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Abstract

We summarize arecent development of the study of sophisticated
learning with emphasis on learning to optimize.

1Introduction
In the last decade, the theory of learning in games has intensively been
studied. Many researchers have investigated learning dynamics including fic-
titious play and replicator dynamic. However, those learning rules are naive
in the sense that those cannot adjust to even simple patterns, so that some
researchers recently consider sophisticated learning as an important issue to
study. It is natural to think that Bayesian learning is acandidate of sophis-
ticated learning. In fact, Kalai and Lehrer (1993) study Bayesian learning in
infinitely repeated games and show that the grain of truth condition implies
Bayesian learners eventually play aNash equilibrium path. This approach,
however, has two problems. First, it is unclear how the grain of truth condi-
tion or other similar conditions is related to sophisticated learning. Second,
as Nachbar (1996) shows, Bayesian learning players with the same degree of
sophistication may fail to satisfy the grain of truth condition each other.

Another approach is proposed by Foster and Vohra (1993): they introduce
aconcept of calibrated learning and construct acalibrated.learning rule.
Their leaning rule is explained by the following example: suppose that a
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player or forecaster, who follows the learning rule, predicts aprobability of
rain, say $p_{t}$ , at the beginning of every period. Now fix any $p$ and pick up
periods in which aplayer predicts $p_{t}=p$ . Then, empirical distributions
of rain in those periods always converge to $p$:the prediction is $emp$ iricall$y$

correct. The Foster and Vohra learning rule is calibrated to empirical data
in this sense. They consider repeated games where every player takes the
leaning rule, and show that the path converges to acorrelated equilibrium.
Inspired by their work, Fudenberg and Levine (1995) and (1999) introduce a
concept of the universal consistency and show that smooth fictitious play has
the universal consistency property. In the following, Isummarize Fudenberg
and Levine’s work and then explain Noguchi (1999) that develops their work
to study the problem of learning to optimize against many regularities.

2The Model
We consider one player who plays an infinitely repeated game against an
opponent, where he may observe only apast history of actions in each period;
the opponent may be amachine, nature, or consist of multiple players. The
player’s (resp. opponent’s) pure action in astage game is denoted by $a$ (resp.
$y)$ and aset of all player’s pure actions (resp. all opponent’s pure actions)
is finite, denoted by $A$ (resp. $\mathrm{Y}$ ), Aset of probability distributions over $S$

is denoted by $\Delta(S)$ . A $\in\Delta(A)$ (resp. $\pi\in\Delta(\mathrm{Y})$ ) denotes the player’s mixed
action (resp. the opponent mixed action). $u(\lambda, \pi)$ is written for the player’s
expected utility of astage game. Histories of the repeated game consist of
sequences of actions by the player and his opponent. Afinite history with
time length $T$ is denoted by $h_{T}=$ $(a_{1}, y_{1}, \cdots, a_{T}, y_{T})$ and an infinite history
is denoted by $h_{\infty}=$ $(a_{1}, y_{1}, a_{2}, y_{2}, \cdots)$ ; we define $h_{0}=\emptyset$ . Let $H$ denote aset
of all finite histories and $H_{\infty}$ denote a set of all infinite histories.

Our player takes an action on the basis of apast history in every period, so
that his strategy may be represented by abehavior strategy $\sigma$ : $Harrow\Delta(A)$ .
Aset of all player’s behavior strategies is denoted by $B_{P}$ . We assume that
the player does not know about any opponent characteristic except that the
opponent plays abehavior strategy and takes an action in $\mathrm{Y}$ at each period.
An opponent behavior strategy is denoted by $\rho$ and aset of all opponent
behavior strategies is denoted by $Bp$ .
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3Universal Consistency
Aword “consistency” has several definitions in the learning literature. We
first describe adefinition of consistency in statisitics and then introduce that
in the economic context. In statistics, the consistency means that prediction
averages asymptotically coincide with empirical frequencies. For example,
consider sequences of two possible states, rain and no rain. Let $\mu_{t}(R)$ be a
prediction of rain at the beginning of period $t$ and $D_{t}$ an empirical frequency
of rain up to period $t$ . Then, the consistecy criterion requires that

$\frac{\sum_{s=1}^{t}\mu_{S}}{t}-D_{t}arrow 0$ , as t $arrow\infty$ , a.s.

