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I[dentification problems for coupled damped sine-Gordon systems

WEHAKE RS W %¥  (Junhong Ha)
HERKELESR i f5— (Shin-ichi Nakagiri)

1 Introduction

The damped sine-Gordon equation described by

0%y Oy .
E+a§—ﬂAy+'ysmy—f in (0,T) x (1.1)

is known as the dynamics of Josephson junctions driven by a current source f, where a, 3, are
physical constants. We refer to see the reference [9] for the physical modeling. In T[10], we can
find the coupled damped sine-Gordon equations described by

0? 0 . .
i+ﬂ—Ay1+smy1+k(y1—y2)=f1_111 (0,T) x Q, '
ot | Bt (1.2)
%y2 | Ay , -
—— 4+ - —Aya+sinya + k(y2—y1) = f2 in (0,T) x Q
ot ot
and
0? 0 .
UL Ay +sin(+y)=fi in (0,T) x Q,
at = ot | (1.3)
32y2 3y2 . .
2 e Ayz +sin(y; — y2) = f2 in (0,T) x Q,

where k is a physical constant.

These equations (1.1)-(1.3) has become the target of their researches by many scientists for
a long time. Indeed, we could find the studies as follows. In T[10], he has extensively studied
the problems with respect to stability and existence of attractors. In BFL[2], L[3] and M[6],
they verified numerically that these equations causes the special choice of the initial values and
the forcing function to chaotic behaviors. The optimal control problems of regarding forcing
functions as control variables were studied in HN{7] and NH[8]. Of course, there are many
studies involved with the identification problems for linear systems (See A[l]). However we
could not find the theoretical identification problems of the physical parameters being studied
for (1.1)-(1.3). Hence in this paper we are devoted to study the identification problems of the
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coupled damped sine-Gordon equations described by

[ 0%y, on dy2
9un % 92 _ 5 A i
sz T, tong B11Ayr + v sin(d11y1 + d12y2)
+kuyr +kizye = f1 in (0,T) x Q,
| 8% oY1 dy2 (14)
B2 Tong tongs = 2Ay2 + Y22 5in(d21y1 + d2212)
\ +kayr +kny = f2 in (0,T) xQ,

where physical parameters G;; > 0, a4j, Vi, 0ij, kij are constants. Clearly (1.4) is a generalized
form of (1.2) and (1.3). In our identification problems for (1.4) the parameters a;;, vi;, ;; and
kij except (;; are assumed to be unknown, and then we will deduce the necessary conditions on
the optimal parameters minimizing a quadratic cost functional defined on an admissible set of
parameters in the frame of the optimal control problems studied by L[4]. Whenever this method
is introduced, we should estimate the first variation of the solution map between parameters
and solution of (1.4), but sometimes it is not easy task. In particular, it is more difficult for the
case where the diffusion parameters §;; are unknown, and so let us study this case next time.

For studying the identification problems for (1.4) we need the fundamental results such as
existence, uniqueness and regularity of weak solutions for (1.4) and we shall use those studied
by NHJ[8]. We hope to refer to T[10] for more strong solutions of (1.2) and (1.3).

This paper is composed of three sections. In section 2 we explain the fundamental results of
solutions for the coupled damped sine-Gordon equations. In section 3 we study existence and
necessary conditions for the optimal parameters. Moreover we give an example deducing the
bang-bang conditions from the necessary conditions on the optimal parameters.

2 Preliminaries

Let Q be an open bounded set of the n dimensional Euclidean space R™ with a piecewise
smooth boundary I' = Q. Set Q@ = (0,T) x ? and ¥ = (0,T) x I'. We consider the coupled
damped sine-Gordon equations described by

( 3%y Ay1 Oyo

Sz Toug, tongs —.,BllAyl + Y11 8in(d11y1 + 012y2)
+kuy +kieye = f1 in Q,
< 8%yq ) Oy2 (2.1)
52 + a2 - + an—- —.ﬂzszz + 22 sin(d21y1 + 02212)
\ +kaiy1 + k2oy2 = f2 in Q
with the homogeneous Dirichlet boundary conditions
yi=0 on ¥, i=1,2, (2.2)

where 8i; > 0, aij, Vii, 0ij, kij € (—00,00),4,5 = 1,2 and A is the Laplacian and f;,7 = 1,2 are
given functions. The initial values to (2.1) are given by

