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ABSTRACT

Bone remodeling is metabolism of the bone through repetition of the resorption by
osteoclasts and formation by osteoblasts. Osteoblasts produce inorganic calcium phos-
phate which is converted to hydroxyapatite and organic matrix consisting mainly of type
I collagen, and then deposit new bone to the part of the bone resorped by osteoclasts.
Osteoclasts dissociate calcium by secreting acid and degradate organic components by
releasing lysosomal enzymes. Moreover, osteocytes in the bone play an important role
in sensing various physical loads and conveying signals to activate osteoblasts. These
three kinds of cells are linked to each other and perform the bone remodeling. Appro-
priate parameters representing the states of the bone and marrow are introduced and
a mathematical model describing the bone remodeling phenomena is presented. The
model involves an interface equation which determines the surface of the bone, and our
approach leads us to a new type of free boundary problems. Results of numerical sim-
ulations on a CAD system are visualized and then compared to in vivo data.
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1 Introduction

This paper is concerned with mathematical modeling of proc&s&s and dyna.ml(s of the
bone remodeling phenomena and numerical simulations via the mathematical model.
The study of bone remodeling is important from the point of view of medical studies
in bone diseases such as osteoporosis, physiological studies in internal architecture of



92

the bones and optimal design of dental implants. So far, intensive researches have been
made in the related fields. Here it should be emphasized that mathematical models
in conjunction with numerical simulations provide us with a reasonable approach to
combine and systematize the knowledge concerning bone remodeling phenomena which
has been obtained so far.

. Our aim is outlined as follows. First we give a mathematical description of the
bone remodeling phenomena and make an attempt to investigate the processes and
dynamics through computer simulations. These complex processes and dynamics are
governed by various principles. Biophysical phase transition processes of calcium are
taken into account. Secondly, we introduce a PDE model and formulate a free boundary
problem for a specific convection reaction-diffusion system in a fixed universal domain
Q. A feature of our argument here is to formulate the free boundary condition in
terms of an interface equation of Hamilton-Jacobi type in 2. Thirdly, our main purpose
of this paper is to present a discrete mathematical model in which time-dependent
subdomains of 2, Q(t), are determined to represent the varying bone surface. In this
model four parameters A, B,C and W are employed to represent the concentration of
calcium, cell density of osteoblasts, cell density of osteoclasts and an order parameter,
respectively. The order parameter W takes its values in [—1,1] and is supposed to
characterize three phases of calcium: calcium ions in the marrow, calcium contained in
osteoid and that in the bone. The concentration A of calcium in the bone is understood
to be a saturation rate Ag. Here on the boundaly I'(t) of each Q(t) we impose 0-Neumann
boundary conditions for A, B,C and W. The free boundary I'(t) is defined as the 0-
level set of a solution of the interface equation in the universal set 2. It is interesting to
investigate the approximation-solvability of the free boundary problem. Finally, results
of computer simulations are compared to in vivo data. In these numerical simulations,
the following four points are taken into account: First, effective methods for visualization
are necessary to present the results. Secondly, precise bone data are extremely difficult
to obtain in a usual way and it is necessary to choosing reasonable coefficients and
scale of parameters by taking available bone data into the model under consideration.
Thirdly, it is required to check the reliability of the model and computation. Fourthly,
it is important to check cosistency with the real phenomena.

2 Bone remodeling phenomena

In the bone remodeling processes three kinds of cells play a crucial role. Observations by
microscopes suggest that bone surface is smooth and have no sharp corners. Osteoclasts
dissociate calcium by secreting acid and degradate organic components by releasing
lysosomal enzymes. Osteoblasts produce inorganic calcium phosphate which is converted
to hydroxyapatite and then form osteoid with organic matrix consisting mainly of type
I collagen. Osteoid is mineralized to deposit new bone to the part of the bone resorped
by osteoclasts. Osteoblasts are then taken into the new bone and become osteocytes.
Osteocytes are living in the bone and play an important role in sensing physical loads and
chemical stimuli and in conveying the signals to activate osteoblasts. Bone remodeling is
metabolism of the bone through repetition of the resorption by osteoclasts and formation
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by osteoblasts. The process may be decomposed into five phases as depicted below:

- steocla S eoblast o BOMS rface

Osteocyte
Resting phase—Resorption—Reversal—Formation—Resting phase

Various stimuli affect these cells and calcium. Stress-strain distribution in the bone
may be described in terms of Maxwell’s stress tensors and generates piezoelectricity
¢ = ¢(t,z). Such piezoelectricity provides time-dependent electric fields E = —V¢
which propagate in the marrow. Stress-strain distribution in the bone also generate
interstitial fluid flow. Osteocytes are connected to each other through the capillary
sized tubes and sense interstitial fluid flows. These biomechanical stimuli as well as
pressure are sensed by osteocytes. Osteocytes convey these information to cytokines in
the marrow which are local enzymes and cytokines convey the biomechanical stimuli to
osteoblasts as well as osteoclasts.