This criterion is unsatisfactory because the criterion cannot deal with
regulariteis. Suppose that the weather is very cyclical, for example, it is rain
in even periods and it is no rain in odd periods. Let aprediction always
give 50-50 probability. That is, the prediction is so naive that it does not
learn the weather simple pattern. However, it is clear that the prediction
passes the consistency criterion. Note that this criticism may be applied to
the Foster and Vohra learning rule.

Fudenberg and Levine (1995) introduce the universal consistency in the
economic sense (precisely its definition dates badc to Hannan (1959)).

Definition 1A behavior strategy $\sigma$ is said to be $\epsilon$-universally consistent, if
for all opponent strategies $\rho$

$\lim_{Tarrow\infty}\sup V(D(h_{T}))-\frac{1}{T}\sum_{s=1}^{T}u(a_{s},y_{s})<\epsilon$, $\mathrm{a}.\mathrm{s}.$ ,

where $D(h_{T})$ is an empirical $d\dot{u}$tribution of all opponent actions up to period
$T$ and $V(D(h_{T}))= \max${$u(\lambda,D(h_{T}))|$ A $\in\Delta(A)$ }.

We need to give several remarks. First, the criterion is concerned with
optimization, not prediction. Second, the criterion is universal in the sense
that it requires single behavior strategy pass the criterion for all opposing
behavior strategies. Third, atarget in the criterion is amaximum payoff
against an empirical distribution up to the current period, so that realized
average payoffs eventually becomes at least as high as the minmax payoff in
astage game. Those mean that the criterion may be interpreted as asafet
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criterion in the sense that the player’s strategy does not perform very poorly
against any opposing behavior strategy.

Fudenberg and Levine (1995) show that smooth fictitious play, that is, a
smooth approximate best response against an empirical distribution of past
opponent actions, is universally consistent.

Proposition 1($hdenbe\eta$ and Levine (1995)) For any $\epsilon$ $>0$ , a smooth
fictitious play is $\epsilon$ universally consistent.

It is important to note that avery simple strategy such as smooth ficti-
tious play has the property. Unfortunately, this criterion may be criticized by
the same argument as in the statistical deffiition: it does not assure aplausi-
ble optimality against even very simple patterns. To understand it, consider
arepeated matching pennies game where an opponent takes an alternating
strategy:

$H$, $T$, $H$, $T$, $H$, $T$, $H$, $T$, $H,T$, $H$, $T$, $H,T$, $H,T$, $H$, $T$, $H$, $T$, $\cdots$

Then, the universal consistency criterion only assures that player’s aver-
age payoffs may attain the minmax payoff 0. However, when the player is a
little smart, he may recognize the simple pattern and try to adjust to it, so
that he must earn much more payoffs than 0. It means that the universal
consistency is too weak to evaluate sophisticated learning behaviors.

4Conditional Universal Consistency
Fudenberg and Levine have been aware of the weakness, and then they pr0-
pose “conditional” universal consistency (1999). They show that conditional
smooth fictitious play has the conditional universal consistency property un-
der mild assumptions. Let us explain conditional (smooth) fictitious play. It
is just a(smooth approximate) best response to conditional empirical dis-
tributions. For example, suppose that aplayer consider samples should be
separated according to even and odd periods. It may be represented by a
classification rule 72 that is defined as apartition of $H$ . In this example,