¥i(0,z) = y¥(z) in Q and %zi(o,x)=y’i(w) in Q, 1=1,2. (2.3)
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For setting the partial differential equations (2.1) - (2.3) the ordinary ones, we introduce two
Hilbert spaces H and V by H = L?(Q) and V = H}(Q), respectively. We endow these spaces
with inner products and norms as follows:

(%,) = /Q $@)d@)de, [l = ()2 V 69 € IAQ); (2.4)

(5.1 =3 [ Gt W=l ¥ sveri@. @9

Then the pair (V, H) is a Gelfand triple space with the notation, V < H = H' — V' and
V' = H~1(Q), which means that embeddings V C H and H C V' are continuous, dense and
compact. By (-,-) denotes the dual pairing between V' and V.

For a variational formulation let us introduce a bilinear form

a(6,9) = [ Vo Vods = (6:0), Voo € HY(O).
This bilinear form a(-,-) is symmetric, bounded on V' x V' and coercive on V, i.e.,

a(¢, ¢) > 18lI>, Vo € Hy(). (2.6)

By the boundedness of a(-,-) we can define the bounded linear operator A € L(V, V"), the space
of bounded linear operators of V into V', by the relation a(¢,vy) = (A¢, ). The operator A is
an isomorphism from V onto V' and has a dense domain D(A) in H, but it is not bounded in
H.

With the operator A the equations (2.1)-(2.3) are written by the evolution forms in H as

follows: - g dyo

U Lo (Zl + amg + B11Ay + vy sin(11y1 + d1212)
+k11y1 + ki2y2 = f1 in (0,7),

) d?ya dy

o, |
—z tent 0422-&? + Ba2Ay2 + Ya2 sin(d21y1 + 62272) (27)

+ko1y1 + kogy2 = fo in (0,T),

) du: )
WO =vheV, O =yieH i=12

For defining (2.7) as a vectored evolution equation, we introduce the product Hilbert spaces
V=V xV and H = H x H with the inner products defined by

\

(,%) = (¢1,91) + ((¢2,1/)2 [¢1,¢2]t = [, )t €V
(6,%) = (¢1,%1) + (¢2,%2), [¢1, o’ [¢1,¢2]F,e H,

respectively. Here by [-,-]' denotes the transpose of the 1 x 2 vector [-,-]. Then the dual space
of V is given by V' = V' x V' and the dual pairing between V' and V is given by

(@, ) = (¢1,91) + (D2, ¥2), Yo = [¢1,0]' € V', Vap = [¢h1,9ho]" € V.

Since V <+ H < V', the pair (V,H) is also a Gelfand triple space with the notation V — H —
V'. The norms of V and H are denoted simply by ||%|| and ||, respectively.
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We denote by M(K) the set of 2 x 2 matrices on K, M$(K) the set of diagonal matrices of
M,(K). We set R = (—00,+00), Rt = [0,+00) and R* = (0, +00). Let us define a norm on
M;(R) as follows:

lal = > oyl for a=(0i;) € Ma(R).
1,7=1,2
Then it is obvious that My(R*), MZ(R'), M$(R) are closed subsets of My(R) and for all a €
M(R) |lad|| < |af ¢]l, Vo €V, |ag| < |a| |¢|, V¢ € H and ||adly < |af @]y, Yo € V.
As using notations of matrices and vectors we obtain the Cauchy problem in # for (2.7) :

{Y”+ay'+ﬁAy+ky+‘YSin5Y=f in (0,T), (2.8)

y(0) =yo, ¥'(0) =y,

where o, 8,k € M(R), 8 € MJ(R*),v € MJ(R), Ay = [Ay, Ayz]t and sin ¢ = [sin ¢y, sin ¢5)".
Let us define the solution Hilbert space W(0,T) by

W(0,T) = {glg € L*(0,T;V),g' € L*(0,T; H),g" € L*(0,T; V')}

with the inner product

T
(£,8)weo,r) = /0 ((£(2), 8(1) + (F' (1), &' () + (£(t), 8" ())w) dt, f,8 € W(0,T),

where (+,)yr is the inner product of V'.
Now we give the definition of weak solutions of the coupled damped sine-Gordon equations.

Definition 2.1 A function y is said to be a weak solution of (2.8) if y € W(0,T) and y satisfies

(y”(')’ ¢> + (ay’(’)a ¢) + (IBY()’ ¢) + (ky(°)a ¢) + (‘7 Sin&y(’)a d’) = (f(')a ¢)
for all ¢ €V in the sense of D'(0,7T), (2.9)
¥(0) = yo, ¥'(0) =y,
where D'(0,T) denotes the space of distributions on (0, T).

