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Abstract

Two dimensional frame inveriant phase field model of grain boundaries is
developed. The essential feture of the models is that it can simulate grain
boundary motion and grain rotation simultaneously. Also it is conbined with
the solidification model to construct models which describes the whole pro
cess -solidification from nuclei, impingement of crystals, formation of grain
boundary and the following grain structure evolution.

1Introduction

The study of grain boundary formation and the following evolution process is

quite important in materials science. All the polycrystalline materials have grain

boundaries, and the behavior of these interfaces can have an enormous influence on
the properties of the materials. Thus, over the years, agreat deal of intellectual

effort has been applied to deriving models of the formation of grain boundaries and

their subsequent evolution.

Previously we presented aphase field model and simulations of the simultaneous

processes of solidification and impingement of arbitrarily oriented crystals, yielding

an incipient two dimensional grain structure [1]. Amodel which attempted to ad-

dress the subsequent coarsening of impinged grains was presented in [2]. In other

attempts to model this phenomenon afinite number of crystalline orientations are
allowed with respect to the fixed coordinate reference frame. Morin et a1.[3], and

Lusk [4] constructed afree energy density having $N$ minima by introducing arota-

tional (orientation) variable in the homogeneous free energy. Chen and Yang[5] and
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Steinbach et a1.[6] assigned $N$ order parameters to the $N$ allowed orientations. In

these approaches, the free energy density depends on the orientation of the crystal

measured in the fixed frame–a property which is not physical.

Recently we presented anew phase field model of grain structure evolution [8].

The essential feature of our new model are that (1) the homogeneous part of the free

energy density is reference frame-invariant; (2) the spatial extent of regions where

the crystallographic orientational order changes (i.e., agrain boundary) is finite,

stable in time, and determined by model parameters; (3) grain boundaries evolve

by both boundary motion and reduction of misorientation energy (rotation).

In addition, we will demonstrate an extended model which can describe the solid-

ification, formation of grain boundary and the following evolution of grain structure.

2Isotropic q-O Model

2.1 Modeling

Let us consider the situation that the whole region is already solidified and

filled with anumber of grains. The model parameters, $\eta$ , and 0, represent: acoarse-

grained measure of the degree of crystalline order, and the crystalline orientation,

respectively. For precise interpretations of $\eta$ and 0, consider afixed subregion of solid

material. At the atomic scale, adiscrete variable $\theta_{i}$ , representing the orientation of

an atomic bond (lattice vector) with respect to some fixed laboratory frame, is

proposed. For asubregion that defines acoarse-graining scale, we define $\eta$ and 0

such that

$( \eta\cos\theta, \eta\sin\theta)=\frac{1}{N}\sum_{i=1}^{N}(\cos\theta_{i}, \sin\theta:)$, (2.1)

where $N$ is the number of bonds in the subregion. The variable $\eta$ is an order

parameter for the degree of crystalline orientational order, where $\eta=1$ signifies a

completely oriented state and $\eta=0$ astate where no meaningful value of orientation

exists in the subregion, and $0\leq\eta\leq 1$ always holds. The variable 0is an indicator

of the mean orientation of the crystalline subregion. Note, that when symmetricall$\mathrm{y}$
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equivalent crystalline directions exist, $\theta$ may not be uniquely defined. However,

the point group symmetry operations can be used to map each of the $\theta_{i}$ into a
sub-domain of $(0, 2\pi)$ where they are unique.

Figure 2.1: (i) Schematic drawing of bicrystal. (ii) Graph of angle variable $\theta$ mea-
sured along the line $l$ .

Consider abicrystal with asingle grain boundary as indicated in Fig.2.1(a), and

fix the crystallographic orientation at each end to be $\theta_{1}$ and $\theta_{2}$ respectively. Dirichlet

conditions are imposed for the purpose of understanding grain boundary energy and

structure (i.e., $\theta(x)$ and $\eta(x)$ ) in afinite domain $0\leq x\leq L$ . Empirical observations

indicate that the spatial variation of orientation is such that orientation is uniform

over most of the length $L$ ($L$ is assumed to be large enough so that (2.1) applies) and

there is transition area where the change in crystallographic orientation is localized

to aregion $\mathit{6}\ll L$ as in Fig.2.1, where $\delta$ is the grain boundary width.

In the usual phase field model, or more generally bistable reaction diffusion sys-

tems, this kind of front structure is attained by the balance between the dynamical

term and the diffusion term, and the values in the bulk are kept constant by the
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fact that the values there are stable fixed points of the dynamical term (in this case
$\theta_{1}$ and $\theta_{2}$ ). However, by the requirement of rotational invariance, no such special

angles should exist and therefore cannot appear in the homogeneous part of the

free energy density. Therefore the typical front structure which arises in abistable

reaction diffusion system cannot be used to describe the angle transition across the

agrain boundary.

