothly and

exponentia 11
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Theorem 2(Grayson [28]). The $CSF$ turns any closed, embedded curve into

aconvex curve before it shrinks to apoint.

Recently, we have the following result.

Theorem 3(Chou-Zhu [18]). Let $\gamma 0$ be acomplete, embedded curve which

divides the plane into two regions of infinite area. Then (1) has asolution for all

$time\geq 0$ .

For earlier results in this direction, see Ecker-Huisken [22] and Huisken [33].

Aquestion, under the assumption on $\gamma_{0}$ as stated in Theorem 3, is: Is the

solution unique? The answer is yes if the two ends of $\gamma_{0}$ are graphs over some

axes.

When $\gamma_{0}$ has self-intersections, it is easy to see that singularities may form in

finite time. For instance, the small loop in acardoid contracts to form acusp while

the large loop still exists. Naturally one would like to study the singularities of

(1). For aclosed, immersed $\gamma_{0}$ there are always at most finitely many singularities

as $t$ tends to $\omega$ , the blow-up time. We may localize the study of singularities. A

singularity $Q$ is of type I if

$\sup_{\mathcal{U}}|k(\cdot, t)|(\omega-t)^{1/2}\leq C$ ,

for some constant $C$ , where $\mathcal{U}$ is asmall neighborhood of $Q$ disjoint from other

singularities. Asingularities is of type $II$ if it is not of type I.

Theorem 4(Altschuler [3]). Let $\gamma_{0}$ be aclosed, immersed curve.

(a) If all singularities are of type I as $t\uparrow\omega$ , then $\gamma(\cdot, t)$ shrinks to apoint and,

after normalization, converges to an Abresch-Langer curve.
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(b) If $Q$ is atype $II$ singularity, any sequence $\{\gamma(p_{j}, t_{j})\}$ satisfying $t_{j}\uparrow\omega$ ,

$Q= \lim_{jarrow\infty}\gamma(p_{j}, t_{j})$ contains asubsequence which, after suitable normaliza-

tion, converges to aGrim Reaper.

Singularities formation is also studied in Angenent [10] for locally convex

curves. In Huisken [32] amonotoncity formula, which is crucial in the study of

type Isingularities, is obtained for the mean curvature flow.

Specified examples of type II singularities are discussed in Grayson [28] (figure-

eight curves) and Angenent-Velazquez [11] (the cardoid). Especially in the latter

work, the precise blow-up rate for aclass of cardoids is determined. It is worth

to point out that in [28] it is shown that afigure-eight curve with equal enclosed

area exists until the area vanishes. However, it is not known whether the curve

always shrinks to apoint, or sometimes collapses into an arc.

The proof of Theorem 2in [27] is elementary, but difficult to read. An elegant,

shorter proof which establishes Theorems 1and 2at one stroke was outlined by

Hamilton [31]. Anew ingredient is the monotoncity property of anew isoperimetric

ratio. We refer to Zhu [37] and [19] for further discussion of the proof.

\S 3 Anisotropic Generalized CSF

The flow can be written in the following form,

(3) $\frac{\partial\gamma}{\partial t}=\Phi(\theta)|k|^{\sigma-1}k$ $+\Psi(\theta)$ , $\Phi$ $>0$ , $\sigma>0$ ,

where $\Phi$ and $\Psi$ are $2\pi$-periodic functions of the normal angle $\theta$ of the curve. Much

is known for (3) when $\gamma 0$ is convex. Let’s describe works concerning convex flows

first. First of all, when $\sigma=1$ and $\Psi(\theta)\equiv 0$ , (3) can be interpreted as aCSF in
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Minkowski geometry. Results corresponding to Theorem 1were obtained in Gage

[24] and Gage-Li [26]. When $\sigma=1$ , the flow arises from the theory of phase tran-

sition (Gurtin [30]), and arather complete understanding is achieved in Chou-Zhu

[17]. When $\sigma>0$ and $\Psi(\theta)\equiv 0$ , the flow is called the (anisotropic) generalized

CSF. Many results are established in Andrews [6], except $\mathrm{f}\mathrm{o}\mathrm{r}\sigma=1/3$ . In general,

the behavior of (3) for $\sigma$ between 1/3 and 1is very similar to (1). For instance, the

flow shrinks to apoint smoothly in finite time, and, after normalization, subcon-

verges to aself-similar solution of the flow. When $\sigma=1/3$ , $\Phi(\theta)\equiv 1$ and $\Psi(\theta)\overline{=}0$ ,

the flow is called the affine CSF. It is affine invariant and was proposed in the

context of image processing (Alvarez-Guichard-Lions [4] and SapirO-Tannenbaum

[36] $)$ . In Andrews [5] (see also SapirO-Tannenbaum [37]) it was shown that the

flow shrinks smoothly to an elliptical point.