$\mathcal{R}=\{\gamma_{e}, \gamma_{\mathit{0}}\}$ , where $\gamma_{e}=$ { $h_{t}|t$ is even} and $\gamma_{\mathit{0}}=$ { $h_{t}|t$ is odd}. Then,
conditional fictitious play on 72 is a(smooth approximate) best response to
an empirical distribution of past odd period samples in any odd peirod and a
best reponse to an empirical distribution of past even period samples in any
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even period. In ageneral case, aclass in aclassification rule $\mathcal{R}$ is called a
category, denoted by $\gamma$;if apast history $h_{T}\in\gamma$ , we say that $\gamma$ is active in pe
riod $T+1$ . We assume that each 7has prior samples represented by avector
$d_{\gamma}^{0};n_{\gamma}^{0}= \sum d_{\gamma,y}^{0}$ is called aprior sample size for $\gamma$ . Thus, when apast history
$h_{T-1}$ belongs to 7, aplayer considers that acurrent period $T$ is $\gamma$ active
He collects observed samples $d_{\gamma}(h_{T-1})$ in past $\gamma$-active periods and plays a
(smooth approximate) best resposne to an empirical distribution $\tilde{D}_{\gamma}(h_{T-1})$

of prior and observed samples conditional on $\gamma:\tilde{D}_{\gamma}(h_{T-1})=\frac{d_{\gamma}(h_{T-1})+d_{\gamma}^{0}}{n_{\gamma}(h_{T-1})+||\varpi\gamma}$,
where $n_{\gamma}(h_{T-1})= \sum_{y}d_{\gamma,y}(h_{T-1});D_{\gamma}(h_{T})$ denotes an empirical distribution
only of observed samples in $\gamma$-active periods.

Proposition 2($Phdenk\tau y$ ared Levine (1999)) Suppose that a dassification
$nde$ $(\mathcal{R}, (d_{0}^{\gamma})_{\gamma\in \mathcal{R}})$ satisfies the following two assumptiou:

(1) $\lim_{Tarrow\infty}\frac{K^{R}(h_{T-1})}{T}=0$ for all $h_{\infty}\in H_{\infty}$ , and (2))
$\sup_{\gamma\in \mathcal{R}}n_{0}^{\gamma}<\infty$

where $K^{R}(h_{T-1})$ is the number of categories that have been active up to period
T. Then, for any $\epsilon>0$, a conditional smooth fictitious play on $\mathcal{R}$ satisfies
the conditional universal consistency: for any opposing behavior strategy $\rho$

$\lim_{Tarrow\infty}\sup||\frac{1}{T}\sum n_{T}^{\gamma}V(D_{\gamma}(h_{T}))-\sum_{\epsilon=1}^{T}u(a_{s},y_{\epsilon})||<\epsilon$, $a.s$ .

where $n_{T}^{\gamma}$ is the nurnlter of times that $\gamma$ is active up $tp$ period $T$ and $V(D_{\gamma}(h_{T}))$

$\max\{u(\lambda,D_{\gamma}(h_{T}))|\lambda\in\Delta(A)\}$ .

However, the conditional universal consistency is still weak to evaluate
asophisticated player’s behavior, although it is very useful to prove $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{e}\succ$

sitions in the next section: the target $\frac{1}{T}\sum_{\gamma\in R}n_{T}^{\gamma}V(D_{\gamma}(h_{T}))$ , amaximum
average payoff against conditional empirical distributions on $\mathcal{R}$ , might not
be an upper bound to time average payoff, even if an opponent plays asimple
regular strategy. The following example explains it:

Example 1Suppose that a player’s payoff rnati is:

$L$ $M$ $R$

$U$ 3 –33
D –3 3 –3
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Let the player’s classification rule be $\prime \mathcal{R}=\{\gamma_{RL}, \gamma_{M}\}$ , where $\gamma_{RL}=\{h_{t}|y_{t}=$

$R$ or $L$} and $\gamma_{M}=\{h_{t}|y_{t}=M\}$ . Assume, however, that his opponent
follows a cyclical behavior LMRLMRLMR $\cdots$ . Even though a conditional
smooth fictitious play on 72 is supposed to perform well according to the
conditional universal consistency criterion, the conditiond fictitious play on

$playe \mathrm{r}\dot{u}mah,\mathrm{f}\mathrm{f}\mathrm{i}mhecauldoece.ive\frac{\frac{2}{\mathrm{f}}}{3}3+\frac{\frac{1}{1^{3}}}{3}3+\frac{1}{3}3=3oeh\dot{u}h.me-avemge\mathcal{R}_{\mathit{9}}eneratesonlytime- averageutdity0+3=1bypmpo\dot{\Re}t\dot{\iota}\sigma n\mathit{2}.If\#\iota e$

$u\mathrm{f}\mathrm{f}\mathrm{l}.\dot{\iota}\mathrm{t}y$ by switching to a cyclical behavior, UDUUDUUDU $\cdots$ . It is hard to
believe that the smart player takes the conditionalfictitious play on 72 forever.

