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The Necessary and Sufficient Condition for Global
Stability of a Lotka-Volterra Cooperative or
Competition System with Delays
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1. Introduction

Global stability of Lotka-Volterra delay systems has been studied by a lot of authors
(see, [2-6, 9-11] and the reference cited therein). Most of the papers consider the situations
at which undelayed intraspecific competitions are present (see, for example, [2, 3, 6, 9,
11]). In these cases, either a Liapunov functional is used ([3, 6, 9, 11]) or comparison
theorems can be applied ([2]) to obtain the global asymptotic stability of a positive
equilibrium point. Essentially, the point is globally asymptotically stable if there is the
domination of the undelayed intraspecific competition over the delayed intra- (and inter-)
specific competition. However, we find few papers referring to how the sharp domination
is. In other words, there are few studies giving necessary and sufficient conditions for the
global stability of Lotka-Volterra delay systems.

In this paper we consider the following symmetrical Lotka-Volterra system with delays
including both cooperative and competition cases:

Z'(t) = z(t)[r1 — az(t) + az(t — m1) + By(t — 112))

1
Y (t) = y(t)[r2 — ay(t) + Bz(t — 1) + ay(t — T22)]- M

The initial condition of (1) is given as
z(s) = ¢(s) 2 0,-A < s<0;¢(0) >0 )

y(s) =1(s) 2 0,—A < s <0;9%(0) > 0.
Here 7, 79, a, a, B, and 7; (3,7 = 1,2) are constants with r; > 0, r; > 0, a > 0, and
7.; > 0. ¢ and 9 are continuous functions and A = max{7;|i,j = 1,2}. (1) is called a
cooperative system if B > 0 and is called a competition system if B < 0.
We assume that (1) has a unique positive equilibrium (z*,y*), that is

. (a—a)r 4 fr . PBri+(a—a)ry
T a—aR-p V= a-ap-p

>0, > 0. (3)

T
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The positive equilibrium (z*,y*) is said to be globally asymptotically stable if (z*,y*)
is stable and attracts any solution of (1) with (2). The purpose of this paper is to seek
the necessary and sufficient condition for the global asymptotic stability of (z*, y*) of (1)
for all delays 7;; (¢, = 1,2), making the best use of the symmetry of the system. The
result is the following:

Theorem 1. The positive equilibrium (z*,y*) of (1) is globally asymptotically stable
for all 7;; > 0 (3,5 = 1,2) if and only if

IBl<a-a and |[B|<a+a

hold.

In the case when there are no delays in system (1), that is 7;; =0 (3,5 = 1,2), (z*,y*)
is globally asymptotically stable if and only if |3| < a — a holds (the proof is omitted
for the sake of page restrictions). So we can see that the condition |3| < a — a and
|8] < a + a in Theorem 1 reflects the delay effects.

When a > 0, we notice that the positive delayed feedback terms az(t —71;) and ay(t—
Ty2) in the right-hand side of (1) play a role of destabilizer of the system. Biologically,
az(t — 711) and ay(t — 722) with a > 0 may be viewed as recycling of population.

Gopalsamy [3] and Weng, Ma and Freedman [11] showed that if |a| + |8| < a holds,
then the positive equilibrium (z*,y*) is globally asymptotically stable for all 7;; > 0
(3,5 = 1,2). It is clear that Theorem 1 has the slight improvement of their results for
(1). Recently, Lu and Wang [7] also considered the global asymptotic stability of (z*,y*)
for (1) with a = 0.

The proof of the sufficiency of Theorem 1 is done with a different-type Liapunov func-
tional from ones used in the related papers mentioned above, and with an extended
LaSalle’s invariance principle (cf. [8; Lemma 3.1]). The necessity of Theorem 1 is proved
by analyzing the roots of characteristic equations for linearized systems corresponding to
the system (1).