3 Mathematical description — A PDE model-

In order to formulate a mathematical model describing the bone remodeling phenomena,
we introduce the four parameters A = A(t,z), B = B(t,z), C = C(t,z) and W =
W (t,z) in the following way: First, we fix a universal domain Q@ C R?® in which the
bone remodeling is supposed to take place and denote by Q(¢) a portion of Q which
represents the marrow at time ¢. In other words, Q(t) stands for the domain of the bone
remodeling at time ¢. Next, the parameter A represents the concentration of calcium at
location z € Q2 and time t. Here it is assumed that A(t,z) = Ay (the satulation rate)
on 2 — Q(t). The parameters B and C stands for the cell densities of osteoblasts and
osteoclasts at location z € §(t) and time ¢, respectively. The order parameter W takes
its values in [—1, 1] and represents the three phases of calcium in the sense that A means
the concentration of calcium ions in the marrow Q(t) if W(t,z) = 1, the concentration
of calcium on the bone surface or in osteoid if —1 < W(¢,z) < 1, and A(t,z) = Ap if
W(t,z) = —1. The constraint that W(t,z) € [—1,1] for ¢t > 0 may be formulated by
using the subdifferential operator 0Ij_y y(-) in the real line R of the indicator function
I-1y(°) of [-1,1].

The motion of the bone surface is determined by means of a Lipschitz continuous
function v = u(t, z) on Q such that for t > 0, u(t,z) € [-1,1], u(t,z) =1 in an interior
of Q(t), u(t,z) = —1 in an interior of 2 — Q(t), and the boundary I'(t) of () is defined
as the outside boundary of the O-level set {z € Q : u(t,z) = 0}. Now the outward
normal v = v(t,z) to I'(t) is given by u,/|Vu| provided that I'() is smooth. Hence it is
natural to determine the function u as a viscosity solution of the evolution equation of

Hamilton-Jacobi type w=V|Vy, t>0, z€Q, (1)

where V' = V/(t,z) stands for the velocity of motion in the direction of v(t,z) of the
boundary I'(t) at z. By means of the parameters introduced above, the state of the
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inside of the marrow may be described as follows: First, the diffusion effects on the
concentration of calcium, cell densities of osteoblasts and osteoclasts, and the phase
transition of calcium are represented by d4AA, dgAB, dcAC and dyw AW, where dg4,
dp, dc, dw are diffusion coefficients and A is the Laplace operator on (t) subject to the
0-Neumann boundary condition. Secondly, the advection effects on A, B and C along the
negative and positive directions of physical or chemical stimulation E = E(t, ) at (¢, )
may be represented as —e4V-(EA), —egV-(EB), and ecV-(EC), respectively, where E
is understood to be a time-dependent vector field, e, ep and ec are advection coefficients
and V stands for the spacial nabla. Likewise, agV(BV A) means the advection effect
on calcium ions along the gradient of the concentration of A.

The effect on the reliese of calcium by osteoclasts and the mineralization of calcium
by osteoblasts may be expressed as yCA — BBA for some positive coefficients 3 and v
in an appropriate sense. The effects on the decrease and increase of calcium, osteoblasts
and osteoclasts in accordance with the level at (¢, z) of a physical or chemical potential
¢ = ¢(t, ) are represented as —caPpA, —cpdB and ccdC , respectively. Osteoblasts
and osteoclasts are linked through the coupleing described below, although they do not
share the same location. This property may be represented as —xpCB and —k¢BC for
appropriate coefficients kg and kc.

Using these mathematical representations, we formulate the following PDE model
in a noncylindrical domain U;>q ({t} x Q(2)):

A, = duAA—esE-VA++CA—BBA— cadA, 2)
B, = dsAB—epE-VB+agVB-VA

+eB-A—0.%AoB — cg¢B — kgCB, 3)
C; = dcAC+ecE-VC —-acVC-VA

+e. (1 - A00A+ A) AoC + co¢C — KkcBC, (4)
W, € dwAW +0pB — 0cC + 8l y(W) (5)

together with the interface equation (1) with the velocity of motion V' 'defined by
V=nZ Z=0gB-o0cC, (6)

where 7 = 7(t,z) denotes the rate of formation or the rate of resorption each of which
is specified in accordance with the values of Z.

