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In this short article, we will have views of both the past and the
future of the finite group theory. About twenty years have passed
since the classification of the finite simple groups completed. New
study already seems to begin vividly in some areas, quietly in others.
Entering into anew century, we think it is quite important to clarify
the routes that we have just traced and the ones that we may look for
hereafter.

This article consists of two sections. In the first section, we briefly
summarize the history of the classification of the finite simple groups.
It seems very difficult (or nearly impossible) for the author to give a
lecture on the whole story. Thus we place emphasis on topics on the
local analysis of finite simple groups. In the second section, we would
like to propose anew approach that treats the finite simple groups of
characteristic 2type using associated prime graphs.

1. HISTORICAL NOTE

In this section, we first have abrief review of the classification of the
finite simple groups. After that, we will focus on the local subgroups
of finite simple groups and appreciate some technical results.

1.1. Existing classification. The history of the classification begins
with the affirmative solution to the Burnside conjecture. In their long
and complicated paper, Feit and Thompson proved the following.

Theorem 1(Odd Order Theorem). Every group of odd order is solv-
able.

This immediately yields that every nonsolvable finite simple group
has even order. With Sylow’s theorem, we can see that every finite
simple group has involutions (elements of order 2).

In their earlier work, Brauer and Fowler proved the following.

Theorem 2(Brauer Fowler Principle). Let $H$ be a group whose center
has even order. Then there exist, if any, at most finite number of
isomorphism classes finite simple groups $G$ such that $C_{G}(t)\cong H$ for
some involution $t$ of $G$ .
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This theorem was important because it showed that we should focus
on the involutions and their centralizers in order to characterize finite
simple groups. Not only did they give ageneral principle, but also
they showed an example that suggested the route we would go along
with. In fact, the simple groups of Lie type of odd characteristic were
characterized by centralizers of involutions with some small number of
exceptions.

Pursuing the analysis of centralizers of involutions, together with
extensions to centralizers of elements of odd prime order, the classifi-
cation of the finite simple groups was completed in around 1980 as a
joint work of Gorenstein and quite many others. The author will not
mention the names of the indivisual contributors.

Theorem 3(Classification Theorem). Every finite simple group is is0-
morphic to one of the following groups: the groups of prime order, the
alternating groups on five or more letters, the simple groups of Lie type
over finite fields, the trnenty-six sporculic groups.

Following the Brauer Fowler principle, and making necessary exten-
sions to that, we were able to reach the goal. Let us call the route the
Gorenstein Program. In brief, it is stated in afollowing way.

It is centralizers of involutions that we should first focus our atten-
tion on. The actual task is divided into two parts: one is to characterize
the known simple groups by centralizers of involutions, and the other
is to know the structure of centralizers of involutions of finite simple
groups. Most of the known simple groups (the alternating groups and
the Lie type groups of odd characteristic) appear in this course. To
treat the remaining groups, our attention should then go to centraliz-
ers of elements of odd prime order. By similar analysis, most of the
remaining known simple groups (the Lie type groups of even character-
istic) appear in this course. Summing up, we call these two courses a
semisimple approach. Finally we have some exceptional groups which
must be treated indivisually.

In the course of the classification, we discoverd twenty-six sporadic
simple groups apart from the well-known alternating groups and Lie
type groups. It seems still unclear why such variation can (should)
exist though it becomes much clearer that they have various relations
to other fields of mathematics.

In $1990\mathrm{s}$ , Gorenstein, Lyons, and Solomon began to publish books
toward the classification of the second generation. Let us call the route
the Gorenstein, Lyons, Solomon Program.

Their project seems to have two purposes. The first is to reorga-
nize or rearrange our knowledge, tools, and methods we already have
in the existing classification. Some of them were well-known from the
past and played important roles in the existing classification. Some of
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them were born at around the final step of the existing classification.
Among such newcomers, the most fruitful is apushing-up technique.
Extending the definition of the characteristic of Lie type groups, we
define acharacteristic $p$ of afinite simple group $G$ . Focus is now on
the (maximal) $p$ local subgroups to investigate the structure of $G$ . This
is quite reasonable because most finite simple groups turn out to be of
Lie type and the maximal $p$ local subgroups are the maximal parabolic
subgroups for finite simple groups of Lie type of characteristic $p$ . We
call this course aunipotent approach. The second purpose is to evalu-
ates the roles of the two (simisimple and unipotent) approaches. In the
existing classification, we first adopted the semisimple approach, and
then the unipotent approach for the remaining (fairly small number
of) groups. Either of them is not sufficient alone. However they are
overlapping each other. The second part includes the investigation of
the real roles of both the apporoaches.

1.2. Local analysis. Local analysis is one of the most important part
of the classification. It is divided into two parts. One is to investigate
how local subgroups of finite simple groups are constructed. The other
is to investigate how local subgroups are embedded in finite simple
groups.

We must first mention the remarkable work of Thompson.