The example suggests (1) we need astronger criterion of $\mathrm{t}\mathrm{i}\mathrm{m}\triangleright \mathrm{a}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{g}\mathrm{e}$

utilty especialy for regular opponent strategies and (2) if aplayer wants
to learn his opponent stratey, then his classification rule should be more
sophisticated (or finer) than aconditioning rule of the opponent strategy in
some sense.

5Optimal Properties ofConditional Fictitious
Play

Taking into account the weakness of the consistency, Noguchi (1999) introe
duces two strong criteria: time average optimality and conditioning class
optimality. The first criterion requires that aplayer may eventually obtain
almost as high time average payoff as if he knew atrue opposing behavior
strategy. The second one insists that aplayer may eventually obtain almost
as high payoff as if he knew atrue opposing behavior strategy. Then, he
construct an “optiml” classification rule for each of those criteria and shows
that conditional smooth fictitious play on the optimal rule pass the strong
criterion for all regular opposing strategies. We shall explain those criteria
and optimal classification rules.

5.1 Time average optimality

Recal the defect of the consistency: atarget might not be an upper bound
to time average utility. We shall intorduce astrong criterion to resolve the
problem: time average optimality.
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Definition 2A behavior strategy (7 $\ovalbox{\tt\small REJECT}$ H $\ovalbox{\tt\small REJECT}$ $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}(A)$ is called e optimal in the
average sense for SCB, $i\ovalbox{\tt\small REJECT}$ for all pE $S$

$\lim_{Tarrow\infty}\sup\frac{1}{T}[\sum_{-0}^{T-1}V(\rho(h_{e}))-\sum_{-1}^{T}u(a_{s},y_{e})]<\epsilon$, $\mu_{(\sigma,\rho)}-\mathrm{a}.\mathrm{s}$ .

where $\mu_{(\sigma,\rho)}$ is a probability distribution on $H_{\infty}$ generated by $\sigma$ and $\rho$, and
$V(\rho(h_{\epsilon}))$ is a maximum payoff against $\rho(h_{s})$ .

In this definition, we put average $\ovalbox{\tt\small REJECT}\iota \mathrm{m}$ payoff against atrue op
ponent strategy as atarget, instead of that against empirical distributions.
Note that it is an asymptotic least upper bound of time average utility: for
any player’s strategy $\sigma$ and opposing strategy $\rho$,

$\lim_{Tarrow\infty}\inf\frac{1}{T}$ [I $V( \rho(h_{s}))-\sum_{s=1}^{T}u(a_{s},y_{s})$] $\geq 0$ , a.s.

and the equality holds $a.s$ . for $\overline{\sigma}$ with $\overline{\sigma}(h_{s})\in\arg\max\{u(\lambda,\rho(h_{s}))|\lambda\in$

$\Delta(A)\}$ for all $h_{s}\in H$ . It is easily obtained by combining the strong law
of large numbers and afact that $V(\rho(h_{s}))\geq u(\lambda, \rho(h.))$ for all $\lambda\in\Delta(A)$ .
Hence, if time average utility is almost as high as the target, aplayer, who is
concerned with time average utility, has no incentive to change his behavior,
so that the weakness of the consistency is resolved. However, we cannot hope
the best result for the time average optimalty criterion if a player has no
weakly dominant action in astage game: there is no single strategy that
is optimal in the average sense for all opposing strategies; when there is a
dominant strategy, the optimality is alway obtained by playing the dominant
action.