For the existence and uniqueness of weak solutions for (2.8), we can state the following theo-
rem.

Theorem 2.1 Let o, 8,k € My(R), B € M(R),~ € MZ(R) and f, yo, y1 be given satisfying
fe L?0,T;H), yo€V, y1 € H. (2.10)
Then the problem (2.8) has a unique weak solution y in W(0,7') and y has regularities
y € C([0,T};V), y' € C([0,T); H). (2.11)
Furthermore, we have the energy inequality
Y OR +IyOI? < Cllyol? + 12 + 1122 0700)s ¢ € [0, T, (2.12)

where C is a constant depending continuously on a,3,v,d and k, and /B € Mg(R“f) with
elements v/B;,i = 1,2.

We remark that for v = 0 and k¥ = k(-) in (2.9) we have the similar results as in Theorem 2.1
provided with k(-) € L*°(0,T; M2(R)).
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3 Identification problems for CSG

In this section we study the identification problems for the coupled damped sine-Gordon
equations described by

{ y'+ay'+BAy +ky +ysindy =f -in (0,7), (3.1)

y(0) = yo, ¥'(0) =y:.

Let us assume that the parameters a, v, 8, k appeared in (3.1) are unknowns. By M = (M3(R))*
denotes the four times cartension product space and give the product norm on it. We define a
set of parameters P & M,(R) x M§(R) x Ma(R) x M>(R). It is obvious that P is the closed
subset of M. Set q = (&, 4, d,k) € P. Since for each q € P there exists a unique weak solution
y = y(q) € W(0,T) of (3.1), we can define uniquely the solution map q — y(q) of P into
W (0,T). We will call y(q) the state of (3.1) depending on q.

The cost functional attached to (3.1) is given by

J(q) = ||Cy(q) — z4l|3 for q € P, (3.2)

where z4 € K is a desired value of y(q) and C is a bounded linear observation operator of
W(0,T) into K, an observation space.

Let Pgq be a convex closed subset of P, which is called the admissible set. The quadratic cost
identification problems (QCIP) subject to (3.2) and (3.1) are usually divided into existence and
characterization problems. The detailed descriptions of them are as follows:

(i) The problem of finding an element q* € P4 such that

. _ .
qgg I (a) = J(q%); (3.3)

(i1) The problem of giving a characterization to such the q*.

As usual we shall call q* the optimal parameter for (QCIP) and y(q*) the optimal state of
(3.1). It is well-known that there are not general methods for solving (i) and stronger conditions
on (3.1) are required for solving it. For example, P,4 is a compact subset of P. We solve the
problem (i) under this assumption. It is also well-known that we can characterize q* if we
can derive the necessary conditions on q*. As one effective method for deriving the necessary
conditions we are to consider the Gateaux derivatives of the given cost function J(q). Hence if
we act the Gateaux derivatives on J(q), then we have a formal inequality, which is a necessary
condition, given by

DJ(q*)(q—q*) >0 for all q € Py,q, (3.4)

*

in the direction q — q*. We
analyze the inequality (3.4) by introducing the adjoint state equations with respect to the state

where DJ(q*) denotes the Gateaux derivative of J(q) at p = q

equations and give a characterization to q*. Since the Gateaux differentiability of J(q) depends
on y(q) only, it is enough to study that of y(q)..
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3.1 Existence of optimal parameters

Here we assume that P,q4 is a compact subset of P and we show the existence of the optimal
parameter q*. The following theorem is essential to solve the problem (i).

Theorem 3.1 The map q — y(q) : P = W(0,T) is weakly continuous. That is, y(qs) — y(q)
weakly in W(0,T) as q, — q strongly in M.

The following theorem is immediately obtained by Theorem 3.1.

Theorem 3.2 If P,y C P is a compact subset of M, then there exists at least one optimal
parameter q* € Pq.