In studying the asymptotic shape of the normalized flow, one is naturally led

to self-similar solutions of the anisotropic generalized CSF. In short, the support

function of the flow $\gamma(\cdot, t)$ , $h(\theta, t)$ , satisfies the ODE

(4) $h_{\theta\theta}+h= \frac{\Phi^{1/\sigma}(\theta)}{h^{1/\sigma}}$ , $h>0$ and $2\pi$-peri0dic.

Existence and uniqueness of solutions of (4) can be found in Gage [24], Gage-Li

[26], Dohmen-Giga-Mizoguchi [21], Dohmen-Giga [20], Andrews [6], Ai-Chou-Wei

[2] and Chou-Zhang [15]. Among many open problems in this topic, we mention

only one: It was proved by Gage [24] that (4) has aunique solution when $\sigma=1$

and $\Phi(\theta+\pi)=\Phi(\theta)$ . Does uniqueness still hold when the symmetry condition is

removed?

There are very few results concerning (3) when $\gamma_{0}$ is non-convex, aside from

Theorem 2. In [18], we show that Theorem 2continues to hold for any anisotropic
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CSF satisying $\sigma=1$ , $\Phi(\theta+\pi)=\Phi(\theta)$ , and $\Psi(\theta+\pi)=-\Psi(\theta)$ . In [12], Angenent,

Sapiro and Tannenbaum prove that the affine CSF shrinks aclosed, embedded

curve into apoint smoothly. Furthermore, the total absolute curvature tends to

$2\pi$ at the end. In the last chapter of [19], we show that for the generalized CSF

$(\sigma\in(0,1)$ , $\Phi\equiv 1$ and $\Psi\equiv 0$), the flow either collapses to aline segment, or

converges apoint. In both cases the total absolute curvature approaches $2\pi$ .

\S 4 The CSF in Klein Geometry

Here the description of Klein geometry is extremely brief. We refer to Olver-

$\mathrm{S}\mathrm{a}\mathrm{p}\mathrm{i}\mathrm{r}\sim \mathrm{T}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{b}\mathrm{a}\mathrm{u}\mathrm{m}$ [35] for avery readable account of the theory.

According to the Erlanger Programme, every Lie group G acting effectively

and transitively on the plane gives rise to aKlein geometry. First of all, its

Lie algebra can be realzed as asubalgebra of vector fields under the Poisson

bracket. All Lie algebras of planar vector fields were classified by Lie (see Olver

[34] for further discussion) up to local diffeomorphisms. In the most interesting

case of primitive Lie algebras, there are exactly eight types of them (see Table

1). In particular, they include the Euclidean geometry, affine geometry, conformal

geometry and projective geometry.

$\overline{\frac{|\mathrm{N}\mathrm{m}\mathrm{e}|\mathrm{G}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}|\mathrm{D}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}|\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}|}{|E_{\alpha}(2)|\partial_{x},\partial_{u},u\partial_{x}-x\partial_{u}+\alpha(x\partial_{x}+u\partial_{\mathrm{u}})|\mathbb{R}\ltimes \mathbb{R}^{2}|}}$

$\frac{13}{|SL(2)|x\partial_{u},u\partial_{x},x\partial_{x}-u\partial_{u}}$

$\frac{2xu\partial_{x}+(1-x^{2}+u^{2})\partial_{\mathrm{u}}|3|\epsilon \mathrm{o}(3)|}{}\frac{|Sim(2)|\partial_{x},\partial_{u},x\partial_{x}+u\partial_{u},u\partial_{x}-x\partial_{\mathrm{u}}|4|\mathbb{R}^{2}\ltimes \mathbb{R}^{2}|}{\underline|SA(2)|\partial_{x},\partial_{u},x\partial_{x}-u\partial_{u},x\partial_{u},u\partial_{x|5|5\emptyset(2)|}}$

$\frac{|3|\epsilon 1(2)|}{|SO(3)|u\partial_{x}-x\partial_{u},(1+x^{2}-u^{2})\partial_{x}+2xu\partial_{u}}$,
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| $A(2)|$ $\partial_{x},\partial_{u},x\partial_{x},u\partial_{u},x\partial_{u},u\partial_{x}$ | 6

$|SO(3,1)|\begin{array}{l}\partial_{x},\partial_{\mathrm{u}},x\partial_{x}+u\partial_{u},u\partial_{x}-x\partial_{u}(x^{2}-u^{2})\partial_{x}+2xu\partial_{u},2xu\partial_{u}+(u^{2}-x^{2})\partial_{\mathrm{u}}\end{array}|$ 6 | so(3, 1) $|$