Theorem 4($N$ Group Theorem). Let $G$ be a finite simple group all
of whose local subgroups are solvable. Then $G$ is isomorphic to one of
the following groups: $L_{2}(q)$ , $Sz(q)$ (where $q$ is a power of 2), $L_{2}(p)$

(where $p$ is a Fermat or Merssenne prime with $p\geq 5$), $A_{6}$ , A7, $L_{3}(3)$ ,
$M_{11}$ , $U_{3}(3)$ , $2F_{4}(2)’$ .

Classification itself of such simple groups now becomes less important
because the existing classification decides to use other general results.
However, the methods and techniques discovered and developed in the
course of the proof continue to live and apply to various scenes of local
analysis.

We next mention the joint work of Janko, Smith, Gorenstein and
Lyons which generalizes the $N$ group theorem.

Theorem 5. Let $G$ be a finite simple group all of whose 2local sub-
groups are solvable. Then $G$ is isomorphic to one of the following
groups, $L_{2}(q),$ $Sz(q),$ $U_{3}(q)$ (where $q$ is a power of 2), $L_{2}(p)$ (where
$p$ is a Fermat or Merssenne prime with $p\geq 5$), $A_{6}$ , $A_{7},$ $L_{3}(3),$ $M_{11}$ ,
$U_{3}(3),$ $2F_{4}(2)’$ .

This theorem is necessary for the existing classification when we
investigate the “quasithin groups.” We will mention later the new proof
of this theorem by apushing-up technique or as0-called “amalgam
method.
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1.3. Amalgam method. Amalgam methods (by Goldshmidt and oth-
ers) were born in the end of $1970\mathrm{s}$ , when the existing classification al-
most completed. Thus, in afair judgment, their contribution to the
existing classification is rather less than it should be.

The methods are used to investigate both the structure and the em-
bedding local subgroups. Finding an amalgam of subgoups in afinite
simple group is almost equal to finding aset of parabolic subgoups con-
taining acommon Borel subgoup in aLie type group. Considering the
fact that most of the finite simple groups are of Lie type, it is quite
natural for us to apply these methods to anew classification.

In an original form, an amalgam method is explained in the following
way. There are two steps to apply to some class of finite simple groups:
one is to classify the isomorphism types of the triples $(X, B, \mathrm{Y})$ having
properties such as (1) both $|X$ : $B|$ and $|\mathrm{Y}$ : $B|$ are odd, (2) $O_{B}(X, \mathrm{Y})=$

$1$ , and so on; the other is to classify the finite simple groups having such
atriple.

There are alot of examples and applications of both steps toward a
new classification of the finite simple groups. Below we will mention a
work which revised the earlier work of Janko, Smith, Gorenstein and
Lyons classifying the finite simple groups all of whose 2local subgroups
are solvable.

1.4. Revision started. We will mention three works which should be
regarded as apart of revision project for anew generation of classifi-
cation.

The first is awork of Gomi, Hayashi, and Tanaka which gave a
revised proof of the following theorem by Janko, Smith, Gorenstein
and Lyons.

Theorem 6. Let $G$ be a finite simple group of characteristic 2type
all of whose 2local subgroups are solvable. Then $G$ is isomorphic to
one of the following groups: $L_{2}(q),$ $Sz(q),$ $U_{3}(q)$ (where $q$ is a power of
2), $L_{2}(p)$ (where $p$ is a Fermat or Merssenne prime with $p\geq 5$), $A_{6}$ ,
$L_{3}(3)$ , $M_{11}$ , $U_{3}(3)$ , $2F_{4}(2)’$ .

Using amalgam methods, Gomi, Hayashi, and Tanaka improved the
earlier proof of Janko, Smith, Gorenstein and Lyons. In particular,
with afew reasonable exceptions, they found the amalgams of the
maximal 2local subgroups, which made the proof conceptually easy to
understand.

The second is awork of Bender and Glauberman which gave arevised
proof of apart of the Odd Order Theorem by Feit and Thompson.
Bender and Glauberman studied apart of local analysis, and gave new
methods to investigate the structure of local subgroups of asimple
group of odd order
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Now the third is awork of Suzuki who applied the new methods
of Bender and Glauberman to investigate the structure of odd local
subgroups of asimple group of even order. An odd local subgroup
is, by definition, anormalizer of a(solvable) subgroup of odd order.
Suzuki noticed that the methods of Bender and Glauberman to the
imaginary groups (simple groups of odd order) were applicable to the
real groups (simple groups of even order) as well. Inspired by the
work of Suzuki, the author decided to study the structure of even local
subgroups in the similar way. The next section is devoted to akind
of proposal toward the new approach to local analysis of finite simple
groups.

2. NEW APPROACH

We begin with some definitions.

Definition 7. Let $G$ be afinite group, and let $\pi$ be aset of primes.
Asubgroup $N$ of $G$ is said to be a $\pi$ local subgroup if it contains a
nonidentity normal solvable $\pi$ subgroup. Asubgroup $N$ of $G$ is said to
be $\pi$ separable if every composition factor of $N$ is either a $\pi$ group or
a $\pi’$ group.