3.2 Necessary conditions

We begin to show that the map q — y(q) of P into W(0,T) is Gateaux differentiable at q*
in the direction q — q*. '

Theorem 3.3 The map q — y(q) of P into W(0,T') is weakly Gateaux differentiable. That is,
for fixed q* = (a*,v*, 6% ,k*) € P,4 the weak Gateaux derivative z = Dy(q*)(q—q*) of y(q) at
q = q* in the direction q — q* exists in W(0,T') and it is a unique weak solution of the evolution
equations

2" + a*z + BAz + k*z + 7" cos(6*y*)6*z
= (4* — ) sind*y* + v* cos(8*y*)(6* — d)y* + (a* — a)y*' + (k* - k)y* in (0,7), (3.1)
z(0) =2/(0) =0,

where
cos ¢ 0 ]

cos = [ 0 cOS P2

Since the map q = y(q) : P = W(0,T) is Giteaux differentiable at q* in the direction q—q*,
the inequality (3.4) is equivalent to

(Cy(q*) = 24, Cz)lC',lC Z 0, Vq € Pad) (32)

where z is the solution of (3.1). To avoid QCIP to be complicated we study it according to four
types of very simple observations as follows:

1. Observe the distributed state Cy(q) = y(q) € L?(0,T;H) and take K = L2(0,T;H);

2. Observe the distributed velocity Cy(q) = y’(q) € L2(0,T; ) and take K = L2(0,T; H);
3. Observe the time terminal state Cy(q) = y(q;T) € H and take K = H;

4. Observe the time terminal velocity Cy(q) = y'(q;T") € H and take K = H.



207

3.2.1 Case of Cy(q) =y(q) € L?(0,T;H)

In this case the cost functional is given by

J@) = ly(a) - Zd“%z(o’T;%), (3.3)
where zy € L?(0,T;H). Then the necessary condition (3.2) with respect to (3.3) is written by
(y(Q") — 24, 2)2075) 2 0, Yq € Paa. (3.4)

We introduce the adjoint state p given by evolution equations

{ p" — a*p' + BAp + k*'p + 6**~* cos(6*y*)p = y(q*) —zq4 in (0,T), (3.5)

p(T) =p'(T) =0.
We can easily show existence and uniqueness of weak solutions for (3.5) if we take k defined by
k(t) = k** + 8*'v* cos(8*y*(t)) € L™®(0,T; M2(R)).

Multiplying (3.5) by z and integrating it over [0, T] by parts we have

T

| o) 2,2
T
= / (p" — a*'p’ + BAp + Kk**p + §*'v* cos(8*y*)p, z) dt
0
T
= / (p,2" + a*z + BAz + k*z + v* cos(8*y*)0z) dt.
0
Applying (3.1) to the the last equation we have
T !
/ (P, (7" —7)sind*y* + 7" cos(6*y*) (6" — 8)y* + (o — a)y™ + (k* —Kk)y™) dt
0
T
- [ @) -zan)
Finally by (3.4) we have an necessary condition given by
T !
| 0.7 = singy* + 4" cos(@y) (8" - 8)y" + (@ — @)y + (" ~K)y") dt 2 0
0

for all q € Pygq.
Summarizing these we have the following theorem.

Theorem 3.4 The optimal parameter q* for the cost (3.3) is characterized by the two states
y = y(q*),p = p(q*) of equations

(3.6)

y' +a*y’ + BAy + k*y + 4*sind*y =f in (0,7,
¥(0) = yo, ¥'(0) =y,



{ p" - ot '+ﬁAp+k**p+6*‘7* cos(8*y)p=y —za in (0,T), (3.7)

p(T) =p'(T) =
and one inequality

T
fo (B, (7" = 7)sin 8%y + " cos(8"y)(8" — )y + (@’ —a)y' + (k" —~K)y) dt 20 (3.8)

for all q € P,gq.
3.2.2 Case of Cy(q) =y'(q) € L?(0,T; H)

In this case the cost functional is given by

J(q) = |ly'(q) - zd“%2(o,’r;7{)7 (3.9)
where z4 € L2(0,T;H). Then the necessary condition (3.2) with respect to (3.3) is written by
(v'(a") = 24, 2') L2¢0,r;%) 2 0, VQ € Pog. (3.10)

We introduce the adjoint state p defined by evolution equations equations

T

{ p’ —a*p' + BAp+ k' p+ / 8"'v* cos(8*y*)p ds = y'(q*) — 24 in (0,T), (3.11)

¢ .
(T)=p'(T)=0

Through the approach as similar as we do in Theorem 2.1, we can prove existence, uniqueness

and regularity of weak solutions of (3.11). Since z' ¢ L%(0,T; V), the following calculations are

done formally. We can refer to [7] for the justice. Let us multiply z’ on the both side hands of
(3.11) and integrate it on [0, T] by parts. Then we have