$|SL(3)$ $|\begin{array}{l}\partial_{x},\partial_{u},x\partial_{x},u\partial_{x},x\partial_{u},u\partial_{u}x^{2}\partial_{x}+xu\partial_{u},xu\partial_{x}+u^{2}\partial_{\mathrm{u}}\end{array}|$ 8 | $\epsilon 1(3)|$

Table 1. Primitive Lie algebras of vector fields in $\mathrm{R}^{2}$

Let $\gamma$ be acurve, which is alocal graph $\{(x, u(x)) : x\in[a, b]\}$ . We let

$\gamma’=\{(y, v(y)) : y\in[c,d]\}$ be its image under atypical element $g$ in $G$ . A

differential invariant of $G$ is afunction $\Phi$ depending on $x$ , $u$ and its derivatives

such that $\Phi(x, u, \ldots, u^{(n)})=\Phi(y, v, \ldots, v^{(n)})$ whenever $\gamma’$ is related to $\gamma$ in the

above manner. An invar iant 1-form $d\omega=\Phi(x, u, \ldots, u^{(n)})dx$ satisfies

$\int_{a}^{b}\{(\mathrm{x},\mathrm{u}(\mathrm{x}))$
$\ldots$ , $u^{(n)}(x))dx= \int_{c}^{d}\Phi(y,v(y)$ , $\ldots$ , $v^{(n)}(y))dy$ ,

for all $\gamma’$ . For example, take $G=E_{0}(2)$ , the Euclidean group composed of

translations and rotations. One can verify that the Euclidean curvature $k=$

$u_{xx}(1+u_{x}^{2})^{-3/2}$ and the arc-length element $ds=(1+u_{x}^{2})^{-1/2}dx$ are respectively

adifferential invariant and an invariant 1-form respectively. In fact, it is true that

any other differential invariants are functions of $k$ and its derivatives with respect

to $ds$ . Moreover, any invariant 1-form can be expressed as $ds where $\Phi$ is adiffer-

ential invariant. In general, such “generating” differential invariants and invariant

1-forms exist in other Klein geometries and they play the roles of curvature and

arc-length element. For primitive Klein geometries, they are specified in Table 2.

$|$ Name Arc-length $|$ Curvature $|$

$|E_{\alpha}(2)|$ $\exp(\alpha\arctan u_{x})\sqrt{1+u_{x}^{2}}dx$ $|$ $\exp(-\mathrm{c}\mathrm{e}\arctan u_{x})(1+u_{x}^{2})^{-3/2}u_{x}.\}$

$|SL(2)|$ $d\tilde{s}=(xu_{x}-u)^{-2}u_{xx}dx$
$|$

$\phi$ $=(xu_{x}-u)^{3}u_{xx}^{-1}$
$|$

$|$ $\mathrm{S}\mathrm{L}(3)$
$|$

$2(1+x^{2}+u^{2})^{-1}\sqrt{1+u_{x}^{2}}dx$
$|$ $\frac{(1+x^{2}+u^{2})u_{xx}}{(1+u_{x}^{2})^{3/2}}+\frac{2(u-xu_{x})}{\sqrt{1+u_{x}^{2}}}$

$|$
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$|Sim(2)|$ $d\theta=(1+u_{x}^{2})^{-1}u_{xx}dx$ | $\chi$ $=[(1+u_{X}^{2})u_{xxx} -3u_{X}u_{xx}^{2}]u_{xx}^{-2}|$

$|$ SA{2) $|$
$d\rho=u_{xx}^{1/3}dx$

$|$
$\mu=u_{xx}^{-8/3}P_{4}$

$|$

$|A(2)|$ $dl=u_{xx}^{-1}\sqrt{P_{4}}dx$ $|$ $\kappa$ $=P_{4}^{-3/2}P_{5}$
$|$

$\lfloor 9O(3,1)|$ $|$ $Q_{5}$
$|$

| $SL(3)$ | $u_{xx}^{-1}P_{5}^{1/3}dx$ | $P_{7}P_{5}^{-8/3}$
$|$

Table 2. The arc-length and curvature for the geometries in Table 1

In this table,

$P_{4}=3u_{xx}u_{xxxx}-5u_{xxx}^{2}$ ,

$Q_{5}=k_{s}^{-2}k_{sss}- \frac{5}{4}k_{s}^{-3}k_{ss}^{2}-k^{2}k_{s}^{-1}$ ,

$P_{5}=9u_{xx}^{2}u_{xxxxx}-45u_{xx}u_{xxx}u_{xxxx}+40u_{xxx}^{2}$ ,

$P_{7}= \frac{1}{3}u_{xx}^{2}[6P_{5}D_{x}^{2}P_{5}-7(D_{x}P_{5})^{2}]+2u_{xx}u_{xxx}P_{5}D_{x}P_{5}$

$-(9u_{xx}u_{xxxx}-7u_{xxx}^{2})P_{5}^{2}$ ,

where k $=u_{xx}(1+u_{x}^{2})^{-3/2}$ and ds denote the Euclidean curvature and arc-length

respectively.