Proposition 3Assume that there is no weakly dominant action in a stage
game. Then, for some $\epsilon 0>0$ there eexists no $\epsilon 0$-optimal behavior strategy
for all opponent behavior strategies.

Although it is impossible to obtain the best result, it is worthwhile study-
ing aplayer’s optimal strategy for many opponent behavior strategies. In-
deed, we may show that there exists atime average optimal strategy for all
opposing strategies generated by acountable family of finitely conditionin
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Definition 3(1) A conditioning rule is a partition of $H$ , denoted by $\mathcal{P}$ . An
element of a conditioning $mle$ is called a conditioning class, denoted by $\beta$ . $A$

conditioning rule $P$ is said to be finite if the number of classes in $P$ is finite.
(2) A conditioning rule of a behavior strategy $\rho$ is a partition, denoted by $P_{\rho}$ ,
that is generated by the following equivalent relation:

$h_{t}\sim\overline{h}_{\mathrm{f}1}\Leftrightarrow\rho(h_{t})=\rho(\overline{h}_{\mathrm{f}\mathrm{i}})$

The mixed action $\rho_{\beta}$ conditional on a class $\beta$ is uniquely defined by $\rho_{\beta}=$

$\rho(h_{t})$ , $h_{\ell}\in\beta$ .

Definition 4We say that a behavior strategy $\rho$ is generated by a family $oj$

conditioning rules $\Omega$ , if a conditioning rede of $\rho$ belongs to $\Omega$ , that is, $P_{\rho}\in\Omega$ .

Proposition 4For any countable family $oj$ finitely conditioning rules $\{\mathcal{P}_{i}\}_{i=1}^{\infty}$

there exists a classification $mle$ $\mathcal{R}_{0}$ such that for any $\epsilon>0$ some conditional
smooth fictitious play on $\mathcal{R}_{0}$ is $\epsilon$ -optimal in the average sense for all behavior
strategies generated by the family $\{\mathcal{P}:\}_{\dot{l}=1}^{\infty}$ .

This proposition implies that conditional smooth fictitious play is optimal
in the avearge sense for all regular opposing strategies because conditioning
rules of regular strategies are at most countable; regular strategies are those
that have computable finitely conditioning rules (see Noguchi (1999) for its
formal definition).

Instead of giving arigorous proof, we will explain abasic idea of con-
structing an optimal rule $\mathcal{R}_{0}$ . It is based on agiven family $\{P_{i}\}_{i=1}^{\infty}$ ; without
loss of generality, we may assume that $\{\mathcal{P}:\}_{i=1}^{\infty}$ is ordered by the fineness as
partitions: $P_{i}\prec P_{\dot{\iota}+1}$ for all $i(\mathcal{P}_{i}\prec \mathcal{P}_{\dot{\iota}+1}\Leftrightarrow\forall\beta\in P_{\dot{\iota}+1}\exists\tilde{\beta}\in \mathcal{P}_{i}(\beta\subset\tilde{\beta}))$ . A
key is that aplayer makes use of each $P_{\dot{l}}$ as atemporary classification rule
in some periods. That is, $\mathcal{R}\circ$ represents the following player behavior: at the
first stage he starts with employing $P_{1}$ as atemporary rule. But he has an
incentive to change finer conditioning rules because atrue conditioning rule
might be finer than $P_{1}$ ; the player could not receive the maximum average
payoff against atrue strategy if he got stuck in $P_{1}$ and the true rule were finer
than $P_{1}$ (recall example 1). The argument may be applied to any period and
any conditioning rule he employs in that period: there is always possibility
that atrue conditioning rule might be finer than acurrent employed one.
Therefore, he employs finer and finer rules as time proceeds. But he wants
to change the rules very slowly. Delayed changes of temporary rules allo
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the player to obtain enough samples for each rule, so that if his employing
rule is finer than atrue one, he could have agood prediction on the true
opponent strategy and obtain the maximum average payoff to it. The player
employs finer and finer rules, and eventually employed rules are finer than
atrue one. It means that the player may eventually obatin the maximum
avearge payoff.