Aphysical free energy density must result in alocalized profile as in Fig.2.1(b),

but cannot contain any orientation angles which depend on aparticular reference

frame. Afree energy density that is invariant under rotations of the reference frame

can be constructed as follows:

$E= \frac{1}{\epsilon}\int_{\Omega}[\frac{\nu^{2}}{2}|\nabla\eta|^{2}+f(\eta)+sg(\eta)|\nabla\theta|+\frac{\epsilon^{2}}{2}h(\eta)|\nabla\theta|^{2}]$ dA (2.2)

with positive parameters $\nu$ , $s$ and $\epsilon$ . The prefacter $\frac{1}{\epsilon}.\mathrm{s}$ introduced in order to

guarantee that the total enrgy tends to anon-zero constant in the singular limit
$\epsilonarrow 0$ . Simple choices for $f(\eta)$ , $g(\eta)$ and $h(\eta)$ are

$\mathrm{f}(\mathrm{v})=\frac{1}{2}(1-\eta)^{2}$ and $g(\eta)=h(\eta)=\eta^{2}$ . (2.3)

The form of $f(\eta)$ is quite reasonable since we assume that only crystalline phase is

stable. Without loss of generality, $f(1)=0$ can be assumed.

Consider $\eta$ and 0as apolar coordinate system on the unit disk $D=\{\eta\leq 1\}$ as
(2.1) suggests, and introduce $L^{2}$-norm to the functional space [9]. The equations of

motion are

$\tau_{\eta}\eta_{t}$
$=$ $\nu^{2}\nabla^{2}\eta-f’(\eta)-sg’(\eta)|\nabla\theta|-\frac{\epsilon^{2}}{2}h’(\eta)|\nabla\theta|^{2}$ , (2.4)

$\tau_{\theta}\eta^{2}\theta_{t}$ $= \nabla\cdot[sg(\eta)\frac{\nabla\theta}{|\nabla\theta|}+\epsilon^{2}h(\eta)\nabla\theta]$ . (2.5)

where $\tau_{\eta}$ and $\tau_{\theta}$ are inverse mobilities. The form of (2.5) requires careful consid-

eration because it contains asingular diffusivity where $\nabla\theta=0$ . However, this

singularity can be treated rigorously and controlled, as shown in [10], [11] and [12]
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2.2 1Dimensional Solutions

Fig.2.2 shows atypical stationary solution corresponding to the situation indi-

cated in Fig.2.1. The flat profile of $\eta$ in the grain region is due to the fact that $f(\eta)$

has alocal minimum at $\eta=1$ , while the graph is pulled down by the 3rd and the

4th term of the right-hand side of (2.4) in the grain boundary region. On the other

hand, the flat profile of 0in the grain region is kept by the other mechanism than

the one of $\eta$ . It is the effect of singular diffusivity which is caused by the 1st term

of the right-hand side of (2.5).

$\mathrm{x}$

Figure 2.2: 1dimensional stationary solution with one grain boundary obtained by
numerical simulation

The 1st order term $\mathrm{o}\mathrm{f}|\nabla\theta|$ in the energy functional (2.2) strongly penelize the small

values of $\nabla\theta$, and prefer to change values in the vicinity of the global minimum of

$g(\eta)$ . The 2nd order term of $|\nabla\theta|$ permits the small values of $|\nabla\theta|$ , while it strongly

punish the large values of $|\nabla\theta|$ . By the balance of the 1st and 2nd order term, the

profile of 0is kept as shown in Fig.2.2.

Quite recently, Lobkovsky and Warren [16] derived the singular limit of our model

by setting $\nu=\epsilon\tilde{\nu}$ , $s=\epsilon\tilde{s}$ , $\tau_{\eta}=\epsilon^{2}\tilde{\tau}_{\eta}$ and $\tau_{\theta}=\epsilon^{2}\tilde{\tau}_{\theta}P(\eta, \epsilon|\nabla\theta|)$ . Using the formal

expansion they obtain the informations of the stationary solution with one grain
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boundary. Fig.2.3 demonstarates the comparison of their theory (solid curves) and

the simulated results (square markers), which gives remarkable coincidence between

them. They also proved that the grain boundary motion is amotion by mean
curvature in the singular limit, which was predicted by numerical simulations in [8]

(a) (b) (c)

Figure 2.3: All these panels shows the graphs indicating $\triangle\theta$ vs some quantity. The
functions $f(\eta)=(1-\eta)^{2}/2$ and $g(\eta)=h(\eta)=\eta^{2}$ were used in this culculation.
(a) $\eta\min$ is aminimum value of $\eta$ and $\eta\max$ is avalue of $\eta$ at the connection point
between the inner and the outer solution, (b) $2\zeta_{0}$ is ascaled thickness (scaled by $\epsilon$ )
of the transition layer of 0. (c) $\gamma$ is agrain boundary energy given by the limit of
(2.2).