With well-defined notions of curvature and arc-length, we can talk about

curvature flows.

Olver, Sapiro and Tannenbaum [35] propose the CSF in Klein geometry as

follows. First, define the group tangent and group normal by T $=\gamma_{\sigma}$ and N $=\gamma_{\sigma\sigma}$

respectively, where $d\sigma$ is the group arc-length. Both the group tangent and group

normal are invariantly defined under G. The group CSF is simply given by

(5) $\frac{\partial\gamma}{\partial t}=\pm \mathrm{N}$ ,
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where the sign $”+$”or “-,, must be chosen to ensure parabolicity. Although (5)

is aKleinian analogue of (1), the reader should keep in mind that it may not

always decrease the group perimeter of aclosed curve. When G $=E(2)$ , we have

N $=\mathrm{T}_{\sigma}=k\mathrm{n}$ by the Prenet formulas. Hence (5) reduces to (1). When G $=SA(2)$ ,

$\mathrm{N}=k^{-1/3}(k^{-1/3}\gamma_{s})_{s}$

$=k^{1/3}\mathrm{n}+k^{-1/3}(k^{-1/3})_{s}\mathrm{t}$ .

Since tangential velocity does not affect the shape of the flow, (5) is equivalent to

the affine CSF. The flow (5) for other geometries are discussed in [35].

We point out another naturnal generalization of (1), yielding flows of higher

order. In fact, the variation of the group perimeter usually assumes the form

$\frac{dL}{dt}=$ -constant $\int\kappa\phi d\sigma$ ,

where $\kappa$ is the group curvature and $\phi$ is the variation along the group normal. We

may study the “variational” group CSF,

(6) $\gamma_{t}=\pm\kappa \mathrm{N}$ .

When $G=SA(2)$ , (6) was studied in Andrews [7] (with minus sign taken in (6)),

where it is shown that the flow expands to infinity and is asymptotic to an ellipse.

Besides, there are no results on (6) for other geometries.

Q5 Integrable Flows in Klein Geometry

In some physical models one prefers flows which preserve both the perimeter

and the area. The simplest model of this kind is

(7) $\frac{\partial\gamma}{\partial t}=-k_{s}\mathrm{n}-\frac{k^{2}}{2}\mathrm{t}$ ,
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where the tangential velocity is added so that the arc-length is independent of

time. Physicists (Goldstein-Petrich [29]) discovered the remarkable fact that the

curvature of (7) satisfies the KdV equation

$k_{t}+k_{s\epsilon s}+ \frac{3}{2}k^{2}k_{\epsilon}=0$ .

Recently we look for similar flows in Klein geometry under the requirement

that they preserve the group arc-length pointwisely. It turns out that many inte-

grable equations arise in the same ways (Chou-Qu [14]). We give some examples.

ExamPle 1. Take G $=SL(2)$ and

$\gamma_{t}=-(\log\phi)_{s}\mathrm{N}-2\phi \mathrm{T}$ .

Then the $SL(2)$ curvature $\phi$ satisfies the KdV equation,

$\phi_{t}+\phi_{sss}+6\phi\phi_{ss}=0$ .

EXAMpLE 2. Take G $=\mathrm{S}\mathrm{i}\mathrm{m}(2)$ and

$\gamma_{t}=-\mathrm{N}-2\chi \mathrm{T}$ .

Then the Sim(2)-curvature $\chi$ satisfies the Burgers equation,

$\chi_{t}=\chi_{\theta\theta}-2\chi\chi_{\theta}$ .

EXAMpLE 3. Take G $=SA(2)$ and

$\gamma_{t}=-\frac{1}{3}\mu_{\rho}\mathrm{N}-\frac{1}{3}(\mu_{\rho\rho}-\mu^{2})\mathrm{T}$ .

Then the affine curvature $\mu$ satisfies the Sawada-Kotera equation

$\mu_{t}+\mu_{\rho\rho\rho\rho\rho}+5\mu\mu_{\rho\rho\rho}+5\mu_{\rho}\mu_{\rho\rho}+5\mu^{2}\mu_{\rho}=0$.
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It is well-known that integrable equations are well-posed for all time. In view

of the fact that the group curvature determines the curve up to an isometry, the

corresponding flow exists for all time, too. This is in sharp constrast with the CSF

and its companion flows that singularities occur ffequently. It will be interesting

to investigate the long time behavior of these flows.
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