2. The proof of Theorem 1

In this section, we will prove Theorem 1.
Sufficiency. When 8 = 0, the system (1) becomes the two scalar delay differential
equations

7'(t) = z(t)[r1 — az(t) + az(t — m11)]

) (4)
Y (t) = y(t)lr2 — ay(t) + ay(t — m22)].
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By [5, pp.34-37], we see that 0 < a — a and 0 < a + a imply the global asymptotic
stability of the positive equilibrium (z*,y*) of (4) for all nonnegative 71; and 7s,.
When a = 0, the system (1) becomes

z'(t) = 2(t)[r, — az(t) + By(t — 12)]
y'(t) = y()[r2 — ay(t) + Bx(t — 1)
and, by (3), the positive equilibrium is give as

(arl + Bry Bri+ arg)
_—F -3 )
It follows from [11; Theorem 2.1] that (5) is globally asymptotically stable for all non-
negative 715 and 7y; if |8] < a holds. Therefore, we have only to consider the case |a| > 0
and || > 0.

By the transformation

(5)

the system (1) is reduced to

T'(t) = (z* + z(t))[—az(t) + az(t — T11) + By(t — T12)]
Y'(t) = (" +y(t)[~ay(t) + Bz(t — Ta1) + ay(t — T22)]

where we used z(t) and y(t) again instead of Z(t) and F(t), respectively. Using [8; Lemma

(6)

3.1] we will prove that the trivial solution of (6) is globally asymptotically stable for all
75 > 0 (i,j = 1,2). Define C = C([-A, 0], R?) and

*>0, $0)+z">0
G={(¢,¢)ec‘¢(s)+x*2 ¢()+w*> }
P(s)+y* =0, $(0)+y*>0

Clearly, G (the closure of G) is positively invariant for (6). Construct the Liapunov
functional V' defined on G as

¢(O) -|- z*

V(o,v) =2aX [d)(O) —z*log

]+2aY [¢(0) *1og¢(0) y]

XX +1) / $2(8)d6 + (a? + B?Y) / $%(8)d0 (7)

Tll =T21

+82X(X+1) [ v*8)dd +Y(a? + B2Y) / ¥(6)dd
—T12 —T22
where X and Y are positive constants determined later. Then, it is clear that V is
continuous on G and that for any (¢,%) € 8G (the boundary of G), the limit I(¢, 9)
U y) = lim V(®,7¥)

(®,%)—(d4)€0G
(®,%)eG
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exists or is +oo. Furthermore,
Vie) (8, %) =2aX [—ag(0) + ap(—711) + B1p(—712)] $(0)
+2aY [—ap(0) + Be(—721) + ap(—722)] $(0)
+ (X +1) [$(0) - $*(—7u1)] + (@® + B7Y) [$%(0) — ¢*(~71))]
+ BX(X +1) [$2(0) - ¥*(—7i2)] + Y (0® + B2Y) [$(0) — $*(~722))|
= — X [-a¢(0) + ag(—m1) + Bp(—m2)]” (8)
=Y [-a(0) + B(—Ta1) + atp(—720)]”
— [ag(—mu) - ,BX"/)("’7'12)]2 — [e¢(—21) - ﬂY'/)(—Tzz)]2
= [(a® = a®)X - BY - 20%] 4%(0)
— [-B*X% - B*Y? - X + (0 — o®)Y| $(0).
Let
f(X,Y) = (a® — a®) X — B%Y - 242,
| 9(X,Y) = —F2X? = BY? - X + (a? - V)Y,
which are the coefficients of ¢$?(0) and 1%(0) in the last two expressions of (8), respectively.
Then, the global asymptotic stability of the trivial solution of (6) will be proven for all
Tij 2 0 (3,5 = 1,2) if there exist X > 0 and Y > 0 such that
f(X,Y)>0 and g(X,Y)>0. 9)
In fact, if there exist X > 0 and Y > 0 such that (9) holds, then we have

Vie)(6,%) <0 on G. (10)

From (7) and (10), we see that the trivial solution of (6) is stable and that every solution
is bounded. '
Further, let
E = {(¢,%) € G | ($,%) < oo and V{g)(¢, %) = 0},
M : the largest subset in E' that is invariant
with respect to (6).