Equation (5) describes the time evolution of the phase transition of calcium in the
marrow. The order parameter W increase on the part of higher cell density of osteoblasts
and decreases on the part of higher cell density of osteoclasts. It is assumed that bone
formation is motivated on the part where W attains 1, while that bone resorption is
initialized on the part where W reaches -1. Our model does not contain any parameter
representing the cell densities of osteocytes, although the role of osteocytes is indirectly
described in terms of coupling of osteoblasts and osteoclasts. Bone formation leads new
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osteocytes. Osteocytes convey signals to osteoclasts via osteoblasts and the activated
osteoclasts perform bone resorption which increase the concentration of calcium ions
in the marrow. The high concentration of calcium then motivate bone formation. In
this way, the bone remodeling takes place and this linkage is called the coupling of
osteoblasts and osteoclasts. Our model involves four diffusion operators defined on the
time-dependent domain §2(t). We here impose the homogeneous Neumann boundary
conditions for A, B,C and W on the boundary I'(t) at each time ¢. Finally, it is a
characteristic feature of our argument that the bone surface I'(t) is determined as the
outside boundary of the O-level set of a solution u of the interface equation (1).

4 Discrete mathematical model

In accordance with the mathematical description of bone remodeling phenomena, we
here present a discrete mathematical model for the bone remodeling. Our model is
formulated in the form of a finite difference scheme for discretized parameters associated,
respectively, with A, B, C and W.

First, we fix a suitably chosen positive number ! in order to represent a spce dif-
ferencing. We then choose the universal domain 2 to be a sufficiently large rectan-
gle [0,a] x [0,8] and define a discretization € of Q by means of grid points (il, jl),
t=0,1,...,2M, 7 =0,1,...,2N, in Q such that 2MI = a and 2Nl = b. In order to
make stable computation subject to the homogeneous Neumann boundary conditions,
we employ so-called four-point-cell grid generation. Namely, for each pair (z,j) with
0<i<M-1land 0<j <N -1, we consider a cell (i,)* which consists of the four
points (23, 25), (2¢+ 1,27), (24,25 + 1) and (2 + 1,24 + 1) so that € is subdivided into
M x N subdomains [(%, )* of € consisting of the four points (2, 251), ((2¢ + 1)¢, 251),
(2dl, (25 + 1)) and ((2 4+ 1)I,(2j + 1)I). We then define a coarser discretization Qf of
2, that is defined by means of the M x N subdomains (%, 5)*, and call each subdomain
a position in (}, instead of a grid point.

Secondly, we choose a positive number A to discretize the time variable ¢ in the sense
that ¢ is approximated by nh. The ratio I2/h is remained to be a constract & so that the
so-called CFL condition for the difference scheme introduced below may be satisfied.
The mesh ratio § must be chosen in accordance with the norms of the coefficients and
parameters. '

In the universal set ) of grid points, we define a discretization Qf of Q(nh) which
represents the approximatate marrow at time ¢t = nh. To this end, we first formulate a
discrete interface equation on ) as a difference scheme

nt+l _ —n n n s > __
upft =ul; + VY g, i=0,1,...,M,j=0,1,...,N, (7)

which is consistent with the interface equation (1). Here u; is a value defined on the
position (i, 7)* and £ is considered the union of positions (%, 7)* for which u?; > 0.
Also, u; is defined as a weighted mean of u; and its four adjacent values such as

Uy = e(uy; + Uiy + Ul +uin) + (1 —e)ug;
In particular, the standard Lax-Friedrichs scheme is obtained by choosing suitable
weights. Now the discretization Qf and its boundary I'} are both considered unions
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of subdomains (i, j)*. Hence at each time nh and position (i, j)* C I'?, we define the
outward normal v}; to I'? as one of the four vectors (1,0), (0,1), (—1,0) and (0,-1).
The values V" stand for the velocity of motion of I'}; in the direction of »; and the
values g7'; apprommatate |Vu| in (1) at positions {(z, _7) in  and are deﬁned by

ggj = (max(D;,-zu™,0)? + min(D, yu", 0)? + max(D,, -u™, 0)? + min(D, yu™, 0)%)!/2.

We write A7}, B, CT; and W[; for the approximate values of A, B,C and W at time

nh and point (i, jl) and deﬁne the associated functions A", B*,C™ and W™ on hN x €,
where AN = {nh : n = 0,1,...}. We also define Af; ;). to be the arithmetic mean of

the four numbers A3, (p,q) € (4,5)*. Likewise, the arithmetic means B )+ Chi j) and
D¢, ;) are defined.