The above definition seems to be somewhat different from the one
that we are used to, but we go along with our definition throughout
the remainder of this note.

Prom now on, we will assume that $G$ is afinite simple group. We
need some more definition.

Definition 8. Let $\Gamma=\Gamma(G)$ be the prime graph of $G$ , where the set
of vertices $V(\Gamma)$ is the set of primes dividing the order of $G$ , and two
vertices $p$ , $q$ are connected if $G$ has an element of order $pq$ .

Let $\varpi$ be aset of primes corresponding to aconnected component
of $\Gamma$ . Depending on whether the prime 2is contained in $\varpi$ or not,
we will call $\varpi$ local subgroups either even local subgroups or odd local
subgroups.

2.1. Odd local subgroups. Let $G$ be afinite simple group, and as-
some that $2\not\in\varpi$ .

As stated in the previous section, Suzuki studied $\varpi$ local subgroups,
and obtained anew proof of the following theorem of Williams.

Theorem 9. Let G be a finite simple group, and assume that $2\not\in\varpi$ .
Then G contains a nilpotent Hall $\varpi$ subgroup which is isolated.

We should note that the proof of Williams needed the classification of
the finite simple groups, but that the proof of Suzuki did not. Looking
closely at the work of Suzuki, the author thought that the similar
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method could be applied to the even local subgoups of finite simple
groups.

2.2. Even local subgroups. Let $G$ be afinite simple group, and let
$S$ be aSylow 2subgroup of $G$ . Throughout the remainder of this note,
assume that $2\in\varpi$ .

The first proposition gives information about the structure of a $\varpi$

local subgroup.

Proposition 10. Let $N$ be a $\varpi$ local subgroup of $G$ , and let $M$ be the
largest normal $\varpi$ separable subgroup of N. Suppose that $N\neq M$ . Let
$E$ be a subgoup of $G$ , where $E/M$ is the product of minimal normal
subgroups of $N/M$ . Thin $E/M$ is a direct product of mutually nonis0-
morphic nonabelian simple groups.

Definition 11. Let $X$ be asubgroup of $G$ containing $S$ . The subgroup
$X$ is said to be $S$ irreducible (or 2irreducible) if $S$ is contained in a
unique maximal subgroup of $X$ .

The next proposition gives information about the structure of a2
irreducible subgroup.

Proposition 12. Let $X$ be an $S$ irreducible subgroup of G. Then there
are normal subgroups $E$ and $K$ of $X$ such that $X=ES$, that $K\cap S=$

$O_{2}(X)$ , and that $E/K$ is a direct product of mutually isomorphic simple
groups.

Combining Proposition 10 and Proposition 12, we obtained the fol-
lowing.

Theorem 13. Let $X$ be an $S$ irreducible subgroup of G. Suppose that
$X$ is a $\varpi$ local subgroup, and that $X$ is not $\varpi$ separable. Then there
are normal subgroups $E$ and $K$ of $X$ such that $X=ES$, that $K\cap S=$

$O_{2}(X)$ , and that $E/K$ is a nonabelian simple group.

We will apply Theorem 13 to afinite simple group of characteristic
2type when $\varpi$ consists of small number of primes.

In the rest of this note, let $G$ be afinite simple group of characteristic
2type, and let $S$ be aSylow 2subgroup of $G$ . Assume that $|\varpi|\leq 2$ .
Then we can classify the isomorphism classes of $G$ as in the following
forms.

Proposition 14. One of the following holds:
(1) $G$ is $S$ irreducible, that is, $S$ is contained in a unique maximal

subgroup of $G,\cdot$

(2) Some $(X, S, \mathrm{Y})$ has good properties (for example, both $X$ and $\mathrm{Y}$

are $S$ irreducible, $O_{2}(\langle X, \mathrm{Y}\rangle)=1$ , and so on);
(3) Others
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Proposition 15. One of the following holds:
$(1’)S$ is contained in a unique maximal 2local subgroup of $G,\cdot$

$(2’)$ Some $(X, S, \mathrm{Y})$ has good properties (for example, both $X$ and $\mathrm{Y}$

are $S$ irreducible, $O_{2}(\langle X, \mathrm{Y}\rangle)=1$ , and so on);
$(3’)$ Otherd.

If one of the conditions (1), (2), $(1’)$ , $(2’)$ holds, then the structure of
$G$ is determined by some existing general theory. To tell the truth, as of
writing this manuscript, the author cannot fix what condition(s) should
be placed in the third place in either form of the above propositions. It
is quite subtle how the simple groups of our target should be scattered
in the three categories. For example, the simple groups $L_{3}(3)$ and
$M_{11}$ with $\varpi$ $=\{2,3\}$ come into the part (3) of Proposition 14, while
they come into the part $(1’)$ of Proposition 15. Anyway, we will see
almost the same simple groups coming out as the Theorem 6. It seems
interesting whether the approach is applicable to simple groups with
$|\varpi|\geq 3$ .
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