Then, for (¢,%) € M, the solution z,(¢,v¥) = (z(t + 8),y(t + 6)) (—A < 8 < 0) of (6)
through (0, @, ) remains in M for ¢ > 0 and satisfies for ¢t > 0,

Viey (2:(¢, %)) = 0.
Hence, for t > 0,
—az(t) + az(t — 1) + By(t — 112) =0

(11)
—ay(t) + Bz(t — 121) + ay(t — 722) =0,
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which implies that for ¢ > 0,
' z'(t) =4y'(t) =0.
Thus, for ¢t > 0, | |
z(t) =c, yit)=co (12)

for some constants ¢; and c;. From (11) and (12), we obtain

WA

Jé] —a+ af |cg 0]
This implies that ¢; = ¢; = 0 by the assumption (3) and thus we have
z(t)=y(t)=0 for t >0.

Therefore, for any (¢,1) € M, we have

(#(0),%(0)) = (=(0),y(0)) = (0,0). |
By [8; Lemma 3.1], any solution z, = (z(t + 6), y(t + 6)) tends to M. Thus

lim z(t) = tléinoo y(t) =0.

t—+00
Hence, the trivial solution of (6) is globally asymptotically stable for all 7;; > 0 (3,5 =
1,2). , ,
That is why we have only to show that there exist X > 0 and Y > 0 such that (9)
holds. (9) can be equivalently written as

2 __ 2 2
Ygaﬁzo‘X—zﬂo‘2
1\ 2 a? — o 2 (az_az)z + B (13)
- — < .
(X+2) +(Y 25 ) ST p
Now let us define
., _at—a? 202
L:Y= 7 X — 7
1)\ 2 a® — o? 2 (a2—a2)2+ﬁ4
r: (X+3) +(Y—- 7 ) =

Then we see that there exist X > 0 and Y > 0 such that (9) holds if and only if the line
L intersects with the circle I" in the first quadrant, except X and Y axes, of XY -plane
(Fig. 1). Investigating the radius of I' and the distance between the center of I' and the
line L, we have that there exists a pair of the real roots (X,Y’) of (13) if and only if

la® — o — §%| 2 2|aB] ~ (14)

holds. (14) means either a2 — a? — 82 > 2|af)| or a® — o2 — B2 < —2|afB|. We will
now prove that the former just shows the line L intersects with the circle I" in the first
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quadrant exept X and Y axes. In fact, the former implies a®> — a®> > 32 by |a| > 0 and
|B| > 0, and the gradient of the line L is greater than 1. On the other hand, the gradient
of the tangent line of the circle I at the origin is Z’%ﬁ which, in this case, becomes less
than 1. Thus, a® — a? — #? > 2|af| shows that the line L intersects with the circle I' in
the first open quadrant.

Y«

P

Fig. 1

It is easy to see that |5| < a—a and || < a+ o imply a2 —a? - % > 2|af)|. Therefore,
it is proved that there exist X > 0 and Y > 0 such that (9) holds. Hence, (z*,y*) is
globally asymptotically stable for all 7;; > 0 (3,5 =1, 2).

Necessity. Assume the assertion is false, that is, let (z*,y*) be globally asymptotically
stable for all 7;; > 0 (4, =1,2) but |B| 2 a—aor |[B| > a+a.

Linearizing (6), we have

z'(t) = z*[—az(t) + az(t — 111) + By(t — 112))

. (15)
V' (t) = y*[—ay(t) + Bz(t — 721) + ay(t — 722)].
Now, we will show that there exists a characteristic root A of (15) such that
Re(X) >0 (16)

for some 7;; (i,5 = 1,2), which implies that the trivial solution of (6) is not stable (see
[1, pp.160, 161]).