5,2 Conditioning class optimality

Even the time average optimality may be weak as abehavior criterion of
asophisticated player. The weakness is that the time average optimality
criterion may ignore aperformance of aplayer’s strategy in active periods of
aconditiong class whose frequency vanishes relative to all periods. Consider
arepeated matching pennies game where aplayer always plays heads and
his opponent plays the following regular strategy:

$H$, $T$, $H$, $H$, $T$, $H$ , $H$, $H$, $T$, $H$, $H$, $H$, $H$, $T$, $H$ , $H$, $H$ , $H$, $H$, $T$, $\cdots$

That is, the frequency of playing tails diminishes regularly as time proceeds.
The player suffers the worst $\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{e}-1$ whenever the opponent plays tails,
although tails are played regularly. However, the player’s strategy passes the
time average optimality criterion for this opponent strategy because periods
of the worst outcome asymptotically vanish relative to aU periods. If the
player is smart, then he would be aware of the regularity and very likely to
play tails when his opponent plays tails. The example suggests that we need
astronger criterion in order to capture sophisticated behaviors: acriterion
that assures an optimality in each conditioning class. We shall only give the
definition of the conditioning class optimality for acase of finitely conditioned
strategies, that is, strategies whose conditioning rules are finite (see Noguchi
(1999) for ageneral case).

Definition 5A behavior strategy $\sigma$ : $Harrow\Delta(A)$ is called $\epsilon$ optimal in the
classwise sense for $S$ , if for any opponent strategy and any conditioning class

$\beta\in P_{\rho}$

$\tau\cdotarrow\infty \mathrm{h}\mathrm{m}\sup V(\rho_{\beta})-\frac{1}{n_{T}^{\beta}}$

$0\leq\cdot\leq T-,$

$1 \sum_{h.\in\beta}u(a_{s+1}, y_{s+1})<\epsilon$

, if $n_{T}^{\beta}arrow\infty$ , $a.s$ .

$w$ here $n_{T}^{\beta}$ is the reurnber of $\beta$-active periods up to $\mu r\cdot od$ $T$ and $V(\rho_{\beta})$ is $a$

masimurn payoff against $\rho_{\beta}$ .
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This optimality criterion assures that aplayer may eventually obtain
almost as high payoffs as if he knew atrue opponent strategy, and the above
problem is resolved.

Proposition 5For any countable family $oj$ finite conditioning rules $\{\mathcal{P}_{i}\}_{i}$ ,
there exists a classification rule $\mathcal{R}_{1}$ such that for any $\epsilon$ $>0$ , some conditional
smooth fictitious play strategy on $\mathcal{R}_{1}$ is optimal for all behavior strategies
generated by the family, $i.e$ . $\mathcal{P}_{\rho}=P_{\dot{l}}\exists i$ .

This criterion is stronger than the time average optimality and it would
be the strongest as amyopic optimality criterion in the sense that the same
proposition with astronger criterion would not hold.

Abasic idea of constructing $\mathcal{R}_{1}$ is very similar to that of the time average
optimal rule $\mathcal{R}_{0}$ . Adifference is that aplayer switches classwise: if aclass
$\beta$ in $P_{i}$ obtains enough samples, then the class is changed to finer classes in
$P_{i+1}$ , while any other class in $\mathcal{P}_{\dot{l}}$ with few samples keeps to be employed, i.e.
it is not switched to finer classes.

6Concluding Remarks
We conclude by giving several remarks. First, we need to emphasize that the
time average optimality and the conditioning class optimality (proposition
4and 5) may be obtained by using the conditional universal consistency.
This means that those optimalities may be attained without the cost of the
universal consistency. Thus, single smooth fictitious play is not only optimal
for many opposing strategies but also safe against all other ones. Second, we
have focused on myopic optimality. However, nonmyopic cases are impor-
tant in some economic situations. Noguchi (2001) extends the conditioning
class optimality to anonmyopic case and show that anonmyopic version of
conditional smooth fictitious play passes the nonmyopic optimality criterion
for many strategies.
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