2.3 2Dimensional Simulations

In this subsection we present atwo dimensional simulations using the equation

system (2.4) and (2.5). In order to control the ratio between the rates of grain bound-

ary motion and grain rotation, we set the time constant $\tau_{\theta}$ as $\tau_{\theta}=\epsilon^{2}\tilde{\tau}_{\theta}P(\epsilon|\nabla\theta|)$ .

Although the form of $P$ in the previous statement with respect to the singular limit

was $P(\eta, \epsilon|\nabla\theta|)$ , we adopt the simpler form $P(\epsilon|\nabla\theta|)$ as follows;

$P( \epsilon|\nabla\theta|)=(1-\mu)+\frac{\alpha}{\epsilon}\mu$ where $\mu=e^{-\beta\epsilon|\nabla\theta|}$ .

Actually $\mu$ is an indicator of the grain boundary ($\mu=0$ implies the grain boundary

and $\mu=1$ does the grain). Therefore $P=1$ in the grain boundary and $P= \frac{\alpha}{\epsilon}$ in

the grain. Grain coarsening is observed throughout the process and, at the same
time, some grain boundary disappear by the rotation of grains (not by the motion
of grain boundary itself) as shown in Fig. 2.4
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Figure 2.4: Two dimensional simulation of grain coarsening process using functional
forms $f(\eta)=(1-\eta)^{2}/2$ , $g(\eta)=\eta^{2}$ and $h(\eta)=1$ . Neumann boundary conditions
are imposed on $\eta$ and 0.
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3Isotropic $\phi-\eta-\theta$ Model

3.1 Modeling

In this section we introduce an isotropic model which includes the solidity field
$\phi$ , the orientation ordering field $\eta$ and the orientation field 0. First, we consider the

following energy form as afunctional of $\phi$ , $\eta$ and $\theta$ ;

$E= \int_{\Omega}[\frac{\delta^{2}}{2}|\nabla\phi|^{2}+f(\phi, \eta)+\frac{\nu^{2}}{2}|\nabla\eta|^{2}+s\eta^{2}|\nabla\theta|+\frac{\epsilon^{2}}{2}\phi^{2}|\nabla\theta|^{2}]$ dA (3.6)

where

$f(\phi, \eta)=\kappa$ $\int_{0}^{\phi}\tilde{\phi}(\tilde{\phi}-1)(\tilde{\phi}-1/2+m)d\tilde{\phi}+\frac{1}{2}(\phi-\eta)^{2}$ . (3.7)

This potential function $f(\phi, \eta)$ has two local minima, $(\phi, \eta)=(0,0)$ and $(\phi, \eta)=$

$(1,1)$ . The former is aliquid phase and the latter acrystalline solid. Evolution

equations for the three variables are given as

$\tau_{\phi}\phi_{t}$ $=$ $\delta^{2}\nabla^{2}\phi+\phi(1-\phi)(\phi-1/2+m)+\eta-\phi-\epsilon^{2}\phi|\nabla\theta|^{2}$ (3.8)

$\tau_{\eta}\eta_{t}$
$=$ $\nu^{2}\nabla^{2}\eta+\phi-\eta-2s\eta|\nabla\theta|$ (3.9)

$\tau_{\theta}\eta^{2}\theta_{t}$ $=$ $\nabla\cdot[s\eta^{2}\frac{\nabla\theta}{|\nabla\theta|}+\epsilon^{2}\phi^{2}\nabla\theta]$ (3.10)

Note that the angle variable 0has no meaning in the liquid phase $(\phi, \eta)=(0,0)$ .

3.2 2Dimensional Simulations

We present a2dimensional simulations that shows solidification process from

nuclei, grain boundary formation by the impingement of crystals and following ev0-

lution process including both of the grain boundary motion and grain rotation. Note

that in this simulation, the initial values of 0in the liquid phase is set to the dummy

value $\theta_{dummy}=-3\pi$ . In the vicinity of solid-liquid interface, the value of 0is aut0-

matically set by this equation system to the value which equals to the one inside the

nearest grain. The following simulation shows partial wetting, Le. grain boundary

is wet for the large angle difference and dry for the small difference
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Figure 3.5: Two dimensional simulation of solidification and grain coarsening pr0-
cess. Neumann boundary conditions are imposed on all the variables
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