We note that the case || = a — a is excluded from consideration because of the
assumption (3). In the case |3| > a—a, we see that (z*, y*) is not globally asymptotically
stable when 7;; = 0 (4,7 = 1,2) (the proof is omitted for the sake of page restrictions).
Therefore, we have only to consider the case |5| < a — a and |8| > a + a. The proof is
divided by three cases
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(I) The case —a < a < 0. Let 13 = T2 = T2 = To2 = T7; then the characteristic
equation of (15) takes the form

MNApr+g4(r+sh)e™ +ve " =0 (17)

where p = a(z* +3*), ¢ = a®z*y*, r = —2a0z*y*, s = —a(z* +y*) and v = (a? — §%)z*y".
Substituting A = iy into (17), we have

(=42 + piy + Q)€Y + 1 + siy +ve™ V" = 0. (18)
By separating the real and imaginary parts of (18), we obtain
[(—v* + ¢)* — v* + p’y*] cos(y) = (r — sp)y’ — (g —v)

9
[(—y* +)* — v + Py’]sin(y7) = sy° + [rp — s(g + v)]y. (19
From (19) we have
(s + 2 = o2+ 9] = [(r = spl? — (g~ v)]" + [s® + [rp — s(g+o)ly] -
To solve y in (19), define the following function
AX) =[(-Y +q)* = * +P’Y]* = [(r — sp)Y — (g —v)}? (20)

—Y[sY 4 rp — s5(q + v)]?

where Y = 2. Then f is a quartic fuction such that f; - +o0 as |[Y| = +oo0 and
f1(0) = [@® — &® + F[(a + @) = B][(a — a)* = B*](z"y")* < 0.

Thus, there can exist some positive zeros of (20).

Let Y, be such a positive zero. Substituting yo, which satisfies Yy = 42, into (19), we
can get some 7o such that (17) has a characteristic root iy, at 7o.

Let

PiAT) = A2 DA+ g+ (7 + sA)e™ + ve .
Clearly, Py(iyo, 7o) = 0. From (17), we have

0P 1 ('I,y() , T( 0)
or
0P 1 (’iyo , T 0)
oA
Now, we will consider the following value:

= 2iyo(—y2 + pivo + q) + iyo(r + siyo)e ¥,

= 2iyo + p + 270(—¥5 + Piyo + q) + [s + To(r + siyo)Je” ™.

Ki=1+ (a2 — aacos(yomo))(z* — y*)?
(p + scos(yo7))? + (2yo — ssin(yo70))?
We obtain

(a® — aacos(yemo))(z* — y*)* > 0,
(p + s cos(yom))? + (2yo — ssin(yom))® # 0
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since |a| < a, and we get K; > 0. Then, %;M # 0 holds because

9 a2 . o . —iyoTo
0< K, = Re[ 2iyo(=y5 + Piyo + q) = iyo(r + sigo)e ]
P + scos(yoo) + #(2y0 — s sin(yo70))
[ _3P1$;Tyo,1‘02 ]

P+ scos(yoTo) + 4(2yo — ssin(yoe7o))

> 0 holds because

- —2RGwin) -
signX; = sign P+ scos(yoo) + i(2y0 — s Sin(yOm)))

re [2F s cos(yo7o) +(2yo — ssin(yomo)) 7o
_8P1§;g-0)702 %

- 9P (iy0,70)
L ar

= sign

Hence, we have Bﬁ%@i‘i # 0. Thus, by the well-known implicit function theorem, we

have
) d ,\ 3&%1@,702
sign | Re = = sign (Re | —gp5— (o)
A=1iyo,T=T0 A\
8Py(iyo,m0) \ ~?
Re _3}"1—&"_——
('@»‘sz
2}
This implies that (16) holds. Therefore, the trivial solution of (6) is not stable, that is,

(z*,y*) is not stable near 7y, which is a contradiction.
(IT) The case a < —a. Here, we can take r; < ry without loss of generality. From (3),

= sign =signK; > 0.

it is easy to see that r; < r; if and only if z* < y*. Let 1 = 7 and 713 = 721 = Tog = 0;
then the characteristic equation of (15) takes the form