T
/0 (y'(a") — 24, 2) dt
T
= / (p" - a* '+ﬂAp+k*tp+/ 0*'~* cos(6*y*)p ds,z') dt
0
T
= - / (p',2" + a*z' + BAz + k*z + 4" cos(6*y*)d0*z) dt.
0
Since z is a unique solution of (3.1), we have
/ (¥'(a") - 2a,2") at
- - /0 (0, (" —7)sin8'y* + 7" cos(8*y*)(8" = 8)y" + (& — @)y” + (k" k)y") dt.
Hence by (3.10) we have an necessary condition on q* given by
T
| 0 = msingy” +" cos(8'y")(8" - 8)y" + (o - @)y” + (K" ~K)y") de €0
0

for all q € Pygq.
Summarizing these we have the following theorem.
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Theorem 3.5 The optimal parameter q* for the cost (3.9) is characterized by the two states
y = y(q*),p = p(q*) of equations

y' +a*y + BAy + k*y + 4*sind*y =f in (0,7),
, (3.12)
Y(O) =Yoo, Y (O) =Y,
T
{ p’ — a*p' + BAp + k*p + / 8*'y* cos(6*y)pds =y —zq4 in (0,7), (3.13)
: )
p(T) =p'(T)=0 '

and one inequality

T
/ (0, (7" — ) sin 8"y + " cos(8*y) (6* — 8)y + (a” — a)y' + (K" —K)y) dt <O (3.14)
0

for all q € Pyq.

3.2.3 Case of Cy(q) =y(q;T) € H

In this case the cost functional is given by

J(@) = |y(a;T) — zal? (3.15)

where z; € H. Then the necessary condition (3.2) with respect to (3.15) is written by
(v(a;T) — 24,2(T)) 20, Vq € Paz (3.16)

We introduce the adjoint state p given by evolution equations
p" — a*p’ + BAp + k*'p + 6**v* cos(6*y*)p =0 in (0,7),
p(T)=0, p'(T)=y(a"T) - z-
If we take y(q*; T) — 24 € H and k(t) = k*t + §*'~* cos(6*y*(t)), then there is an unique weak

solution p € W(0,T) of (3.17). Let us multiply z on the both sides of the first equation of (3.17)
and integrate it on [0, T] by parts. Then we have

(3.17)

T
0 = / (p" — a*'p’ + BAp + k*'p + 6*'4* cos(6*y*)p, z) dt
0

T
0 = (p'(7),z(T)) + / (p,2" + a*z' + BAz + k*z + ~* cos(8*y*)8"z) dt.
0

Since z is the weak solution of (3.1), we have
—(y(q";T) — 24, 2(T))
T
= / (P, (Y" =) sind*y" + 7" cos(6*y*) (6" — 8)y" + (" — a)y™ + (k™ — k)y”) dt.
0

Finally by (3.16) we have an necessary condition given by

T
/ (P, (7" — ) sin8°y* +7° cos(*y*) (6" — 8)y* + (a* — a)y” + (k* — K)y*) dt < 0
0

for all q € Pgyq.
Summarizing these we have the following theorem.
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Theorem 3.6 The optimal parameter q* for the cost (3.15) is characterized by the two states
y =¥(q%),p = p(q*) of equations

y'+a*y' + BAy +k*y +v*sind*y =f in (0,T), (3.18)
y(0) =yo, ¥'(0) =y1, |
p" — a*p' + BAp + k''p + 67" cos(6*y)p = 0 in (0,T), (3.19)
p(T) =0, P/(T)=y(T) -~z |

and one inequality

T
/ (P, (7" = 7)sind*y + 7" cos(8*y) (8" — O)y + (o —a)y’ + (k" - k)y) dt <0 (3.20)
0

for all q € Pgq.
3.2.4 Case of Cy'(q) =y'(q;T) e H

In this case the cost functional is given by
J@ = |y'(aT) -z (3.21)
where z4 € H. Then the necessary condition (3.2) with respect to (3.21) is written by
(9" T) - 24,2'(T)) 20, Yq € Pay. (3.22)
We consider the adjoint state p given by evolution equations

{ p” — a*p’ + BAp + k*'p + 6*'y* cos(6*y*)p =0 in (0,T), (3.23)

p(T) =y'(a%T) — 24, p(T)=a*(y'(q%T) - 2zq).