In order to define the difference operators A; and V; associated with the Laplaman
A and special nabla V, we employ the translation operators 7,; and 7,; defined by

Tz1AL; = Aty AL = Aljrn Tem1AY; = Alyj Ty—1AD; = Ajjy
The defference operators A; and V; are then defined, respectively, by
A= 1_2(’7’3,; + Tyt — 4I + Tz, + Ty,_g), Vi= [l 1(7',_-1 - Tz,_l) - (Ty, Ty,_l)].

Moreover, we write E;, ¢};, 03 and of, for the approximate values of E, ¢, 0 and o¢
at time nh and grid point (il, 51) € .
Our mathematical model is formulated as follows:

RU(AM - AY) = dAA,A" — eaV; - (ED;A™)
+ YCMAD, — BBRAY, — cadl ;AT (8)

'.7 'aJ

b~ (Byf' - BY) = dpABY; —esVi- (E};BY) +asVi- (B, VIAL)

ﬂ

+ e A;‘ A1 Ar Bl — ety Bi; — ke (B )

A (CHf = CFy) "= doACY + ecVi - (ELCT;) — acVi- (CTVIAY;
+ e (1 - AooA-i:-‘A:' )C" ccdi;Cri — keBL;Cl;  (10)
WL (WE - WE) = dwAW], +03BY, — oCT (11)
Vii = miZiy  Zij= 08B — 0cChy- (12)

in addition to the interface equation (7), where n}; means the rate of formation if
nk; > 0 and W ;. = 1 and 7}; means the rate of resorption if 7?}; > 0 and W[} .. =
—1. Likewise, 17, *; = 0 means tha.t no remodeling processes take place at the posmon
I(i,7)* C IT. Finally, we impose the following conditions on the functions A", B", C"
and W™ which correspond to the 0-Neumann boundary conditions for A, B, C’ amd |14
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at time ¢ = nh: If for instance v; = (1,0), then w7, ; < 0 and u?; > 0. In this case
[(i+1,7)* is adjacent to but outside ©f and the following identities are assumed to hold:

A1, = AGg Bty = Bagys Cirngyr = Chgyr Werniyr = Wi (13)

Equations (13) in the other cases are formulated in the same way.

5 Algorithm for computer simulation

In this section we discuss an algorithm for computer simulation based on our model.
First, we set up the domain of bone remodeling by specifying the coefficients contained
in the model. In order to establish our model on a computer, we employ the method
of four-point-cell grid generation. A pair of computable numbers ! and h is chosen so
that the CFL-condition may hold and a rectangler universal domain €2, of grid points is
constructed. We then fix a subdomain Qf of { to represent the marrow at time 0h and
a circle S in the interior of QY to express the portion occupied by a dental implant. The
boundary I'Y of ¥ is then specified as explained in the previous section. In this way,
the'initial horizontal section of the marrow in which a dental implant has been installed
is represented in the discretized domain €Y.

Secondly, equations (7) through (13) are used to find the free boundary I'} and
determine the values of parameters A", B", C™ and W™ on O for each n € N =
{0,1,2,...}. Suppose that the domain Qf and the values of functions A", B*, C" and
W™ on Qf are known. In accordance with the values of W™ on the boundary I'}, the
values of ™ are determined and equation (7) is applied to compute the values of u™+!
on . Now the domain Q}'*! in the (n + 1)th step is determined as follows:

Suppose for instance that (¢, )* C I and v7; = (1,0). Hence I(i + 1,7)* N Qp = 0,

ul,; =1, ul; = 0 and vy, ; = —1. First we consider the case in which W[, = —1.
Then, in view of the boundary condition (13), the value uﬁll,j is obtained by computing

I(i+1,7)* is remained to be outside but adjacent to Qf. Otherwise, the subdomain
[(i +1,7)* is not added to . This means that the bone in (i + 1,5)* is resorped
provided that u?; = 1 and 4, ; = 0. We next consider the case in which W[, = 1. Then

An+1 An+1

an imaginary value @ ; is computed by 47 ; = ul’, ; +hnl; 2%, If u:‘;"l = —1and
~n+l

J
47 ; = 0, then the subdomain I(4, j)* is removed from Q. Otherwise, the subdomain
I(i,7)* is remained in QF*!. This means that a new bone is formed on I(i, j)* provided
that 47, = 0 and uj' = —1. In this way, Q"' is constructed in a finite step of
computation. The other cases can be treated in the same way.

6 Numerical results and comparison with in vivo data

A discrete scheme consistent with the PDE model is formulated by an appropriate choice
of the mesh ratio § = h/I? and applied to perform computer simulations. The numerical
results agree with in vivo bone data in a qualitative way.
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The left figure shows a form of the bone obtained by the computation and thé right
figure depicts a horizontal section of bone structure supporting a cylindrical dental
implant.
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