MApA+d+ (F+38N)e> =0 (21)
where § = az* + (a — @)y*, § = [a(a — a) — BP]z*y*, 7 = —a(a — a)z*y*, and § = —az*.
Let us use p, ¢,  and s again instead of p, g, ¥ and 8§, respectively. Substituting A = iy
into (21), we obtain

—y? + piy + g + (r + siy)e™ = 0. (22)
By separating the real and imaginary parts of (22), we have
(r* + s*y?) cos(yr) = r(y* — g) — spy’

(r? + s*y®)sin(yr) = sy(y® — q) + pry 2)
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[+ 297" = [rs* — ) - ] + [su( — ) +pm9]”.
Define the following function
L) =Y[s(Y — )+ + [r(Y - q) — spYT? = [r* + 57Y]’
where Y = 92, then f, is an upwards cubic function to the right and
£:(0) = [a(a - a)Pl(a — @) — Fa? — a? — F¥)(a"y")" < 0.

Thus, there can exist some positive roots of fo(Y) = 0.

Let Yp be such a positive root. Substituting yo, which satisfies Y, = y3, into (23), we
can get some 7o such that (21) has a characteristic root iy, at 7o.

Let

P(AT) =X +pA+q+ (r+s\)e™™
Then, Py(iyo, 7o) = 0 and we obtain from (21) that

OP.
O (0, 70) _ —iyo(—15 + piyo + q),

or
OP,(iyo, ) ) :
W = 2iyo + p + [s — To(r + styp)]e¥7.
Clearly, %’3’0—’7"2 # 0. We will now consider the following value:

s*ys + 2r¥y2 — s2q? — 2r%q + p*r?

K= o T B = 0 T Gw)l

We get K, > 0 since we have
— 2q% — 2r%q + p?r?
— [a2m*2 +( a)z *2 + 2,6223*?/*][0:((1 _ a)]zx*2y*2 _ a2[a(a a) ﬁ2]2$*4 *2
= a’B*2a(a — @) — B%z**y*? + [(a — a)®y*? + 28%z*y*]|o?(a — a)?z*?y*?
Z 02,82[201(61 _ a) 182]2:*4 *2 [(a _ 0)2(1;*2 + 2,82:1:*2]012(& _ a)2x*2y*2

o? [(a—a)* - B* +2(a — @)(2a — )% &**y** > 0.

l

Furthermore,

- . 2iyo + p s To
sign Ky = si Re - - + - —_— — —
snte &t [ (—7"!/0(—3/3 + pyo + Q) 7"!/0("' + 37/!/0) Yo

( 3P2§iyo,‘r02>]
Re|—=2—1].

= Slgn aszlyO»‘m!
ar
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Hence, we can obtain 9&%‘1@1 # 0 and, by the same reason as above,

: ) : 2Pa(ivo.70)
sign | Re o N = sign | Re | — 55—y (o)

[2)

8P (iyo,T0) -1
= sign [Re { | —3pterey [?;m:}) = signK, > 0.
X

This implies that (16) holds, which is a contradiction. The proof of Theorem 1 is thus
completed.

Remark 1. We are interested in giving necessary and sufficient conditions for the
global stability of several systems which have more generality than the system (1). How-
ever, it becomes much more complicated and has not been solved yet. This problem is
left for a future work.

Here, we give the following three portraits of the trajectory of (1) with (2), drawn by
a computer using the Runge-Kutta method, to illustrate Theorem 1 (r; = 10, r; = 10,
= 45, T2 = 46, To1 = 47, Ty = 48, and (¢, '!/)) = (37 + 0.05t, 29408 sm(07t)))

Fig2 a=5a=-2,=-29 (|8|<a+a)
(z*,y*) nearly equals (1.01,1.01).
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A
LUVE
/

Figd a=5,a=-2,4=-3 (|B|=a+a)
(a:*,y*) = (1’ 1)'
Y
T

Figd a=5,a=-2,=-302 (|8|>a+a)
(z*,y*) nearly equals (0.99,0.99).
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