Since y'(q*;T) — z4 € V in spite of a**(y'(q*; T) — z4) € H, we can not give any information of
solutions for the equation (3.23). Hence the following calculations are completely formal. It is
meaningful to deduce the necessary conditions on g* in spite of formality. Let us multiply z on
the both sides of the first equation of (3.17) and integrate it on [0,T] by parts. Then we have

T
0 = / (p" — a*'p' + BAp + k*'p + 6*'y* cos(6*y*)p, z) dt
0
(p(T),2'(T)) = (P'(T)-a”p(T),z(T))
T
+/ (p,2" + a*z' + BAz + k*z + v* cos(8*y*)6*z) dt.
0 .

Since p'(T) — a**p(T) = 0, p(T) = y(q*;T) — z4 and z is the weak solution of (3.1), by last
equality above we have

(y(q*;T) — 24,2'(T))

T
= /0 (p, (¥* — ) sind*y* + v4* cos(6*y*)(0* — 8)y* + (a* — a)y* + (k* — k)y*) dt.
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Finally by (3.22) we have an necessary condition given by

T
/ (p, (7" =) sin&*y* + 7" cos(8"y") (8" — 0)y* + (" — a)y* + (K" —k)y*) dt > 0
0

for all q € Pgg-
Summarizing these we have the following theorem.

Theorem 3.7 Assume that
Yy (aT) —zq € V.

Then the optimal parameter q* for the cost (3.21) is characterized by the two states y =
y(q*),p = p(q*) of equations

y'+o*y + BAy + k*y +v*sind’y =f in (0,T), (3.24)

y(0) =yo, ¥'(0) =y, ' .
p" — a™p' + BAp +Lk"p + 8"y cos(8"y)p = 0 in (0,T), (3.25)
p(T) =y'(T) — 24, p(T)=c"(y'(T) - 2a) .

and one inequality

T
/ (p,(Y* — 7)sin8*y + 7" cos(8*y)(8* = 8)y + (" — @)y’ + (k" —K)y) dt 20  (3.26)
0
for all q € P,gq.
Proof. All calculations are true under the assumption y'(q*;T) —z4 € V.

Example 3.1 Let us deduce the bang-bang principle for the case of Cy(q) = y(q) € L%(0,T; H).
In this case the necessary condition (3.8) is equivalent to

/OT((a* —a)y'(t),p(t)) dt >0, Ve € Mz(R),, ‘ (3.27)
/0 T((k* - k)y(t),p(t)) dt >0, Vk € M3(R), (3.28)
/0 T((v* —~)sind*y(t), p(t)) dt > 0, Vv € MJ(R), (3.29)
/0 T((5* — 8)y(t),~* cos(8*y(t))p(t)) dt >0, ¥ € Mg(R). ~(3.30)

First let us characterize (3.27). For this we take the component sets for o as follows:

—1

Qjj € [aijaa?jL 1,j = 1,2.

Put a;; = fQ %%i(x,t)pi(:c,t) dxdt and assume that a;; # 0 for all 4, j = 1,2. Then (3.27) is also
equivalent to the following four conditions

(a;‘j — ajj)ai; 20, Yoy € [U}j,a?j], 1,7 =1,2.
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Consequently it is easily verified by these conditions that
. 1., L, 1., .
o = i{sxgn(aij) + l}a?j - -2—{51gn(az~j) - l}a}j, 1,5 =1,2.
Now for characterizing (3.28)-(3.30) we take the component sets for k,~ and § as follows:

ki] € [kma ij]’ Yii € [711177121] 62] € [51_1? zj]» iaj =1,2.
Assume that for ¢,j = 1,2

G = /Q y; (@, )pi(a, 1) dodt £ 0,

2
& = [ sin(3 us(o O0pile 1) dodt £0
Q

j=1
ej = 7{‘,/ yj(z,t) cos (z Uk(z,t) )pi(x, t) dzdt # 0.
Then we have for 7,7 = 1,2
Ky = plsign(cy) + 11} - 5{sign(ey) ~ 1)E,

. 1. . IPEE

Vi = §{S1gn(di)+1}'y?,-—é-{sxgn(d,) 1}7%,

* 1 . —2 1 . _1

4 = gisign(eij) +1}9y; — 5 {sign(ei;) — 1}9;;.
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